Tenemos datos sobre un encuesta muy grande, donde se hicieron preguntas sobre 8 temas principales: gustos musicales, gustos cinematográficos, hobbies, miedos o fobias, salud y bienestar, personalidad, gastos y aspectos demográficos.
Importamos los datos a R, limpiamos los nombres y quitamos los NAs. Una vez que tenemos nuestros datos completos vamos a convertir las 11 columnas categóricas que tenemos en numéricas, asignandoles valores entre 1 y el número de categorias o niveles que tenga dicha columna para poder tener todas nuestras columnas numéricas.
library(tidyverse)
library(janitor)
library(factoextra)
library(corrplot)
library(formattable)
datos <- read.csv("C:/Users/luisa/Downloads/respuestas_encuesta.csv",
fileEncoding = "UTF-8-BOM")
datos <- datos %>% clean_names()
datos <- datos
datos <- datos %>%
mutate_all(~ifelse(. %in% c("N/A", "null", ""), NA, .)) %>%
na.omit()
datos$smoking <- factor(datos$smoking, levels = c("never smoked",
"tried smoking",
"former smoker",
"current smoker"))
datos$smoking <- as.numeric(datos$smoking)
datos$alcohol <- factor(datos$alcohol, levels = c("never",
"social drinker",
"drink a lot"))
datos$alcohol <- as.numeric(datos$alcohol)
datos$punctuality <- factor(datos$punctuality, levels = c("i am often early",
"i am always on time",
"i am often running late"))
datos$punctuality <- as.numeric(datos$punctuality)
datos$lying <- factor(datos$lying, levels = c("never",
"only to avoid hurting someone",
"sometimes",
"everytime it suits me"))
datos$lying <- as.numeric(datos$lying)
datos$internet_usage <- factor(datos$internet_usage,
levels = c("no time at all",
"less than an hour a day",
"few hours a day",
"most of the day"))
datos$internet_usage <- as.numeric(datos$internet_usage)
datos$gender <- factor(datos$gender, levels = c("female", "male"))
datos$gender <- as.numeric(datos$gender)
datos$left_right_handed <- factor(datos$left_right_handed,
levels = c("left handed", "right handed"))
datos$left_right_handed <- as.numeric(datos$left_right_handed)
datos$education <- factor(datos$education)
datos$education <- factor(datos$education,
levels = c("currently a primary school pupil",
"primary school",
"secondary school",
"college/bachelor degree",
"masters degree",
"doctorate degree"))
datos$education <- as.numeric(datos$education)
datos$only_child <- factor(datos$only_child, levels = c("no", "yes"))
datos$only_child <- as.numeric(datos$only_child)
datos$village_town <- factor(datos$village_town, levels = c("city",
"village"))
datos$village_town <- as.numeric(datos$village_town)
datos$house_block_of_flats <- factor(datos$house_block_of_flats,
levels = c("house/bungalow",
"block of flats"))
datos$house_block_of_flats <- as.numeric(datos$house_block_of_flats)Para mantener en cuenta los temas principales de la encuesta, formaremos variables que guarden las columnas de cada tema. Y veremos la correlación entre las categorias de cada tema.
musica <- datos[,1:19]
peliculas <- datos[,20:31]
hobbies <- datos[,32:63]
fobias <- datos[,64:73]
salud <- datos[,74:76]
personalidad <- datos[,77:133]
gastos <- datos[,134:140]
demografia <- datos[,141:150]
corrplot(cor(musica), method="color", tl.cex = 0.5)Ya teniendo una idea de como son estas variables y como se relacionan entre ellas dentro de cada tema veremos cuantos componentes necesitamos para cubrir el 50% de la varianza (al tener un conjunto de datos tan diverso no podemos esperar explicar una gran parte de la varianza ya que eso nos daría una cantidad grande de componentes y estaríamos reduciendo muy pocas dimensiones).
i <- 1
acum <- c()
prop_varianza <- 0
pca <- NULL
prop_varianza_acum <- 0
while(prop_varianza_acum[i] <= 0.51){
pca <- prcomp(datos, center = T, scale. = T, rank. = i)
prop_varianza <- pca$sdev^2 / sum(pca$sdev^2)
prop_varianza_acum <- cumsum(prop_varianza)
acum[i] <- prop_varianza_acum[i]
i <- i + 1
}
pc <- 1:(i-1)
df <- data.frame(Dimensions = pc, Variance_Explained = prop_varianza_acum[1:(i-1)])
ggplot(df, aes(Dimensions, Variance_Explained)) + geom_point() +
geom_line() + theme_minimal() + geom_point(aes(26, 0.50686), col = 'red') +
annotate(geom="text", x=28.5, y=0.49, label="50% Variance", color="red") +
scale_y_continuous(labels = scales::percent)## [1] 26
Podemos ver que alcanzamos explicar el 50% cuando tenemos 26 componentes. Por lo que con este número ajustaremos el modelo y veremos el porcentaje que explica cada uno de los primeros 10 componentes
Podemos ver además, usando la información dentro de las primeras dos dimensiones respecto a la colaboración de las variables en los componentes.
fviz_pca_var(pca,
col.var = "contrib",
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
repel = TRUE
)Aquí se ven los vectores propios asociados a cada dimensión en una tabla donde los colores más obscuros representan un mayor peso de la variable en dicho componente.
#area(col = 2:7) ~ color_tile("#DeF7E9", "#71CA97")
vect <- as.data.frame(pca$rotation)
round_df <- function(x, digits) {
numeric_columns <- sapply(x, mode) == 'numeric'
x[numeric_columns] <- round(x[numeric_columns], digits)
return(x)
}
vect <- round_df(vect, 6)
unit.scale = function(x) (x - min(x)) / (max(x) - min(x))
formattable(vect, align = c(rep('r', 26)),
list(PC1 = color_tile("#edf8fb", "#006d2c"),
PC2 = color_tile("#feedde", "#a63603"),
PC3 = color_tile("#eff3ff", "#08519c"),
PC4 = color_tile("#f2f0f7", "#54278f"),
PC5 = color_tile("#edf8fb", "#006d2c"),
PC6 = color_tile("#feedde", "#a63603"),
PC7 = color_tile("#eff3ff", "#08519c"),
PC8 = color_tile("#f2f0f7", "#54278f"),
PC9 = color_tile("#edf8fb", "#006d2c"),
PC10 = color_tile("#feedde", "#a63603"),
PC11 = color_tile("#eff3ff", "#08519c"),
PC12 = color_tile("#f2f0f7", "#54278f"),
PC13 = color_tile("#edf8fb", "#006d2c"),
PC14 = color_tile("#feedde", "#a63603"),
PC15 = color_tile("#eff3ff", "#08519c"),
PC16 = color_tile("#f2f0f7", "#54278f"),
PC17 = color_tile("#edf8fb", "#006d2c"),
PC18 = color_tile("#feedde", "#a63603"),
PC19 = color_tile("#eff3ff", "#08519c"),
PC20 = color_tile("#f2f0f7", "#54278f"),
PC21 = color_tile("#edf8fb", "#006d2c"),
PC22 = color_tile("#feedde", "#a63603"),
PC23 = color_tile("#eff3ff", "#08519c"),
PC24 = color_tile("#f2f0f7", "#54278f"),
PC25 = color_tile("#edf8fb", "#006d2c"),
PC26 = color_tile("#feedde", "#a63603"))
)| PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | PC10 | PC11 | PC12 | PC13 | PC14 | PC15 | PC16 | PC17 | PC18 | PC19 | PC20 | PC21 | PC22 | PC23 | PC24 | PC25 | PC26 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| music | -0.039196 | 0.044246 | -0.040506 | 0.102683 | -0.014533 | 0.101198 | -0.015239 | 0.065659 | -0.002312 | 0.049699 | -0.007860 | 0.029130 | -0.056255 | 0.099615 | -0.008343 | 0.002749 | 0.124652 | 0.035781 | -0.029233 | 0.099231 | -0.101554 | 0.153825 | -0.031358 | 0.171162 | -0.072657 | 0.031846 |
| slow_songs_or_fast_songs | 0.060574 | 0.001965 | -0.056144 | -0.022438 | -0.034128 | 0.034134 | 0.042493 | 0.008572 | -0.051054 | -0.056265 | -0.121418 | 0.002028 | -0.088398 | 0.102511 | -0.058368 | 0.182382 | 0.135076 | -0.075951 | 0.089714 | 0.098500 | -0.054572 | 0.146168 | -0.041470 | 0.093130 | 0.061914 | -0.036628 |
| dance | -0.046431 | 0.036156 | -0.169435 | -0.071686 | 0.072809 | 0.133423 | -0.028357 | -0.107991 | 0.086371 | -0.116044 | -0.079379 | 0.128923 | -0.148296 | -0.037335 | -0.021184 | 0.077020 | -0.080983 | -0.013579 | -0.027641 | 0.055163 | -0.004324 | 0.061101 | -0.037900 | 0.155946 | -0.060705 | 0.044003 |
| folk | -0.066773 | 0.136976 | 0.083259 | -0.014789 | -0.029357 | 0.062555 | -0.099237 | -0.160292 | 0.053845 | -0.082743 | -0.017111 | 0.081579 | 0.026440 | 0.032713 | 0.112103 | -0.066737 | -0.061799 | 0.043399 | 0.062514 | 0.036168 | 0.013764 | -0.058982 | 0.014055 | 0.115924 | 0.037820 | -0.026674 |
| country | 0.002499 | 0.125112 | 0.077947 | -0.029822 | 0.048130 | 0.079415 | -0.121375 | -0.081673 | 0.066705 | -0.112592 | 0.009826 | -0.000661 | 0.081885 | -0.046452 | 0.037285 | -0.001497 | -0.177421 | 0.090745 | 0.016301 | -0.157898 | -0.011014 | -0.035040 | 0.070639 | 0.150233 | 0.042989 | 0.064059 |
| classical_music | -0.050311 | 0.176310 | 0.144976 | 0.099591 | 0.054867 | -0.019804 | -0.026574 | -0.037130 | 0.123798 | -0.068909 | 0.060161 | 0.001854 | -0.003974 | -0.007890 | 0.150366 | -0.080368 | 0.021254 | 0.086342 | -0.051929 | 0.082321 | -0.008866 | 0.003551 | -0.003113 | -0.005155 | -0.101201 | -0.065496 |
| musical | -0.129083 | 0.116851 | 0.012797 | 0.032041 | 0.024378 | 0.061245 | -0.029055 | 0.007592 | 0.141187 | -0.152009 | 0.032608 | -0.068107 | 0.060012 | -0.099001 | 0.041727 | 0.002642 | -0.014543 | 0.155840 | 0.027058 | 0.049236 | 0.122829 | -0.009475 | -0.035803 | -0.014289 | -0.045701 | -0.146295 |
| pop | -0.083715 | -0.018213 | -0.143871 | -0.057249 | 0.104569 | 0.103021 | -0.040178 | 0.002448 | 0.162518 | -0.148895 | -0.008822 | 0.094887 | -0.078347 | 0.011522 | -0.021704 | 0.070727 | -0.014605 | 0.017323 | 0.074925 | 0.064231 | 0.014332 | -0.059108 | -0.089682 | 0.073613 | -0.039439 | -0.038636 |
| rock | 0.019070 | 0.076974 | 0.105519 | 0.177835 | -0.017599 | 0.138145 | -0.112181 | 0.135198 | -0.132041 | -0.021608 | 0.099176 | 0.022521 | 0.005676 | 0.097412 | -0.085058 | 0.060675 | -0.046965 | 0.045300 | 0.199660 | -0.038548 | -0.032658 | 0.020363 | -0.108012 | 0.043383 | -0.011882 | -0.106010 |
| metal_or_hardrock | 0.091223 | 0.072070 | 0.143906 | 0.107152 | -0.027468 | 0.085500 | -0.035437 | 0.081032 | -0.192567 | -0.022060 | 0.010502 | -0.024166 | 0.092896 | 0.087798 | -0.112868 | 0.009560 | -0.027261 | -0.029597 | 0.172463 | -0.054053 | -0.089748 | -0.007564 | 0.026616 | -0.023212 | -0.031019 | -0.159740 |
| punk | 0.046644 | 0.061587 | 0.086280 | 0.129699 | 0.001595 | 0.112534 | -0.080223 | 0.111250 | -0.220708 | 0.012108 | 0.030882 | -0.023040 | 0.094291 | 0.176480 | -0.168184 | 0.069971 | -0.068706 | 0.044171 | 0.181161 | 0.025794 | 0.000170 | 0.084946 | 0.023823 | -0.011687 | -0.086749 | -0.133227 |
| hiphop_rap | 0.021958 | 0.016509 | -0.198908 | -0.022571 | 0.083881 | 0.064778 | -0.006438 | -0.055936 | 0.026199 | -0.037504 | -0.145220 | 0.045943 | -0.103677 | -0.027040 | -0.010622 | 0.099757 | -0.101745 | -0.086231 | -0.050034 | 0.052522 | -0.009258 | 0.031290 | 0.042928 | 0.073512 | -0.030244 | -0.006633 |
| reggae_ska | 0.009904 | 0.102505 | -0.031303 | 0.067112 | -0.011688 | 0.119492 | -0.102194 | 0.019911 | -0.116788 | -0.091640 | -0.107794 | 0.093612 | -0.072412 | 0.008578 | -0.038780 | 0.101291 | -0.194935 | -0.061355 | 0.029522 | -0.007841 | 0.123830 | -0.007248 | 0.069442 | -0.005699 | -0.008934 | -0.046908 |
| swing_jazz | -0.052894 | 0.169382 | 0.062828 | 0.127883 | 0.003987 | 0.044936 | -0.084566 | 0.013340 | 0.029655 | -0.079269 | -0.021868 | 0.094441 | 0.036229 | -0.111451 | 0.094567 | 0.012841 | -0.112546 | -0.053329 | -0.045746 | 0.004790 | -0.015936 | -0.101476 | 0.012447 | 0.100464 | -0.054071 | -0.002602 |
| rock_n_roll | -0.016421 | 0.138416 | 0.068274 | 0.163189 | -0.021319 | 0.107416 | -0.138271 | 0.037356 | -0.099737 | -0.056519 | 0.018688 | 0.033978 | 0.070815 | -0.011914 | -0.062870 | 0.062374 | -0.117934 | 0.017701 | 0.097087 | 0.004954 | -0.027062 | -0.055067 | -0.028306 | 0.123830 | 0.005019 | 0.001375 |
| alternative | -0.002264 | 0.108194 | 0.110464 | 0.206878 | -0.057445 | 0.019347 | -0.053536 | 0.045466 | -0.077633 | 0.040401 | 0.050238 | 0.050463 | 0.007166 | 0.006016 | -0.077950 | 0.083715 | -0.008781 | 0.026583 | -0.061038 | 0.075323 | 0.007484 | 0.054643 | -0.013945 | 0.103190 | -0.025249 | -0.077793 |
| latino | -0.126723 | 0.094001 | -0.057704 | -0.034586 | -0.029396 | 0.061559 | -0.034566 | -0.070465 | 0.117844 | -0.205662 | -0.092241 | 0.095786 | -0.052587 | -0.044323 | 0.019055 | -0.009631 | -0.180244 | -0.049104 | -0.049535 | -0.032876 | 0.045628 | -0.007484 | -0.060325 | 0.016665 | 0.060576 | -0.113570 |
| techno_trance | 0.032340 | 0.032873 | -0.097135 | -0.015716 | 0.099025 | 0.139165 | 0.051714 | -0.116727 | 0.045446 | -0.072466 | -0.109263 | 0.096540 | -0.097352 | 0.056527 | -0.040099 | 0.021519 | 0.023074 | -0.120696 | -0.172590 | -0.031879 | -0.085561 | 0.108221 | -0.000865 | 0.089974 | -0.084665 | -0.059978 |
| opera | -0.053001 | 0.172216 | 0.110165 | 0.047755 | 0.037239 | -0.040798 | -0.015387 | -0.043393 | 0.061957 | -0.128585 | 0.023860 | -0.063800 | 0.015125 | -0.052241 | 0.142899 | -0.160776 | -0.006223 | 0.147847 | -0.016291 | 0.085578 | -0.049030 | 0.018991 | -0.020927 | -0.042928 | -0.092661 | -0.112070 |
| movies | -0.007968 | 0.045814 | -0.059468 | 0.088624 | 0.059005 | 0.120015 | -0.064963 | 0.101247 | 0.137479 | 0.087138 | 0.027202 | -0.177015 | -0.096014 | -0.000506 | 0.012981 | -0.056340 | 0.071334 | 0.020276 | 0.017809 | 0.142460 | -0.020362 | 0.104426 | -0.162351 | -0.079953 | -0.128105 | 0.245260 |
| horror | 0.080976 | 0.004478 | -0.046472 | 0.056087 | 0.087942 | 0.047350 | -0.032509 | 0.060425 | -0.012122 | 0.015596 | -0.224343 | -0.118256 | -0.104657 | -0.076486 | -0.146127 | -0.095146 | 0.055654 | 0.134277 | 0.070101 | -0.018657 | -0.095132 | -0.054936 | 0.128012 | 0.030583 | -0.094579 | 0.182223 |
| thriller | 0.088125 | 0.018308 | -0.019981 | 0.044403 | 0.141847 | 0.051702 | -0.070123 | 0.044664 | -0.003968 | -0.001842 | -0.134661 | -0.141897 | -0.170036 | 0.020518 | -0.102880 | -0.101570 | -0.002087 | 0.197050 | 0.091472 | 0.059809 | -0.139179 | -0.042368 | 0.029925 | 0.084460 | -0.031131 | 0.098008 |
| comedy | -0.019407 | 0.016477 | -0.109427 | -0.046325 | 0.075197 | 0.156859 | -0.052260 | 0.155722 | 0.053152 | -0.017170 | -0.055649 | 0.023804 | -0.006407 | -0.017140 | 0.069711 | -0.017205 | 0.081808 | -0.188062 | 0.064683 | -0.020682 | 0.056227 | -0.153702 | -0.007637 | -0.134386 | -0.010336 | 0.082729 |
| romantic | -0.179954 | -0.000790 | -0.087564 | -0.018442 | 0.034511 | 0.087912 | -0.056172 | 0.043381 | 0.104672 | -0.034473 | 0.021512 | 0.027019 | 0.097442 | -0.082235 | -0.069572 | -0.025369 | -0.036863 | -0.032387 | 0.064259 | -0.089977 | 0.018574 | -0.006238 | -0.016722 | -0.048309 | 0.051059 | -0.052558 |
| sci_fi | 0.111181 | 0.077423 | 0.045799 | 0.028292 | 0.109001 | 0.175574 | -0.027287 | 0.034188 | 0.111982 | -0.031708 | -0.023715 | -0.047786 | 0.051053 | -0.003035 | -0.016252 | -0.041997 | -0.010562 | -0.004903 | -0.011710 | -0.044194 | -0.072442 | 0.100187 | -0.089001 | 0.051650 | -0.071124 | 0.111444 |
| war | 0.122110 | 0.087200 | 0.005371 | 0.059457 | 0.084398 | 0.025012 | -0.045017 | -0.099297 | 0.006466 | 0.089291 | 0.000172 | -0.094521 | -0.044607 | 0.112134 | 0.115042 | -0.051488 | -0.161148 | 0.050493 | 0.009142 | -0.100318 | -0.074349 | 0.016950 | 0.046005 | 0.005902 | 0.075557 | 0.153277 |
| fantasy_fairy_tales | -0.141893 | 0.053721 | -0.020438 | 0.030957 | -0.013624 | 0.186012 | -0.069868 | 0.069484 | 0.037398 | -0.072500 | 0.015496 | -0.018714 | 0.017927 | -0.071889 | 0.212657 | -0.143862 | 0.050811 | -0.064814 | 0.124160 | -0.104026 | -0.012152 | 0.107857 | 0.026036 | -0.072565 | 0.075309 | -0.032352 |
| animated | -0.094255 | 0.052008 | -0.001147 | 0.059353 | -0.002563 | 0.229654 | -0.030382 | 0.115018 | 0.069908 | -0.048058 | 0.025366 | -0.033756 | 0.044382 | -0.046888 | 0.172327 | -0.124205 | 0.064175 | -0.089382 | 0.113425 | -0.084794 | 0.004047 | 0.139730 | 0.079138 | -0.111936 | 0.039743 | 0.010220 |
| documentary | 0.023194 | 0.153040 | 0.085382 | -0.020991 | 0.064813 | 0.011065 | 0.006315 | 0.022173 | -0.053070 | 0.000481 | 0.013648 | -0.015582 | -0.065795 | 0.125607 | 0.206894 | -0.087565 | -0.058519 | -0.084511 | -0.131811 | -0.047431 | -0.041612 | 0.047320 | -0.012169 | -0.032684 | 0.182246 | 0.092451 |
| western | 0.112294 | 0.118373 | 0.041221 | -0.000625 | 0.063343 | 0.077424 | -0.057082 | -0.081602 | -0.002063 | -0.067543 | -0.026231 | -0.086049 | 0.107103 | -0.033412 | 0.071200 | 0.018610 | -0.138385 | 0.030313 | -0.021749 | -0.136124 | -0.077965 | -0.003998 | 0.047909 | 0.028086 | 0.138103 | 0.060890 |
| action | 0.135363 | 0.058487 | -0.050011 | -0.028774 | 0.136754 | 0.079664 | -0.084106 | 0.012167 | 0.063703 | 0.006130 | -0.039141 | -0.078163 | -0.012885 | 0.075141 | 0.147016 | -0.012796 | 0.005108 | 0.004338 | -0.053624 | 0.003025 | -0.029435 | 0.011372 | -0.100423 | -0.033235 | -0.080931 | -0.044509 |
| history | 0.018088 | 0.154126 | 0.057763 | 0.095888 | 0.029584 | -0.153789 | -0.000813 | 0.018840 | 0.012220 | 0.058591 | -0.097457 | -0.128057 | -0.102563 | 0.106790 | 0.170698 | -0.017672 | -0.035658 | -0.118366 | -0.049944 | -0.059650 | -0.085382 | 0.038436 | 0.043878 | -0.013406 | -0.001653 | 0.013269 |
| psychology | -0.071482 | 0.108573 | 0.023630 | 0.103120 | -0.007366 | -0.058676 | 0.057289 | 0.011365 | 0.061743 | -0.029944 | -0.090042 | -0.024539 | -0.111873 | 0.082961 | -0.092899 | 0.081104 | 0.062317 | 0.001049 | -0.111674 | -0.208278 | -0.007334 | -0.020233 | 0.175652 | -0.076574 | 0.036413 | -0.016988 |
| politics | 0.061928 | 0.135441 | -0.023236 | 0.045205 | 0.071714 | -0.251060 | -0.033605 | 0.022600 | 0.083460 | 0.066169 | -0.012026 | -0.108544 | -0.122934 | 0.133694 | 0.013955 | 0.019717 | -0.069167 | -0.160136 | 0.060794 | -0.059586 | 0.101242 | -0.048318 | -0.001879 | -0.027786 | -0.095215 | -0.021423 |
| mathematics | 0.066096 | 0.106943 | 0.054498 | -0.126175 | 0.086132 | 0.065205 | 0.008025 | 0.006552 | 0.064395 | -0.128820 | 0.112414 | 0.043589 | 0.041183 | -0.011642 | -0.221249 | 0.012143 | -0.041874 | -0.109664 | -0.056247 | -0.074927 | 0.187723 | 0.094086 | 0.053733 | -0.090646 | -0.044977 | 0.110854 |
| physics | 0.088894 | 0.146115 | 0.074526 | -0.115617 | 0.087628 | 0.079034 | 0.096740 | -0.041580 | -0.037638 | -0.147962 | 0.143963 | 0.023796 | -0.003904 | -0.032331 | -0.114781 | -0.030749 | 0.043299 | -0.071488 | -0.102738 | -0.124230 | 0.103730 | 0.053699 | 0.017983 | -0.021011 | -0.042159 | 0.045078 |
| internet | 0.062820 | 0.004624 | -0.058812 | 0.001597 | 0.167556 | 0.086349 | -0.102386 | 0.102279 | 0.124734 | 0.013135 | 0.083693 | -0.020864 | 0.049993 | 0.107711 | -0.151811 | 0.060731 | 0.158128 | -0.077316 | -0.119800 | -0.007851 | 0.079600 | -0.011570 | 0.007992 | -0.062471 | 0.032458 | -0.110707 |
| pc | 0.149289 | 0.081084 | 0.003691 | -0.057438 | 0.174245 | 0.080338 | -0.094244 | 0.040858 | 0.053267 | -0.007601 | 0.013126 | 0.000255 | 0.082297 | -0.014143 | -0.184374 | -0.028849 | 0.173545 | -0.067472 | -0.052884 | 0.012494 | 0.054681 | 0.016028 | 0.014418 | 0.016103 | 0.027852 | -0.018900 |
| economy_management | 0.020781 | 0.061766 | -0.103147 | -0.032412 | 0.086405 | -0.142691 | -0.125062 | 0.103188 | 0.124742 | -0.039336 | -0.002120 | 0.018575 | 0.012499 | 0.051166 | -0.151356 | 0.091544 | -0.136960 | -0.041392 | 0.011973 | -0.095977 | 0.172698 | 0.054934 | 0.052614 | -0.068190 | 0.032350 | 0.015809 |
| biology | -0.096805 | 0.103067 | 0.038182 | -0.060325 | 0.018767 | 0.161049 | 0.285565 | -0.055731 | -0.107128 | -0.096317 | 0.118620 | -0.065248 | -0.207899 | 0.063414 | -0.055377 | 0.004215 | 0.053089 | -0.013205 | 0.029031 | -0.019709 | -0.061240 | -0.105646 | -0.058821 | -0.040525 | -0.002310 | -0.006210 |
| chemistry | -0.049291 | 0.083846 | 0.055546 | -0.099507 | 0.009381 | 0.142445 | 0.277642 | -0.047724 | -0.109749 | -0.136218 | 0.142646 | -0.009299 | -0.173091 | 0.088243 | -0.039545 | -0.039385 | 0.006514 | -0.031753 | 0.066710 | -0.023058 | -0.061252 | -0.089157 | -0.062738 | -0.030664 | -0.032529 | 0.044596 |
| reading | -0.134289 | 0.089110 | 0.100043 | 0.140402 | -0.056733 | -0.051693 | 0.026574 | 0.101536 | 0.035476 | -0.033387 | -0.013025 | -0.053497 | -0.037444 | 0.011636 | 0.086559 | 0.104134 | 0.072141 | -0.008881 | -0.005034 | 0.079245 | 0.047587 | 0.044033 | -0.037029 | -0.016194 | -0.039284 | 0.000704 |
| geography | 0.016204 | 0.133062 | 0.000931 | 0.021208 | 0.025867 | -0.090711 | 0.015749 | 0.027240 | 0.024370 | 0.093769 | -0.011354 | -0.090914 | -0.029759 | 0.113191 | 0.002570 | 0.090479 | -0.081264 | -0.135564 | -0.109539 | 0.197973 | 0.011497 | 0.042732 | 0.002320 | -0.056940 | 0.034109 | -0.079167 |
| foreign_languages | -0.087395 | 0.111232 | -0.017135 | 0.122519 | -0.004146 | -0.060789 | -0.023339 | 0.079082 | 0.059464 | 0.010744 | 0.027282 | 0.011411 | 0.001121 | 0.118183 | -0.098643 | 0.138095 | -0.031709 | -0.019406 | -0.143672 | 0.074927 | 0.010413 | 0.055443 | -0.063385 | -0.110880 | 0.020876 | 0.054065 |
| medicine | -0.078476 | 0.109717 | 0.035973 | -0.046212 | 0.007327 | 0.088430 | 0.252755 | -0.079173 | -0.099881 | -0.109342 | 0.099692 | -0.071950 | -0.213101 | 0.096715 | -0.106978 | -0.009995 | 0.027365 | 0.036605 | 0.057946 | 0.003076 | -0.076508 | -0.158846 | -0.062132 | -0.107795 | 0.015036 | -0.023951 |
| law | 0.000270 | 0.108167 | -0.075062 | 0.036322 | 0.070077 | -0.193212 | -0.003506 | 0.047988 | 0.048227 | -0.030096 | -0.089678 | -0.160004 | -0.084932 | 0.076612 | -0.056972 | 0.043347 | -0.131806 | -0.065795 | 0.105430 | -0.153408 | 0.107800 | -0.052842 | -0.046902 | -0.106820 | -0.054300 | 0.008420 |
| cars | 0.139155 | 0.076950 | -0.113099 | -0.076602 | 0.125244 | 0.071622 | -0.033724 | -0.046400 | -0.037208 | 0.053659 | -0.040395 | -0.081405 | 0.036005 | -0.028728 | 0.027460 | -0.010399 | -0.042523 | -0.016653 | 0.028389 | 0.039699 | 0.051435 | -0.049276 | 0.002263 | -0.095377 | -0.026008 | -0.061730 |
| art_exhibitions | -0.117359 | 0.151409 | 0.051291 | 0.144287 | -0.026924 | -0.048042 | 0.027809 | -0.031405 | -0.039203 | 0.030967 | -0.005217 | -0.086405 | 0.037033 | -0.121709 | -0.038714 | 0.044312 | 0.098665 | 0.020533 | -0.136107 | 0.094579 | 0.036997 | -0.024012 | 0.089004 | -0.010131 | -0.048680 | 0.011957 |
| religion | -0.067985 | 0.120319 | 0.074791 | -0.015091 | -0.022964 | -0.023884 | 0.014728 | -0.236727 | 0.135188 | 0.130670 | 0.028256 | -0.048120 | -0.044655 | 0.106060 | -0.047200 | 0.079901 | 0.025989 | -0.025056 | 0.058936 | -0.035029 | -0.029619 | 0.042598 | -0.020336 | -0.104744 | -0.153378 | -0.100065 |
| countryside_outdoors | -0.082003 | 0.117947 | 0.044002 | -0.053667 | -0.023093 | 0.072321 | -0.004247 | -0.069740 | -0.030588 | 0.122976 | -0.054149 | -0.036722 | 0.100654 | -0.056634 | 0.015587 | 0.057367 | 0.033523 | -0.100418 | -0.094412 | 0.150561 | -0.013983 | 0.010921 | 0.093368 | -0.083057 | 0.199976 | 0.076370 |
| dancing | -0.141359 | 0.095304 | -0.097229 | 0.015407 | -0.050845 | 0.022090 | 0.073738 | -0.120089 | 0.067170 | -0.036162 | -0.089640 | -0.031513 | -0.010507 | -0.089045 | -0.071282 | 0.064625 | -0.037030 | -0.092481 | -0.110515 | 0.031674 | 0.009635 | -0.040840 | -0.031623 | -0.042346 | 0.035272 | 0.023576 |
| musical_instruments | -0.055593 | 0.135148 | 0.066231 | 0.074839 | -0.012379 | 0.028489 | -0.007986 | -0.106489 | 0.016993 | 0.029509 | -0.023012 | -0.007690 | 0.179382 | -0.084295 | -0.079297 | -0.045089 | 0.129754 | -0.050079 | 0.002414 | 0.095943 | -0.052117 | -0.088498 | 0.044934 | -0.011069 | -0.126300 | 0.013470 |
| writing | -0.065778 | 0.087223 | 0.077598 | 0.116977 | 0.024973 | -0.072669 | 0.053665 | -0.047915 | 0.052079 | 0.034140 | -0.109932 | -0.081732 | 0.106026 | -0.096741 | -0.038987 | 0.086338 | 0.223921 | -0.070871 | -0.039776 | -0.070039 | -0.009433 | 0.015191 | 0.044022 | 0.161616 | -0.031381 | 0.006686 |
| passive_sport | 0.049836 | 0.048218 | -0.079635 | -0.016721 | 0.034240 | 0.112837 | -0.031543 | 0.031347 | -0.006329 | 0.131522 | 0.002783 | -0.033603 | -0.026865 | 0.041078 | -0.027077 | 0.009245 | -0.018527 | -0.052411 | 0.064521 | 0.137971 | 0.166337 | -0.273268 | 0.073502 | -0.030995 | 0.044462 | -0.098364 |
| active_sport | 0.051502 | 0.118692 | -0.118316 | -0.030483 | -0.018458 | 0.056479 | 0.066388 | -0.059794 | -0.127859 | 0.051065 | -0.113845 | -0.056581 | 0.022842 | -0.073085 | -0.011137 | 0.017145 | -0.119967 | -0.109633 | -0.049741 | 0.105052 | -0.060055 | -0.061137 | 0.008673 | 0.065869 | 0.035200 | -0.034055 |
| gardening | -0.093690 | 0.062695 | 0.016650 | -0.093016 | -0.013998 | 0.040208 | 0.097931 | -0.081145 | -0.035335 | 0.043238 | -0.041285 | -0.156379 | 0.010630 | -0.099005 | 0.031890 | 0.061762 | 0.168647 | -0.114065 | 0.039850 | 0.126571 | 0.145947 | 0.004462 | 0.113680 | 0.101596 | 0.016008 | -0.003004 |
| celebrities | -0.095988 | -0.054818 | -0.155596 | 0.027941 | 0.143459 | -0.010382 | -0.012558 | 0.022065 | 0.026127 | -0.070783 | -0.003576 | -0.069786 | 0.039371 | -0.017454 | 0.002254 | 0.137167 | 0.038625 | 0.001678 | 0.113295 | 0.035115 | 0.026125 | -0.014856 | 0.102650 | 0.074305 | -0.007523 | -0.134125 |
| shopping | -0.154653 | -0.033224 | -0.198703 | 0.043814 | 0.064292 | 0.012673 | 0.050820 | 0.050037 | 0.015476 | -0.039109 | 0.056466 | -0.122728 | 0.050439 | 0.018151 | -0.018920 | 0.037047 | 0.037488 | 0.122167 | 0.015660 | -0.000437 | -0.020100 | -0.004124 | 0.028779 | 0.076155 | 0.017035 | 0.026085 |
| science_and_technology | 0.103397 | 0.167502 | 0.025464 | -0.031517 | 0.151876 | 0.075895 | 0.065642 | 0.021118 | -0.057647 | -0.023818 | 0.116768 | -0.040459 | -0.008465 | 0.051109 | -0.011831 | -0.048673 | 0.106167 | 0.052145 | -0.094390 | -0.035870 | 0.062553 | 0.038158 | -0.058246 | 0.009185 | 0.040348 | 0.029233 |
| theatre | -0.143822 | 0.131277 | 0.042362 | 0.123927 | -0.045282 | -0.038121 | 0.014951 | 0.042712 | 0.008439 | -0.011248 | 0.012818 | -0.053143 | -0.026675 | -0.150580 | 0.067062 | 0.002142 | 0.082487 | 0.106375 | -0.067385 | 0.052717 | 0.133419 | -0.079720 | -0.035025 | -0.053327 | -0.007794 | 0.013968 |
| fun_with_friends | -0.013994 | 0.081831 | -0.151452 | 0.091617 | -0.072356 | 0.105931 | -0.049042 | 0.048399 | -0.046684 | 0.070545 | 0.073033 | 0.093365 | -0.095873 | -0.066955 | 0.036332 | 0.036251 | 0.041797 | -0.013828 | -0.033819 | 0.042332 | 0.043517 | -0.006643 | -0.056828 | 0.049254 | -0.097259 | 0.105891 |
| adrenaline_sports | 0.082047 | 0.126176 | -0.131179 | 0.042463 | -0.016561 | 0.060234 | 0.109087 | -0.060542 | -0.073084 | 0.084727 | -0.100250 | -0.012566 | 0.008761 | -0.064583 | -0.102465 | 0.023487 | -0.087745 | 0.039229 | -0.030546 | 0.115711 | 0.052903 | 0.069036 | 0.048379 | -0.004852 | 0.149905 | 0.067953 |
| pets | -0.062090 | 0.010530 | -0.052613 | 0.001886 | 0.025733 | 0.113256 | 0.071825 | 0.105163 | -0.158158 | 0.014368 | -0.101448 | -0.209825 | -0.018476 | -0.020939 | 0.119537 | 0.105351 | 0.037385 | -0.066760 | 0.081933 | -0.097246 | 0.106694 | 0.119973 | 0.039131 | -0.031595 | 0.028827 | 0.065257 |
| flying | -0.086038 | -0.051116 | 0.026966 | -0.043890 | 0.070823 | -0.025362 | -0.175309 | -0.074248 | -0.082133 | -0.014513 | -0.052736 | -0.056924 | -0.010085 | -0.012689 | 0.014318 | 0.024134 | 0.026662 | -0.218119 | 0.018842 | -0.003956 | -0.097390 | -0.114969 | 0.046652 | 0.120365 | -0.155535 | -0.046872 |
| storm | -0.137871 | -0.050431 | -0.037872 | 0.016196 | 0.028547 | 0.017129 | -0.127926 | -0.108015 | -0.178108 | -0.076770 | 0.022164 | -0.054382 | 0.026480 | 0.023674 | -0.026892 | 0.057543 | 0.102207 | -0.104764 | 0.047024 | -0.003804 | -0.004244 | -0.137480 | -0.068276 | -0.031075 | 0.056998 | 0.044400 |
| darkness | -0.136022 | -0.060520 | -0.036301 | 0.098056 | 0.037463 | 0.026822 | -0.089168 | -0.062523 | -0.121289 | -0.073476 | 0.000780 | -0.026235 | 0.029017 | 0.049638 | -0.038565 | 0.046414 | 0.047883 | -0.120347 | -0.040050 | -0.101330 | -0.080573 | -0.120933 | -0.006811 | -0.134867 | 0.096479 | 0.034841 |
| heights | -0.047758 | -0.060717 | 0.015177 | 0.024509 | 0.070798 | -0.038888 | -0.162644 | -0.106029 | -0.136714 | -0.040436 | 0.016985 | -0.036603 | -0.000196 | 0.036841 | 0.059729 | 0.104855 | 0.144280 | -0.156141 | -0.090486 | -0.117180 | -0.119160 | -0.110933 | -0.000923 | 0.027365 | -0.032297 | 0.083342 |
| spiders | -0.113963 | -0.067965 | -0.056169 | 0.059468 | 0.088758 | 0.013888 | -0.095389 | 0.018296 | -0.081560 | -0.087594 | 0.053945 | -0.120858 | 0.034844 | 0.076430 | 0.009145 | -0.066467 | -0.012570 | 0.007989 | -0.149045 | -0.034709 | -0.120340 | 0.032102 | -0.066082 | -0.139097 | 0.089545 | 0.007683 |
| snakes | -0.107188 | -0.065787 | -0.068775 | -0.008641 | 0.093143 | -0.030991 | -0.232155 | -0.076721 | -0.052555 | -0.020501 | 0.072726 | -0.118597 | 0.083995 | 0.096379 | 0.069311 | -0.068618 | -0.010774 | -0.046564 | -0.095818 | 0.061881 | -0.045462 | 0.103527 | -0.073041 | -0.093092 | 0.127044 | -0.003376 |
| rats | -0.104972 | -0.063823 | -0.086434 | 0.023041 | 0.122787 | -0.050703 | -0.199993 | -0.122421 | -0.035758 | -0.064021 | 0.020925 | -0.099671 | 0.028962 | 0.137721 | -0.045681 | -0.093863 | -0.016287 | 0.032074 | -0.037054 | 0.055658 | -0.033712 | 0.023809 | -0.004611 | -0.068703 | 0.065472 | -0.004738 |
| ageing | -0.068216 | -0.043718 | -0.053347 | 0.089404 | 0.107376 | -0.040732 | -0.008201 | -0.018459 | -0.161698 | -0.002791 | -0.009251 | 0.082833 | 0.040579 | -0.010664 | 0.013587 | -0.119632 | -0.095976 | 0.009669 | -0.108195 | 0.060877 | 0.055927 | -0.102201 | -0.009899 | 0.114755 | 0.030905 | 0.019461 |
| dangerous_dogs | -0.119319 | -0.066405 | -0.010142 | 0.006428 | 0.111203 | -0.016702 | -0.138133 | -0.125013 | -0.065437 | -0.013574 | 0.112044 | 0.017682 | 0.035245 | 0.116288 | -0.016288 | -0.057065 | 0.038803 | 0.029957 | -0.053796 | 0.108614 | -0.000848 | 0.040629 | -0.070837 | 0.119706 | -0.040686 | 0.030614 |
| fear_of_public_speaking | -0.053416 | -0.100978 | 0.092195 | 0.010931 | 0.137809 | 0.120481 | -0.041511 | 0.011934 | -0.051760 | 0.017357 | 0.043624 | -0.060615 | -0.104923 | -0.075962 | -0.030955 | 0.108017 | -0.133019 | -0.047514 | -0.047545 | 0.229797 | -0.084909 | 0.101641 | 0.124390 | -0.063587 | 0.012443 | -0.087370 |
| smoking | 0.035785 | -0.027549 | -0.085727 | 0.175319 | -0.020137 | -0.081549 | -0.035831 | -0.040864 | -0.096445 | -0.078862 | -0.098761 | 0.052047 | -0.110016 | -0.004925 | -0.005025 | 0.082569 | 0.081260 | 0.107455 | 0.009624 | -0.100100 | -0.079786 | 0.129858 | 0.088751 | 0.003864 | -0.006717 | 0.026858 |
| alcohol | 0.056710 | -0.001307 | -0.043329 | 0.174531 | -0.045449 | -0.020063 | -0.040576 | -0.043151 | -0.056345 | -0.081696 | 0.079694 | 0.149037 | -0.134334 | -0.027951 | -0.014283 | 0.148634 | -0.017804 | 0.037582 | 0.057250 | 0.007241 | 0.024336 | 0.102337 | 0.102124 | -0.095777 | -0.027525 | 0.132650 |
| healthy_eating | -0.065269 | 0.103465 | -0.062247 | -0.076124 | 0.021576 | -0.041108 | 0.078207 | 0.026289 | -0.101730 | 0.021996 | 0.056529 | 0.006299 | 0.013547 | 0.030443 | -0.043662 | 0.034054 | -0.054991 | -0.037740 | -0.072775 | 0.116910 | -0.162532 | 0.067398 | 0.084361 | 0.036620 | 0.058706 | -0.039955 |
| daily_events | 0.009769 | 0.109470 | -0.051204 | 0.039314 | 0.115515 | -0.205110 | -0.036495 | 0.062475 | 0.063891 | 0.061341 | -0.046779 | -0.027495 | -0.088408 | 0.096995 | 0.010399 | 0.025953 | 0.083368 | -0.073468 | 0.097156 | 0.034750 | 0.096495 | -0.036048 | 0.014759 | 0.083400 | -0.018085 | -0.077302 |
| prioritising_workload | -0.074255 | 0.078452 | -0.000418 | -0.178095 | 0.053457 | -0.114973 | 0.022362 | 0.055405 | -0.183860 | -0.057957 | -0.092345 | 0.011563 | 0.127604 | 0.000973 | -0.013966 | -0.015716 | -0.026197 | 0.053348 | 0.084192 | 0.058406 | 0.025955 | 0.026275 | 0.024680 | -0.017810 | -0.162702 | 0.156640 |
| writing_notes | -0.136366 | 0.076838 | 0.005889 | -0.073603 | 0.058773 | -0.099917 | -0.008487 | 0.036048 | -0.063549 | -0.028863 | -0.035923 | 0.108468 | 0.050583 | -0.044069 | -0.011371 | -0.057229 | 0.010239 | -0.007338 | 0.029528 | 0.042846 | 0.064960 | 0.145217 | -0.009378 | -0.058597 | -0.148159 | 0.139633 |
| workaholism | -0.068771 | 0.139478 | 0.054905 | -0.077672 | 0.061411 | -0.143013 | 0.052290 | 0.052558 | -0.117291 | -0.088677 | 0.027580 | 0.048936 | 0.076820 | 0.039236 | -0.049433 | -0.022317 | -0.026505 | -0.027931 | 0.004377 | 0.064279 | -0.003636 | 0.047848 | -0.081891 | 0.021737 | -0.069622 | 0.228378 |
| thinking_ahead | -0.025216 | 0.071037 | 0.066078 | -0.108086 | 0.158404 | -0.093552 | 0.039201 | 0.086720 | -0.058033 | 0.020605 | -0.055554 | 0.188373 | 0.073288 | 0.073227 | 0.016940 | 0.075688 | -0.023884 | 0.015813 | 0.006093 | -0.082407 | -0.078318 | -0.038898 | 0.049807 | -0.004066 | -0.084860 | 0.075619 |
| final_judgement | -0.071877 | 0.034796 | -0.003151 | -0.071037 | 0.057924 | 0.009412 | -0.037289 | -0.155216 | 0.090795 | 0.172575 | 0.070236 | 0.109696 | -0.004600 | -0.017711 | 0.006030 | 0.173708 | -0.036871 | 0.040563 | 0.167916 | -0.110772 | -0.247492 | -0.009989 | 0.003939 | -0.178833 | -0.085892 | -0.024946 |
| reliability | -0.051514 | 0.086627 | -0.015007 | -0.133260 | 0.073357 | -0.077294 | -0.059172 | 0.161958 | -0.018255 | -0.035626 | -0.081233 | 0.136756 | 0.020167 | -0.016599 | 0.075021 | 0.077846 | 0.061385 | 0.127519 | -0.014719 | 0.086365 | -0.096498 | 0.049190 | 0.084113 | -0.118581 | 0.028448 | 0.065542 |
| keeping_promises | -0.033948 | 0.086155 | 0.012488 | -0.107572 | 0.065102 | 0.001433 | -0.023049 | 0.077460 | -0.074661 | 0.053432 | -0.110092 | 0.196816 | 0.048481 | -0.128749 | 0.032057 | 0.119288 | 0.019803 | 0.094231 | 0.021311 | -0.007653 | -0.068886 | 0.031625 | 0.046429 | -0.148996 | -0.044826 | -0.087045 |
| loss_of_interest | -0.001560 | -0.009039 | -0.038742 | 0.104163 | 0.061376 | -0.051097 | 0.136256 | -0.068424 | 0.080219 | -0.134838 | -0.042523 | 0.131348 | 0.082098 | 0.034282 | 0.043238 | 0.116759 | 0.011041 | -0.008898 | 0.046500 | 0.104330 | -0.125142 | 0.127559 | -0.026314 | -0.039722 | 0.146552 | 0.057888 |
| friends_versus_money | -0.071145 | 0.070917 | 0.009859 | -0.024952 | -0.074446 | 0.067616 | -0.113094 | -0.046448 | -0.039106 | 0.217030 | 0.027093 | 0.119855 | -0.019657 | -0.107891 | -0.043895 | 0.064742 | 0.077384 | -0.101320 | 0.020878 | -0.059444 | 0.013602 | -0.026969 | -0.057999 | -0.066875 | 0.002281 | 0.015264 |
| funniness | 0.067423 | 0.050190 | -0.028347 | 0.085537 | 0.083601 | 0.042186 | -0.012527 | 0.013798 | -0.001830 | 0.064799 | 0.101675 | 0.115638 | 0.044564 | 0.004624 | 0.074895 | -0.009652 | 0.164382 | -0.132395 | 0.136851 | 0.095775 | 0.010632 | -0.172669 | 0.033224 | -0.072363 | 0.089670 | 0.239190 |
| fake | 0.020209 | -0.040805 | 0.062185 | 0.117901 | 0.133012 | -0.075987 | 0.145980 | -0.111477 | 0.090574 | -0.062517 | 0.019647 | -0.051231 | 0.064494 | -0.021613 | 0.091088 | 0.062002 | 0.035990 | 0.044252 | 0.140024 | 0.113442 | -0.009252 | -0.050981 | 0.149889 | -0.046794 | 0.073250 | 0.033649 |
| criminal_damage | 0.070761 | -0.033479 | -0.035059 | 0.107811 | 0.125763 | 0.011302 | 0.106827 | -0.084374 | -0.108572 | -0.009115 | -0.135003 | 0.016396 | 0.014514 | 0.039312 | 0.041549 | -0.145733 | -0.026970 | -0.080839 | -0.034295 | -0.000962 | -0.010908 | 0.124609 | 0.000053 | -0.018261 | -0.093162 | -0.014375 |
| decision_making | -0.086432 | -0.011649 | 0.082502 | -0.063079 | 0.119199 | 0.025530 | -0.019324 | 0.036417 | -0.092119 | 0.092205 | 0.100314 | 0.134644 | -0.066906 | 0.036703 | 0.105744 | 0.003650 | 0.021444 | 0.070177 | -0.099405 | 0.026347 | -0.025079 | 0.001058 | 0.117850 | 0.008418 | -0.111491 | 0.104269 |
| elections | -0.014662 | 0.099181 | 0.020405 | -0.008148 | -0.015162 | -0.100622 | -0.067073 | 0.069243 | 0.043328 | 0.038674 | 0.007177 | 0.088672 | -0.208011 | -0.069545 | 0.077217 | 0.032051 | 0.088185 | -0.050941 | 0.154154 | 0.094828 | 0.123218 | 0.019590 | -0.086785 | 0.019675 | 0.008227 | 0.073847 |
| self_criticism | -0.052355 | 0.025884 | 0.106847 | 0.065722 | 0.132742 | -0.027844 | 0.034107 | 0.037204 | 0.027591 | 0.108253 | 0.021850 | 0.258691 | 0.035475 | 0.051396 | 0.041493 | 0.028799 | -0.062724 | 0.010596 | -0.014718 | -0.006034 | 0.040977 | -0.056475 | -0.006192 | 0.067102 | 0.162430 | 0.067643 |
| judgment_calls | -0.023394 | 0.065658 | -0.044579 | 0.065343 | 0.012600 | 0.019094 | 0.007299 | 0.026713 | 0.008369 | -0.014995 | -0.157306 | 0.132353 | -0.003295 | 0.128349 | 0.046068 | 0.035964 | 0.156939 | 0.109952 | -0.189698 | -0.115515 | -0.015655 | -0.159905 | 0.122583 | -0.213244 | -0.002055 | -0.147254 |
| hypochondria | -0.046044 | -0.032841 | 0.032706 | 0.091168 | 0.122285 | -0.037695 | 0.002519 | -0.114182 | -0.090115 | -0.000826 | 0.046392 | -0.103130 | 0.150857 | -0.002125 | -0.173490 | -0.023136 | -0.048740 | 0.016530 | 0.004597 | -0.043804 | 0.059415 | -0.019242 | 0.092225 | -0.004012 | -0.003300 | 0.083460 |
| empathy | -0.100539 | 0.042017 | -0.002193 | 0.003388 | -0.026350 | 0.081259 | -0.061711 | 0.042431 | -0.025855 | 0.074745 | -0.141722 | 0.120631 | -0.108970 | 0.080590 | -0.043002 | -0.079657 | 0.054003 | 0.109307 | -0.150556 | -0.213232 | -0.059423 | -0.097077 | 0.019958 | -0.009185 | -0.003274 | -0.018120 |
| eating_to_survive | 0.012912 | -0.012392 | 0.036791 | -0.020519 | 0.104841 | 0.042961 | -0.002738 | -0.154414 | 0.011183 | 0.023670 | -0.122091 | -0.074545 | 0.140868 | -0.101773 | -0.108867 | -0.001321 | -0.075397 | 0.053643 | 0.020025 | -0.029069 | -0.006146 | -0.001813 | 0.036213 | -0.096923 | -0.073543 | 0.109552 |
| giving | -0.100552 | 0.056530 | -0.086816 | -0.060700 | 0.024133 | 0.015300 | -0.060341 | 0.046476 | -0.034543 | 0.141790 | -0.033433 | -0.051621 | 0.018870 | -0.109780 | -0.029157 | -0.125283 | -0.016674 | 0.032920 | 0.093892 | -0.126913 | 0.079328 | 0.023507 | 0.031338 | 0.055192 | -0.072913 | 0.047567 |
| compassion_to_animals | -0.090373 | -0.000247 | -0.015068 | 0.024382 | 0.030332 | 0.064138 | 0.027481 | 0.138343 | -0.116980 | 0.141500 | -0.154968 | -0.090610 | -0.098153 | -0.062018 | 0.063799 | -0.044769 | -0.004127 | 0.075050 | -0.026550 | -0.191189 | 0.052156 | 0.039905 | -0.050467 | 0.024409 | 0.084470 | 0.080708 |
| borrowed_stuff | -0.060638 | 0.045951 | 0.010097 | -0.112391 | 0.100932 | 0.064778 | 0.001300 | 0.153719 | -0.045320 | 0.132661 | -0.152659 | 0.091078 | -0.002424 | -0.001768 | 0.059151 | 0.007406 | 0.006827 | 0.083586 | -0.040369 | 0.023012 | -0.079554 | 0.020158 | -0.058768 | -0.034825 | -0.078552 | -0.073548 |
| loneliness | -0.047851 | -0.060052 | 0.120320 | 0.101554 | 0.176052 | 0.038660 | 0.125925 | -0.024306 | 0.048199 | 0.072022 | -0.106831 | 0.062539 | 0.043623 | -0.029393 | -0.113841 | 0.009861 | 0.012057 | 0.000365 | 0.000980 | 0.000253 | 0.019858 | 0.064654 | -0.064836 | 0.096008 | 0.120748 | -0.109989 |
| cheating_in_school | 0.055306 | -0.045710 | -0.125868 | 0.146243 | -0.040018 | 0.091823 | -0.010622 | -0.013766 | 0.020918 | 0.085334 | -0.079720 | 0.014687 | -0.081815 | 0.061937 | 0.068593 | -0.073715 | -0.058493 | -0.004813 | -0.018660 | 0.102497 | 0.070971 | 0.029886 | 0.038082 | -0.059245 | -0.004295 | -0.119300 |
| health | -0.095494 | -0.003490 | -0.057464 | -0.026215 | 0.182812 | -0.031573 | -0.005428 | -0.016104 | -0.176162 | 0.108065 | 0.066972 | 0.050193 | -0.016622 | 0.002788 | -0.005355 | -0.106856 | -0.057370 | -0.006705 | -0.019073 | 0.067247 | 0.087522 | -0.155986 | -0.005438 | 0.006023 | -0.086308 | -0.107169 |
| changing_the_past | -0.013617 | -0.056896 | 0.029833 | 0.115090 | 0.172083 | 0.074263 | 0.108532 | -0.057921 | 0.085468 | 0.156065 | -0.060455 | 0.077940 | 0.070342 | -0.085122 | -0.038511 | -0.062236 | -0.065816 | -0.038832 | 0.119354 | 0.027905 | -0.011676 | -0.032842 | -0.047317 | 0.009748 | 0.051855 | 0.050858 |
| god | -0.103616 | 0.035698 | -0.004230 | -0.064804 | -0.010347 | 0.032603 | -0.030603 | -0.245021 | 0.146291 | 0.185500 | 0.049849 | 0.041394 | -0.018132 | 0.059568 | 0.005571 | 0.088695 | -0.044289 | -0.014554 | 0.137449 | -0.091601 | -0.141785 | 0.025841 | -0.068473 | -0.110396 | -0.136567 | -0.067404 |
| dreams | 0.024231 | 0.038113 | -0.060139 | -0.068198 | -0.081508 | 0.013174 | 0.004586 | 0.046254 | 0.097502 | -0.037394 | 0.137621 | -0.019000 | 0.049129 | 0.024904 | 0.065438 | 0.022313 | -0.048339 | -0.133295 | 0.108093 | 0.044674 | -0.113705 | 0.046331 | 0.173598 | 0.038063 | 0.072534 | 0.034603 |
| charity | -0.059235 | 0.129279 | 0.005085 | 0.024969 | 0.059546 | -0.116131 | 0.012862 | -0.056533 | 0.048874 | 0.126408 | 0.019837 | -0.107892 | -0.051192 | -0.116984 | -0.113013 | 0.006135 | -0.083244 | 0.028388 | 0.114515 | -0.060528 | -0.166926 | 0.042013 | 0.003559 | 0.028751 | 0.091172 | -0.046571 |
| number_of_friends | 0.001263 | 0.101901 | -0.182098 | 0.038004 | -0.129176 | -0.001730 | -0.118529 | -0.081792 | -0.068794 | 0.074900 | 0.057458 | 0.075541 | 0.051309 | -0.043259 | -0.028817 | -0.041689 | 0.057639 | -0.013835 | 0.063889 | -0.013365 | -0.093222 | -0.020633 | -0.053820 | 0.007951 | -0.073259 | 0.057275 |
| punctuality | 0.001298 | -0.000194 | -0.039909 | 0.150662 | -0.083543 | -0.017335 | -0.039125 | -0.113593 | 0.043642 | 0.007762 | 0.153801 | 0.024948 | -0.110578 | -0.066542 | -0.062413 | -0.071052 | -0.128312 | -0.084019 | -0.178025 | 0.004005 | 0.022524 | 0.065764 | 0.050176 | 0.073094 | -0.064709 | 0.138247 |
| lying | 0.029800 | -0.038049 | 0.003676 | 0.138327 | 0.009768 | -0.003368 | 0.002961 | 0.003071 | 0.069498 | -0.069252 | -0.012253 | -0.029196 | -0.048583 | 0.088512 | 0.111161 | 0.024624 | -0.030147 | 0.032194 | 0.162741 | 0.139755 | -0.048970 | -0.186390 | 0.108848 | -0.054040 | 0.004035 | 0.095297 |
| waiting | 0.031012 | 0.056219 | 0.024571 | -0.039616 | -0.108369 | 0.041993 | -0.006052 | 0.071869 | 0.148502 | 0.011605 | 0.033838 | -0.056231 | 0.047297 | -0.005613 | -0.133025 | -0.025166 | 0.072097 | 0.060603 | -0.000421 | -0.079562 | -0.018805 | -0.128090 | 0.014561 | 0.098446 | 0.116833 | 0.069821 |
| new_environment | 0.049725 | 0.087760 | -0.099376 | 0.034174 | -0.146627 | 0.016482 | 0.001528 | -0.024818 | 0.072197 | -0.027535 | -0.052677 | 0.040050 | 0.128759 | 0.203779 | -0.055509 | -0.046450 | 0.045697 | 0.060264 | -0.016825 | 0.029658 | -0.066277 | -0.038514 | -0.072605 | -0.062199 | 0.145673 | 0.055527 |
| mood_swings | -0.085140 | -0.071741 | 0.060719 | 0.096201 | 0.101006 | -0.030704 | 0.160012 | -0.078774 | 0.001381 | 0.002316 | -0.076957 | 0.134114 | 0.065061 | -0.022293 | -0.010231 | -0.096031 | -0.028348 | -0.144714 | 0.054320 | -0.074041 | 0.107967 | 0.196939 | -0.009467 | -0.032251 | -0.044911 | 0.018597 |
| appearence_and_gestures | -0.078867 | 0.017184 | -0.129766 | 0.050939 | 0.077973 | -0.063281 | 0.095132 | 0.013496 | 0.018361 | -0.006663 | 0.060537 | 0.092072 | -0.020758 | 0.121781 | 0.077293 | -0.054843 | 0.064448 | 0.068138 | -0.018510 | -0.088251 | -0.069082 | -0.109302 | 0.039447 | 0.168804 | -0.018405 | -0.001709 |
| socializing | 0.002220 | 0.108858 | -0.155909 | 0.057894 | -0.114392 | -0.016321 | 0.071798 | -0.053704 | 0.011835 | 0.037577 | -0.057979 | 0.094280 | 0.096624 | 0.095372 | -0.080370 | -0.037441 | 0.040740 | -0.012811 | 0.053134 | -0.009241 | -0.060888 | 0.012705 | -0.047591 | 0.083197 | 0.064117 | 0.186923 |
| achievements | 0.016589 | 0.014424 | -0.078865 | 0.048428 | 0.057564 | -0.022178 | 0.048366 | -0.002194 | -0.037456 | -0.048092 | 0.115049 | 0.043553 | 0.041319 | -0.042462 | 0.101575 | 0.004798 | 0.042946 | -0.137260 | 0.202131 | -0.086919 | 0.020003 | 0.098185 | 0.157268 | -0.056824 | 0.132583 | -0.010724 |
| responding_to_a_serious_letter | -0.005727 | -0.021540 | 0.058978 | 0.031146 | 0.038443 | 0.012576 | -0.026108 | 0.043567 | -0.000441 | 0.073858 | 0.206961 | 0.061908 | -0.145382 | 0.108183 | 0.051643 | -0.002158 | -0.016585 | -0.074758 | 0.001116 | -0.107342 | 0.138887 | 0.043101 | 0.212372 | 0.183711 | 0.043172 | 0.025526 |
| children | -0.107056 | 0.051425 | -0.055040 | -0.065972 | -0.034962 | 0.027462 | -0.034858 | -0.035879 | 0.069565 | 0.143815 | -0.017822 | -0.009606 | -0.095589 | 0.033286 | -0.049952 | -0.142197 | 0.085123 | -0.011692 | 0.117793 | -0.047188 | -0.044405 | 0.091334 | 0.081093 | 0.083288 | 0.153398 | 0.033551 |
| assertiveness | 0.038196 | 0.072924 | -0.080723 | 0.031286 | -0.013680 | -0.075257 | 0.029800 | 0.033052 | 0.034874 | -0.097962 | -0.113044 | 0.056084 | 0.002251 | 0.107175 | -0.031362 | -0.210771 | 0.074822 | -0.050603 | 0.059764 | 0.021020 | -0.032540 | 0.023982 | -0.197545 | -0.049383 | -0.007968 | -0.151692 |
| getting_angry | -0.044013 | -0.081415 | -0.025378 | 0.094590 | 0.121373 | -0.090701 | 0.098778 | -0.044186 | -0.102817 | -0.038893 | -0.042998 | 0.104934 | -0.017489 | 0.011359 | 0.045213 | -0.162832 | 0.025519 | -0.173363 | 0.143452 | -0.060270 | 0.006266 | 0.208979 | -0.157820 | -0.016768 | -0.045247 | -0.060168 |
| knowing_the_right_people | 0.009850 | 0.079333 | -0.147863 | 0.052288 | 0.095584 | -0.093930 | 0.082447 | 0.011833 | 0.007639 | -0.052063 | 0.067022 | 0.129592 | 0.173657 | 0.087844 | 0.051856 | -0.086618 | -0.025670 | 0.038176 | 0.077260 | 0.026305 | 0.095162 | -0.119315 | 0.031126 | -0.008677 | 0.011689 | -0.003470 |
| public_speaking | -0.068918 | -0.119542 | 0.049788 | -0.052279 | 0.145092 | 0.087762 | -0.014035 | 0.063056 | -0.003887 | 0.030118 | 0.073931 | -0.015716 | -0.128016 | -0.047394 | 0.029738 | 0.092686 | -0.069961 | 0.024237 | -0.018992 | 0.152675 | -0.075150 | 0.019751 | 0.095729 | -0.109846 | 0.026915 | -0.008007 |
| unpopularity | -0.050618 | 0.013084 | 0.059704 | 0.010744 | 0.063475 | -0.007133 | 0.003169 | 0.023174 | 0.091128 | 0.160473 | -0.031516 | 0.086646 | -0.049459 | 0.069142 | -0.095826 | -0.073322 | -0.076313 | -0.002695 | 0.057647 | 0.002066 | 0.045553 | -0.111713 | -0.116785 | 0.073619 | 0.212618 | -0.024241 |
| life_struggles | -0.204940 | -0.062656 | 0.013482 | 0.026146 | -0.003053 | 0.033313 | 0.031103 | 0.036446 | -0.023154 | 0.013539 | -0.049267 | 0.004798 | -0.046629 | -0.034530 | -0.072125 | -0.127476 | 0.025309 | -0.068210 | 0.007417 | -0.073612 | 0.100876 | -0.079066 | 0.036817 | 0.036530 | 0.081260 | -0.048733 |
| happiness_in_life | 0.017992 | 0.102318 | -0.136730 | -0.132718 | -0.144410 | -0.020141 | -0.099318 | 0.035157 | -0.046349 | -0.051408 | 0.127216 | 0.026779 | -0.004192 | 0.058552 | 0.068084 | 0.006668 | -0.038005 | 0.009526 | 0.019471 | 0.022229 | 0.061701 | 0.071740 | 0.123206 | -0.026422 | -0.082360 | 0.001219 |
| energy_levels | 0.013440 | 0.114010 | -0.185944 | -0.072054 | -0.161501 | 0.013525 | 0.000300 | -0.016780 | -0.098391 | 0.031399 | 0.012926 | 0.013000 | 0.059738 | 0.084317 | 0.009929 | -0.120259 | 0.014873 | -0.011549 | 0.072032 | 0.071346 | -0.029453 | 0.018622 | -0.018977 | -0.040635 | 0.000278 | -0.072036 |
| small_big_dogs | 0.117870 | 0.030087 | -0.010380 | 0.083968 | -0.068428 | 0.019392 | 0.091798 | -0.070643 | -0.090012 | -0.003526 | -0.161105 | 0.005884 | 0.024243 | -0.101219 | 0.085638 | -0.022598 | -0.147962 | -0.041452 | 0.021944 | 0.026512 | 0.010742 | -0.061896 | 0.093049 | -0.154054 | 0.058010 | -0.026637 |
| personality | 0.031328 | 0.059534 | -0.151780 | -0.094334 | -0.085959 | -0.020881 | -0.024624 | 0.005175 | -0.057721 | -0.030998 | 0.092328 | -0.037219 | 0.047041 | -0.021498 | 0.017040 | 0.054779 | 0.050213 | -0.010503 | -0.019435 | -0.085342 | -0.088063 | 0.093410 | 0.189701 | 0.079496 | -0.018555 | -0.088370 |
| finding_lost_valuables | -0.083882 | 0.064315 | 0.039106 | -0.054577 | -0.009414 | -0.041693 | -0.002796 | 0.054491 | 0.021352 | 0.224468 | 0.153410 | -0.083107 | -0.019269 | -0.088771 | -0.051981 | 0.024098 | -0.095219 | -0.058622 | -0.014578 | -0.070334 | -0.101028 | 0.119875 | -0.216550 | -0.011076 | 0.070842 | -0.029371 |
| getting_up | 0.000541 | -0.062969 | -0.023216 | 0.179566 | 0.013130 | 0.089479 | -0.032678 | -0.030144 | 0.058364 | 0.091079 | 0.089504 | 0.037415 | -0.124433 | -0.106107 | -0.020414 | -0.013316 | -0.021056 | -0.077340 | -0.095377 | -0.050524 | 0.025894 | -0.028352 | 0.033620 | -0.015826 | -0.108071 | 0.050240 |
| interests_or_hobbies | 0.018474 | 0.165435 | -0.100833 | 0.004476 | -0.094332 | -0.000595 | 0.001005 | -0.031463 | -0.040574 | 0.067943 | -0.027338 | 0.000527 | 0.146129 | 0.010156 | -0.039760 | -0.135162 | 0.079936 | -0.086857 | -0.053647 | 0.092706 | -0.090394 | 0.021401 | -0.005856 | 0.041006 | -0.031184 | -0.044264 |
| parents_advice | -0.089722 | 0.052423 | -0.005522 | -0.078117 | 0.074169 | -0.036696 | 0.016512 | 0.046795 | 0.003819 | 0.114296 | 0.050651 | 0.017639 | -0.064503 | 0.056339 | 0.009183 | -0.088305 | -0.108447 | -0.019891 | 0.072510 | 0.135266 | -0.017076 | -0.028318 | 0.057775 | 0.197510 | 0.037054 | -0.068245 |
| questionnaires_or_polls | -0.084802 | 0.024257 | 0.051384 | -0.042252 | 0.021964 | 0.039035 | 0.053708 | 0.058078 | 0.099669 | 0.010506 | -0.078278 | -0.019607 | 0.096372 | 0.107544 | 0.000226 | 0.101985 | 0.077354 | -0.047518 | 0.024367 | -0.045314 | -0.116342 | 0.034843 | 0.188765 | 0.158721 | 0.050247 | -0.044797 |
| internet_usage | 0.071376 | -0.042034 | 0.036902 | 0.108590 | 0.107507 | 0.017923 | -0.027809 | 0.039586 | 0.110142 | -0.058718 | 0.048619 | 0.093541 | 0.017175 | 0.024220 | -0.070682 | 0.060110 | 0.174279 | -0.005421 | -0.010337 | 0.037141 | -0.062799 | 0.065528 | -0.022917 | -0.045438 | 0.067719 | -0.016844 |
| finances | -0.058493 | 0.033240 | 0.081456 | -0.179973 | 0.044576 | 0.013098 | -0.011235 | 0.108839 | 0.055468 | 0.040218 | -0.038836 | -0.026978 | 0.013914 | 0.087123 | -0.034158 | 0.060518 | -0.075843 | 0.056315 | 0.007592 | 0.051898 | -0.038258 | -0.001933 | 0.038497 | 0.026660 | 0.002654 | 0.083168 |
| shopping_centres | -0.095275 | -0.016117 | -0.186225 | 0.020919 | 0.087399 | 0.014203 | 0.091797 | 0.041655 | 0.069997 | -0.024129 | 0.119933 | -0.126206 | 0.117508 | 0.040521 | -0.000313 | 0.099391 | 0.017962 | 0.151921 | 0.012744 | -0.042460 | -0.000450 | 0.049654 | -0.035927 | 0.122969 | 0.009241 | 0.055475 |
| branded_clothing | 0.050980 | 0.023870 | -0.167171 | 0.037356 | 0.102311 | -0.072160 | 0.102639 | -0.022128 | -0.023504 | 0.058755 | 0.168443 | -0.071428 | 0.002216 | -0.054733 | 0.085430 | 0.046082 | -0.077261 | 0.131949 | -0.065133 | -0.049483 | -0.018372 | -0.048418 | -0.025456 | -0.085911 | -0.009778 | 0.011235 |
| entertainment_spending | 0.077017 | 0.040465 | -0.149184 | 0.158651 | -0.012159 | -0.025171 | 0.025752 | -0.037931 | -0.076307 | 0.084439 | 0.156742 | 0.093928 | -0.056976 | -0.132646 | -0.013114 | 0.060572 | 0.036816 | 0.075846 | -0.003484 | -0.102696 | 0.040151 | 0.012592 | 0.018294 | -0.054288 | -0.064669 | -0.010455 |
| spending_on_looks | -0.055802 | 0.001717 | -0.224454 | 0.088474 | 0.087763 | -0.060706 | 0.107111 | 0.007669 | -0.034538 | 0.015058 | 0.114955 | -0.006375 | 0.029099 | -0.068871 | 0.009486 | 0.023977 | -0.011072 | 0.167343 | 0.012914 | -0.070139 | -0.051148 | -0.042134 | 0.041929 | 0.059541 | -0.038214 | -0.082515 |
| spending_on_gadgets | 0.101900 | 0.055546 | -0.115360 | 0.046882 | 0.144027 | 0.033998 | 0.072243 | 0.057927 | 0.008825 | 0.065274 | 0.094811 | -0.004151 | 0.082603 | -0.183676 | -0.021004 | 0.021398 | 0.033326 | 0.087038 | -0.007399 | -0.002742 | 0.033250 | 0.065626 | -0.094706 | -0.114980 | 0.013666 | -0.122094 |
| spending_on_healthy_eating | -0.019620 | 0.101095 | -0.067341 | -0.003088 | 0.030177 | -0.041579 | 0.056091 | 0.146906 | -0.109677 | 0.077139 | 0.103585 | 0.015484 | 0.019457 | -0.092563 | 0.027300 | 0.001969 | -0.057742 | 0.011242 | -0.157231 | -0.056992 | -0.058219 | 0.093353 | -0.022837 | 0.046833 | 0.210975 | -0.163543 |
| age | 0.014257 | 0.073462 | 0.027129 | -0.087414 | 0.054243 | -0.165090 | -0.177390 | -0.067802 | -0.097847 | -0.149945 | -0.066363 | 0.005597 | -0.214226 | -0.192610 | -0.082757 | -0.013675 | 0.134014 | 0.067128 | 0.079114 | 0.028383 | 0.027025 | 0.010428 | -0.093110 | 0.008513 | 0.199966 | -0.043595 |
| height | 0.202388 | 0.042468 | 0.008923 | -0.036246 | 0.098996 | -0.017777 | -0.028748 | -0.065092 | -0.039843 | 0.041926 | 0.054900 | 0.035312 | -0.023341 | -0.091973 | 0.101339 | 0.022355 | 0.140314 | -0.041062 | -0.067272 | -0.021022 | -0.025791 | -0.053657 | -0.047408 | 0.061138 | 0.040682 | -0.072562 |
| weight | 0.185076 | 0.057012 | 0.019143 | -0.032910 | 0.105939 | -0.018868 | -0.032832 | -0.085437 | -0.047018 | -0.028510 | 0.009172 | 0.024402 | -0.025782 | -0.151870 | 0.123971 | 0.026560 | 0.135933 | -0.022147 | 0.043005 | -0.044908 | -0.043868 | -0.042475 | -0.089327 | 0.102651 | 0.050357 | -0.098623 |
| number_of_siblings | -0.008826 | 0.046878 | 0.018067 | -0.026192 | -0.002494 | 0.024864 | -0.059993 | -0.213643 | 0.015988 | 0.069661 | 0.039639 | 0.055545 | -0.060988 | 0.099011 | -0.137062 | -0.206557 | 0.066736 | 0.146140 | 0.031972 | 0.055681 | 0.161151 | 0.120666 | 0.194598 | -0.115677 | 0.023433 | -0.062071 |
| gender | 0.246452 | 0.059884 | 0.018638 | -0.057673 | 0.111474 | 0.000317 | -0.042277 | -0.095104 | -0.021150 | 0.048414 | 0.067304 | 0.018335 | 0.002599 | -0.034832 | 0.091548 | 0.006295 | 0.062655 | -0.006104 | -0.012162 | -0.015493 | -0.047300 | -0.057658 | -0.020490 | 0.079074 | -0.013403 | -0.011872 |
| left_right_handed | 0.000262 | -0.022776 | -0.010819 | 0.042825 | -0.026399 | 0.026879 | -0.033841 | 0.038329 | -0.009732 | 0.010193 | 0.010454 | 0.111765 | -0.001687 | 0.005688 | -0.048538 | 0.091380 | -0.079049 | 0.035836 | -0.004340 | 0.066464 | -0.026960 | -0.081674 | -0.193906 | -0.110399 | 0.162530 | 0.183025 |
| education | -0.008662 | 0.076290 | 0.018732 | -0.049004 | 0.025402 | -0.158966 | -0.150693 | -0.091784 | -0.076057 | -0.145296 | 0.012853 | -0.000475 | -0.179442 | -0.177896 | -0.081236 | 0.029223 | 0.064694 | 0.079353 | 0.111319 | 0.003673 | -0.032577 | 0.043356 | -0.069641 | -0.003449 | 0.227758 | 0.005562 |
| only_child | 0.003235 | -0.011714 | -0.032285 | 0.035190 | -0.015611 | -0.036197 | 0.084600 | 0.126879 | 0.020687 | -0.076076 | 0.005570 | -0.085630 | 0.126860 | -0.071333 | 0.061377 | 0.195940 | -0.108041 | -0.167021 | -0.029624 | -0.096777 | -0.058270 | -0.146206 | -0.252946 | 0.103619 | -0.114297 | 0.012413 |
| village_town | -0.023184 | 0.008442 | 0.022041 | -0.054650 | -0.004329 | 0.108822 | -0.015766 | -0.200693 | -0.079070 | 0.096661 | -0.085243 | -0.000530 | 0.053468 | 0.202991 | 0.152397 | 0.216037 | 0.088037 | 0.158134 | 0.011192 | -0.050556 | 0.286365 | 0.039635 | -0.118518 | 0.043189 | 0.057346 | 0.055013 |
| house_block_of_flats | 0.025404 | -0.012947 | -0.001839 | 0.038915 | 0.002587 | -0.094321 | -0.000475 | 0.211134 | 0.099709 | -0.084540 | 0.053462 | 0.078336 | -0.067014 | -0.130270 | -0.171438 | -0.229704 | -0.012618 | -0.172858 | -0.031293 | 0.043306 | -0.263602 | -0.107757 | 0.151872 | -0.079285 | -0.030856 | -0.004563 |
Veamos primero un poco de como quedo nuestro modelo de componentes principales.
Ahora veamos la descompisición en valores singulares de nuestros datos:
## Length Class Mode
## d 150 -none- numeric
## u 101100 -none- numeric
## v 22500 -none- numeric
Ahora, ¿por qué escalamos nuestros datos? Porque aplicar PCA es lo mismo que aplicar SVD a los datos escalados. Esto es que las columnas de la matriz U en la descomposición corresponden a los componentes principales en nuestro PCA. Aquí podemos ver que la dispersión de los datos es la misma.
Y veamos la diferencia entre nuestros componentes principales y nuestras columnas en la matriz U.
## PC1 PC2 PC3 PC4 PC5 PC6
## Min. :0 Min. :0 Min. :0 Min. :0 Min. :0 Min. :0
## 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0
## Median :0 Median :0 Median :0 Median :0 Median :0 Median :0
## Mean :0 Mean :0 Mean :0 Mean :0 Mean :0 Mean :0
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0
## Max. :0 Max. :0 Max. :0 Max. :0 Max. :0 Max. :0
## PC7 PC8 PC9 PC10 PC11 PC12
## Min. :0 Min. :0 Min. :0 Min. :0 Min. :0 Min. :0
## 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0
## Median :0 Median :0 Median :0 Median :0 Median :0 Median :0
## Mean :0 Mean :0 Mean :0 Mean :0 Mean :0 Mean :0
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0
## Max. :0 Max. :0 Max. :0 Max. :0 Max. :0 Max. :0
## PC13 PC14 PC15 PC16 PC17 PC18
## Min. :0 Min. :0 Min. :0 Min. :0 Min. :0 Min. :0
## 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0
## Median :0 Median :0 Median :0 Median :0 Median :0 Median :0
## Mean :0 Mean :0 Mean :0 Mean :0 Mean :0 Mean :0
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0
## Max. :0 Max. :0 Max. :0 Max. :0 Max. :0 Max. :0
## PC19 PC20 PC21 PC22 PC23 PC24
## Min. :0 Min. :0 Min. :0 Min. :0 Min. :0 Min. :0
## 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0
## Median :0 Median :0 Median :0 Median :0 Median :0 Median :0
## Mean :0 Mean :0 Mean :0 Mean :0 Mean :0 Mean :0
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0
## Max. :0 Max. :0 Max. :0 Max. :0 Max. :0 Max. :0
## PC25 PC26
## Min. :0 Min. :0
## 1st Qu.:0 1st Qu.:0
## Median :0 Median :0
## Mean :0 Mean :0
## 3rd Qu.:0 3rd Qu.:0
## Max. :0 Max. :0
Esto nos lleva a concluir que al menos en este punto no hay diferencias entre estos métodos.
Las diferencias llegarían a ocurrir cuando realizamos rotaciones sobre nuestros componentes principales ya que nuestros vectores se moveran pero la descompisición de valores singulares serán las mismas, es decir podemos mejorar solo el modelo de PCA ya que si podemos rotar los componentes de nuestro modelo.