I have noticed two potential issues from the soft launch:

1. The quotas don’t appear to be filling out quite evenly. This may just be due to the nature of the soft launch having few people.

2. The responses for some items are not coded correctly. This is not a major issue as can be simply recoded after the data is in, but would be better to correct beforehand.




Checking groups and quotas

The soft launch gave 27 responses. The column ‘n’ refers to the number of participants and the percentage is next to this.

Assignment to question framing (die vs. recover) looks good as does assignment to the three experimental conditions

## # A tibble: 2 x 3
##   Frame       n percent
##   <chr>   <int> <chr>  
## 1 Die        14 51.9%  
## 2 Recover    13 48.1%
## # A tibble: 3 x 3
##   Group       n percent
##   <fct>   <int> <chr>  
## 1 Control     8 29.6%  
## 2 CDC        10 37.0%  
## 3 KS          9 33.3%

The age quota seems off (we ask for around 30% in each), but maybe this is because the soft launch is only with 27 participants?

## # A tibble: 3 x 3
##   Age_group        n percent
##   <chr>        <int> <chr>  
## 1 18 to 34         4 14.8%  
## 2 35 to 54         9 33.3%  
## 3 55 and older    14 51.9%

The Gender quota looks okay

## # A tibble: 2 x 3
##   GenderCHR                n percent
##   <chr>                <int> <chr>  
## 1 Female                  14 51.9%  
## 2 Male or Other Gender    13 48.1%

The Race/Ethnicity quota looks a little bit off. We asked for: Non-Hispanic White 62.3% (for soft launch = 67%) Non-Hispanic Black 12.4% (for soft launch = 15%) Hispanic 17.3% (for soft launch = 11%) Asian/Other Race 8% (for soft launch = 7%)

## The following `from` values were not present in `x`: 1, 4, 6
## # A tibble: 5 x 4
## # Groups:   HispCHR [2]
##   HispCHR      RaceCHR                        n percent
##   <chr>        <chr>                      <int> <chr>  
## 1 Hispanic     Asian or Asian American        1 3.7%   
## 2 Hispanic     White or Euorpean American     2 7.4%   
## 3 Non-hispanic Asian or Asian American        4 14.8%  
## 4 Non-hispanic Black or African American      2 7.4%   
## 5 Non-hispanic White or Euorpean American    18 66.7%

The Income quota looks a bit off too. We asked for 40%, 33% and 27%.

## # A tibble: 3 x 3
##   Income_group       n percent
##   <fct>          <int> <chr>  
## 1 $0 - $49k         20 74.1%  
## 2 $50K to $99K       5 18.5%  
## 3 $100K and more     2 7.4%

We don’t have quota for region.

## # A tibble: 4 x 2
##   region        n
##   <chr>     <int>
## 1 midwest       7
## 2 northeast     4
## 3 south        10
## 4 west          6

This is to check those who consent and for speeders, who are defined as those who complete in one-half the median soft launch time.

## # A tibble: 1 x 2
##   Consent     n
##   <chr>   <int>
## 1 1          27
## # A tibble: 1 x 2
##   term      n
##   <chr> <int>
## 1 ""       27

One-half the median soft launch time (12 mins) would be 6 minutes.

df$`Duration (in seconds)` <- sapply(df$`Duration (in seconds)`,as.numeric)
median(df$`Duration (in seconds)`)
## [1] 1003
seconds_to_period(731) #Median duration is 12 minutes
## [1] "12M 11S"
mean(df$`Duration (in seconds)`)
## [1] 1074.259
seconds_to_period(859) #Mean time is 14 minutes
## [1] "14M 19S"

Checking CV19 Ageism questions. Looking at min to max values they look okay.

##                      vars  n  mean    sd median trimmed   mad min max range
## Ageism_CVBelief_1       1 27  1.89  1.09    2.0    1.78  1.48   1   4     3
## Ageism_CVBelief_2       2 27  3.15  0.95    3.0    3.26  1.48   1   4     3
## Ageism_CVBelief_3       3 27  3.59  0.75    4.0    3.74  0.00   1   4     3
## Ageism_CVBelief_4       4 27  1.93  1.24    1.0    1.83  0.00   1   4     3
## Ageism_CVBelief_5       5 27  2.04  1.16    2.0    1.96  1.48   1   4     3
## Ageism_CVBelief6a_1     6 14 33.14 32.28   23.5   31.17 28.17   1  89    88
## Ageism_CVBelief7a_1     7 13 44.23 28.10   41.0   44.55 35.58   3  82    79
## Ageism_CVBelief6b_1     8 13 61.08 23.07   60.0   61.45 23.72  19  99    80
## Ageism_CVBelief7b_1     9 13 50.62 26.58   50.0   49.55 29.65  15  98    83
## Ageism_CVPriority1     10 27  3.19  1.92    3.0    3.13  2.97   1   6     5
## Ageism_CVPriority2_1   11 27  2.81  1.82    2.0    2.70  1.48   1   6     5
## Ageism_CVPriority2_2   12 27  3.00  1.80    3.0    2.91  2.97   1   6     5
##                       skew kurtosis   se
## Ageism_CVBelief_1     0.90    -0.59 0.21
## Ageism_CVBelief_2    -0.80    -0.45 0.18
## Ageism_CVBelief_3    -1.90     3.28 0.14
## Ageism_CVBelief_4     0.72    -1.27 0.24
## Ageism_CVBelief_5     0.50    -1.37 0.22
## Ageism_CVBelief6a_1   0.66    -1.18 8.63
## Ageism_CVBelief7a_1  -0.11    -1.64 7.79
## Ageism_CVBelief6b_1   0.07    -1.01 6.40
## Ageism_CVBelief7b_1   0.28    -1.15 7.37
## Ageism_CVPriority1    0.25    -1.52 0.37
## Ageism_CVPriority2_1  0.45    -1.33 0.35
## Ageism_CVPriority2_2  0.27    -1.38 0.35

Checking CV19 Adherence questions. Looking at min to max values for Adhere intent it should be 1-6. I have recoded them in Qualtrics, but not published the changes and will ask the best way to proceed at this stage.

##                   vars  n mean   sd median trimmed  mad min max range  skew
## Adhere_willing       1 27 4.70 1.54      6    4.83 0.00   2   6     4 -0.55
## AdhereIntent_1       2 27 2.89 2.19      2    2.70 1.48   1   7     6  0.79
## AdhereIntent_2       3 27 3.11 1.85      4    2.96 1.48   1   7     6  0.37
## AdhereIntent_3       4 27 2.26 1.70      2    1.96 1.48   1   7     6  1.51
## AdhereIntent_4       5 27 2.74 2.05      2    2.52 1.48   1   7     6  0.93
## AdhereIntent_5       6 27 2.59 1.89      2    2.35 1.48   1   7     6  1.17
## AdhereIntent_6       7 27 5.85 1.88      7    6.09 0.00   2   7     5 -1.14
## AdhereIntent_7       8 27 6.19 1.44      7    6.39 0.00   2   7     5 -1.42
## AdhereIntent_8       9 27 4.96 1.79      4    5.09 2.97   1   7     6 -0.30
## AdhereAttitude1_1   10 27 4.33 1.00      5    4.43 0.00   2   5     3 -0.89
## AdhereAttitude2     11 27 4.33 1.86      4    4.39 1.48   1   7     6  0.01
## AdhereAttitude3_1   12 27 4.78 1.53      6    4.96 0.00   1   6     5 -0.82
## AdhereAttitude3_2   13 27 4.81 1.36      5    4.96 1.48   2   6     4 -0.83
## AdhereAttitude3_3   14 27 4.74 1.35      5    4.87 1.48   2   6     4 -0.54
##                   kurtosis   se
## Adhere_willing       -1.40 0.30
## AdhereIntent_1       -0.93 0.42
## AdhereIntent_2       -0.73 0.36
## AdhereIntent_3        1.71 0.33
## AdhereIntent_4       -0.45 0.39
## AdhereIntent_5        0.20 0.36
## AdhereIntent_6       -0.46 0.36
## AdhereIntent_7        0.67 0.28
## AdhereIntent_8       -1.11 0.34
## AdhereAttitude1_1    -0.95 0.19
## AdhereAttitude2      -0.83 0.36
## AdhereAttitude3_1    -0.65 0.29
## AdhereAttitude3_2    -0.56 0.26
## AdhereAttitude3_3    -1.06 0.26

Checking Collective trust (will rename this for any official write up) social norm and prosocial questions. Looking at min to max values for coll trust (2,3) and social norm (1,2,3) these should all be 1-6. I have recoded them in Qualtrics, but not published the changes and will ask the best way to proceed at this stage.

##               vars  n  mean    sd median trimmed   mad min max range  skew
## Coll_Trust1_1    1 27  3.26  1.23    3.0    3.30  1.48   1   5     4  0.00
## Coll_Trust2      2 27  4.37  1.90    5.0    4.43  2.97   1   7     6 -0.35
## Coll_Trust3      3 27  5.81  1.44    6.0    6.00  1.48   2   7     5 -1.02
## Coll_Trust4_1    4 27 58.00 25.08   57.0   58.39 23.72  10 100    90 -0.12
## Socialnorm_1     5 27  5.67  1.78    7.0    5.87  0.00   2   7     5 -0.94
## Socialnorm_2     6 27  5.63  1.55    6.0    5.83  1.48   1   7     6 -1.31
## Socialnorm_3     7 27  5.37  1.78    6.0    5.57  1.48   1   7     6 -0.86
## ProSocial_1      8 27  5.26  2.25    7.0    5.39  1.48   1   8     7 -0.61
## ProSocial_2      9 26  4.46  2.06    4.5    4.50  2.22   1   8     7 -0.13
## ProSocial_3     10 27  5.63  1.98    6.0    5.74  1.48   2   8     6 -0.50
## ProSocial_4     11 27  5.63  2.17    7.0    5.83  1.48   1   8     7 -0.95
## ProSocial_5     12 27  5.56  2.22    7.0    5.74  1.48   1   8     7 -0.69
## ProSocial_6     13 27  5.22  1.95    6.0    5.35  1.48   1   8     7 -0.45
##               kurtosis   se
## Coll_Trust1_1    -1.03 0.24
## Coll_Trust2      -1.08 0.37
## Coll_Trust3       0.14 0.28
## Coll_Trust4_1    -0.82 4.83
## Socialnorm_1     -0.73 0.34
## Socialnorm_2      1.10 0.30
## Socialnorm_3     -0.44 0.34
## ProSocial_1      -1.02 0.43
## ProSocial_2      -1.10 0.40
## ProSocial_3      -1.28 0.38
## ProSocial_4      -0.34 0.42
## ProSocial_5      -0.95 0.43
## ProSocial_6      -1.16 0.37

Checking individual risk and societal risk questions. 23 had covid so only 23 answered individual risk questions. Looking at min to max values, these should all be 1-6 (expect the HadCov1 question) so we have an issue with societal risk 1 and individual risk 9. Again, I have recoded these in Qualtrics, but not published it and will ask the best way to proceed at this stage.

##               vars  n  mean   sd median trimmed  mad min max range  skew
## SocietalRisk1    1 27 10.78 2.26     12   11.17 0.00   2  12    10 -2.32
## SocietalRisk2    2 27  3.93 1.86      4    3.91 1.48   1   7     6  0.07
##               kurtosis   se
## SocietalRisk1     5.78 0.43
## SocietalRisk2    -1.12 0.36
## # A tibble: 3 x 3
##   HadCov1                     n percent
##   <chr>                   <int> <chr>  
## 1 Currently have covid        3 11.1%  
## 2 Had covid and recovered     1 3.7%   
## 3 Haven't had covid          23 85.2%
##            vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## IndivRisk1    1 23 2.22 1.59      2    1.95 1.48   1   7     6  1.33     1.23
## IndivRisk2    2 23 3.65 2.31      3    3.58 2.97   1   7     6  0.20    -1.54
## IndivRisk3    3 23 3.35 2.25      2    3.21 1.48   1   7     6  0.50    -1.33
## IndivRisk4    4 23 5.04 2.40      6    5.26 1.48   1   7     6 -0.71    -1.23
## IndivRisk5    5 23 4.74 2.47      6    4.89 1.48   1   7     6 -0.54    -1.51
## IndivRisk6    6 23 5.00 2.41      6    5.21 1.48   1   7     6 -0.74    -1.26
## IndivRisk7    7 23 4.43 2.19      5    4.53 2.97   1   7     6 -0.39    -1.36
## IndivRisk8    8 23 4.04 2.12      4    4.05 2.97   1   7     6 -0.03    -1.42
## IndivRisk9    9 23 6.91 3.09      6    7.11 5.93   2  10     8 -0.29    -1.56
##              se
## IndivRisk1 0.33
## IndivRisk2 0.48
## IndivRisk3 0.47
## IndivRisk4 0.50
## IndivRisk5 0.52
## IndivRisk6 0.50
## IndivRisk7 0.46
## IndivRisk8 0.44
## IndivRisk9 0.64

Checking CDC trust questions. Looking at min to max values they look okay.

##           vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## CDCTrust1    1 27 3.78 1.28      4    3.87 1.48   1   5     4 -0.55    -1.14
## CDCTrust2    2 27 3.81 1.11      4    3.87 1.48   2   5     3 -0.46    -1.20
## CDCTrust3    3 27 3.70 1.17      4    3.74 1.48   2   5     3 -0.27    -1.48
##             se
## CDCTrust1 0.25
## CDCTrust2 0.21
## CDCTrust3 0.23

Checking medical history questions. The COVatRisk questions were coded (4,5,6) instead of (1,2,3). Again I have recoded, but not published and will ask. For KnowCov1, the numbers are just where people put more than one answer.

## The following `from` values were not present in `x`: 6
## # A tibble: 2 x 3
##   CoVatRisk     n percent
##   <chr>     <int> <chr>  
## 1 No           14 51.9%  
## 2 Yes          13 48.1%
## # A tibble: 8 x 3
##   KnowCov1                 n percent
##   <chr>                <int> <chr>  
## 1 1,5                      1 3.7%   
## 2 3,4                      1 3.7%   
## 3 3,5                      1 3.7%   
## 4 No                      16 59.3%  
## 5 Yes immediate family     2 7.4%   
## 6 yes other family         1 3.7%   
## 7 yes, co-worker           2 7.4%   
## 8 yes, friend              3 11.1%
## # A tibble: 3 x 3
##   KnowCov2       n percent
##   <chr>      <int> <chr>  
## 1 don't know     3 11.1%  
## 2 No             4 14.8%  
## 3 Yes           20 74.1%

Checking Demographics questions. Values look okay.

## The following `from` values were not present in `x`: 6
## # A tibble: 5 x 3
##   RuralSub                                 n percent
##   <chr>                                <int> <chr>  
## 1 large city more than 1million            3 11.1%  
## 2 Mid sized city (100,000 to 1million)     5 18.5%  
## 3 Rural                                    5 18.5%  
## 4 Small (less than 100,000)                6 22.2%  
## 5 Suburban near large city                 8 29.6%
## # A tibble: 3 x 3
##   MedWork     n percent
##   <chr>   <int> <chr>  
## 1 ""          1 3.7%   
## 2 "No"       24 88.9%  
## 3 "Yes"       2 7.4%
##  [1] ""                 ""                 ""                 ""                
##  [5] "Home health care" ""                 ""                 ""                
##  [9] ""                 ""                 ""                 ""                
## [13] ""                 ""                 ""                 ""                
## [17] ""                 ""                 ""                 ""                
## [21] ""                 ""                 ""                 ""                
## [25] ""                 ""                 ""

Checking Ageism facts questions. Looking at min to max values they look okay.

##                 vars  n mean   sd median trimmed mad min max range  skew
## Ageism_Facts1_1    1 27 1.26 0.45      1    1.22   0   1   2     1  1.04
## Ageism_Facts1_2    2 27 1.70 0.47      2    1.74   0   1   2     1 -0.84
## Ageism_Facts1_3    3 27 1.26 0.45      1    1.22   0   1   2     1  1.04
## Ageism_Facts1_4    4 27 1.96 0.19      2    2.00   0   1   2     1 -4.63
## Ageism_Facts1_5    5 27 1.59 0.50      2    1.61   0   1   2     1 -0.36
## Ageism_Facts1_6    6 27 1.85 0.36      2    1.91   0   1   2     1 -1.87
## Ageism_Facts2_1    7 27 1.48 0.51      1    1.48   0   1   2     1  0.07
## Ageism_Facts2_2    8 27 1.56 0.51      2    1.57   0   1   2     1 -0.21
## Ageism_Facts2_3    9 27 1.56 0.51      2    1.57   0   1   2     1 -0.21
## Ageism_Facts2_4   10 27 1.33 0.48      1    1.30   0   1   2     1  0.67
## Ageism_Facts2_5   11 27 1.44 0.51      1    1.43   0   1   2     1  0.21
## Ageism_Facts2_6   12 27 1.56 0.51      2    1.57   0   1   2     1 -0.21
##                 kurtosis   se
## Ageism_Facts1_1    -0.95 0.09
## Ageism_Facts1_2    -1.33 0.09
## Ageism_Facts1_3    -0.95 0.09
## Ageism_Facts1_4    20.22 0.04
## Ageism_Facts1_5    -1.94 0.10
## Ageism_Facts1_6     1.57 0.07
## Ageism_Facts2_1    -2.07 0.10
## Ageism_Facts2_2    -2.03 0.10
## Ageism_Facts2_3    -2.03 0.10
## Ageism_Facts2_4    -1.61 0.09
## Ageism_Facts2_5    -2.03 0.10
## Ageism_Facts2_6    -2.03 0.10

Checking Ageism Fraboni questions. Looking at min to max values they look okay.

##                   vars  n mean   sd median trimmed  mad min max range  skew
## Ageism_Fabroni1_1    1 27 2.04 0.90      2    1.96 1.48   1   4     3  0.55
## Ageism_Fabroni1_2    2 27 2.19 0.88      2    2.13 1.48   1   4     3  0.31
## Ageism_Fabroni1_3    3 27 2.44 0.85      2    2.43 1.48   1   4     3  0.17
## Ageism_Fabroni1_4    4 27 2.00 0.88      2    1.91 1.48   1   4     3  0.66
## Ageism_Fabroni1_5    5 27 2.63 0.69      3    2.57 1.48   2   4     2  0.57
## Ageism_Fabroni1_6    6 27 2.22 0.97      2    2.17 1.48   1   4     3  0.53
## Ageism_Fabroni2_1    7 27 2.26 0.81      2    2.22 0.00   1   4     3  0.77
## Ageism_Fabroni2_2    8 27 2.33 0.92      2    2.30 1.48   1   4     3  0.19
## Ageism_Fabroni2_3    9 27 2.56 0.89      2    2.57 1.48   1   4     3  0.31
## Ageism_Fabroni2_4   10 27 2.04 0.98      2    1.96 1.48   1   4     3  0.40
## Ageism_Fabroni2_5   11 27 1.81 1.04      1    1.70 0.00   1   4     3  0.95
## Ageism_Fabroni2_6   12 27 1.81 0.88      2    1.70 1.48   1   4     3  1.00
## Ageism_Fabroni3_1   13 27 1.96 1.02      2    1.87 1.48   1   4     3  0.70
## Ageism_Fabroni3_2   14 27 2.19 0.88      2    2.13 1.48   1   4     3  0.31
## Ageism_Fabroni3_3   15 27 2.15 0.91      2    2.09 0.00   1   4     3  0.61
## Ageism_Fabroni3_4   16 27 3.30 0.82      3    3.43 1.48   1   4     3 -1.35
## Ageism_Fabroni3_5   17 27 2.26 1.10      2    2.22 1.48   1   4     3  0.35
## Ageism_Fabroni3_6   18 27 2.00 1.21      1    1.91 0.00   1   4     3  0.63
## Ageism_Fabroni4_1   19 27 3.15 0.82      3    3.26 0.00   1   4     3 -1.07
## Ageism_Fabroni4_2   20 27 3.33 0.62      3    3.39 0.00   2   4     2 -0.31
## Ageism_Fabroni4_3   21 27 3.19 0.83      3    3.30 0.00   1   4     3 -1.10
## Ageism_Fabroni4_4   22 27 3.26 0.98      4    3.39 0.00   1   4     3 -1.21
## Ageism_Fabroni4_5   23 27 2.04 1.02      2    1.96 1.48   1   4     3  0.56
##                   kurtosis   se
## Ageism_Fabroni1_1    -0.54 0.17
## Ageism_Fabroni1_2    -0.72 0.17
## Ageism_Fabroni1_3    -0.70 0.16
## Ageism_Fabroni1_4    -0.25 0.17
## Ageism_Fabroni1_5    -0.88 0.13
## Ageism_Fabroni1_6    -0.74 0.19
## Ageism_Fabroni2_1     0.08 0.16
## Ageism_Fabroni2_2    -0.90 0.18
## Ageism_Fabroni2_3    -0.95 0.17
## Ageism_Fabroni2_4    -1.10 0.19
## Ageism_Fabroni2_5    -0.44 0.20
## Ageism_Fabroni2_6     0.38 0.17
## Ageism_Fabroni3_1    -0.74 0.20
## Ageism_Fabroni3_2    -0.72 0.17
## Ageism_Fabroni3_3    -0.39 0.17
## Ageism_Fabroni3_4     1.72 0.16
## Ageism_Fabroni3_5    -1.26 0.21
## Ageism_Fabroni3_6    -1.30 0.23
## Ageism_Fabroni4_1     1.05 0.16
## Ageism_Fabroni4_2    -0.83 0.12
## Ageism_Fabroni4_3     0.99 0.16
## Ageism_Fabroni4_4     0.35 0.19
## Ageism_Fabroni4_5    -0.92 0.20

Checking Social and self values questions. Looking at min to max values they look okay.

##                 vars  n mean   sd median trimmed  mad min max range  skew
## Social_Values_1    1 27 3.89 1.05      4    3.96 1.48   2   5     3 -0.36
## Social_Values_2    2 27 4.11 0.93      4    4.17 1.48   2   5     3 -0.48
## Social_Values_3    3 27 3.96 1.13      4    4.09 1.48   1   5     4 -0.86
## Self_Values_1      4 27 2.93 1.21      3    2.91 1.48   1   5     4  0.39
## Self_Values_2      5 27 3.07 1.57      3    3.09 2.97   1   5     4 -0.12
##                 kurtosis   se
## Social_Values_1    -1.24 0.20
## Social_Values_2    -1.15 0.18
## Social_Values_3    -0.15 0.22
## Self_Values_1      -1.00 0.23
## Self_Values_2      -1.57 0.30

Checking Political and religious questions. Looking at min to max values they look okay.

##               vars  n  mean    sd median trimmed   mad min max range  skew
## PolApproval_1    1 27  2.37  1.55    2.0    2.26  1.48   1   5     4  0.59
## PolApproval_2    2 27  3.48  1.25    4.0    3.52  1.48   1   5     4 -0.24
## PolApproval_3    3 27  3.11  1.15    3.0    3.13  1.48   1   5     4 -0.21
## PolApproval_4    4 27  3.07  1.14    3.0    3.09  1.48   1   5     4 -0.29
## PolApproval_5    5 27  3.63  1.28    4.0    3.74  1.48   1   5     4 -0.71
## PolGov_1         6 26 51.96 28.33   50.5   51.77 33.36   6 100    94  0.00
## PolEcon          7 27  4.22  2.08    4.0    4.26  2.97   1   7     6 -0.24
## PolSoc           8 27  4.19  2.00    4.0    4.22  2.97   1   7     6 -0.33
##               kurtosis   se
## PolApproval_1    -1.31 0.30
## PolApproval_2    -1.35 0.24
## PolApproval_3    -0.74 0.22
## PolApproval_4    -0.90 0.22
## PolApproval_5    -0.82 0.25
## PolGov_1         -1.23 5.56
## PolEcon          -1.37 0.40
## PolSoc           -1.16 0.39
## The following `from` values were not present in `x`: 5, 6
## # A tibble: 4 x 3
##   PolParty                n percent
##   <chr>               <int> <chr>  
## 1 Democrat                8 29.6%  
## 2 Independent             4 14.8%  
## 3 Liberal third party     1 3.7%   
## 4 Republican             14 51.9%
##        vars  n mean   sd median trimmed  mad min max range  skew kurtosis   se
## Relig1    1 27 4.67 2.35      5    4.78 2.97   1   7     6 -0.52    -1.33 0.45
## Relig2    2 27 4.48 2.58      5    4.48 2.97   1   8     7 -0.05    -1.52 0.50

Checking Death and aging anxiety questions. Looking at min to max values they look okay.

##             vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## D_Anxiety_1    1 27 2.93 1.36      2    2.91 1.48   1   5     4  0.31    -1.38
## D_Anxiety_2    2 27 2.74 1.46      3    2.70 1.48   1   5     4  0.15    -1.43
## D_Anxiety_3    3 27 2.96 1.45      3    2.96 1.48   1   5     4 -0.08    -1.56
## D_Anxiety_4    4 27 2.56 1.55      2    2.48 1.48   1   5     4  0.43    -1.40
## D_Anxiety_5    5 27 3.33 1.39      4    3.39 1.48   1   5     4 -0.42    -1.20
## D_Anxiety_6    6 27 2.85 1.26      3    2.83 1.48   1   5     4  0.27    -0.94
## D_Anxiety_7    7 27 3.41 1.45      4    3.48 1.48   1   5     4 -0.41    -1.29
## D_Anxiety_8    8 27 2.70 1.44      2    2.65 1.48   1   5     4  0.28    -1.38
## D_Anxiety_9    9 27 3.56 1.31      3    3.65 1.48   1   5     4 -0.26    -1.15
## O_Worry       10 27 3.04 1.56      3    3.04 2.97   1   5     4 -0.06    -1.54
## D_Worry       11 27 3.07 1.54      3    3.09 2.97   1   5     4 -0.12    -1.49
##               se
## D_Anxiety_1 0.26
## D_Anxiety_2 0.28
## D_Anxiety_3 0.28
## D_Anxiety_4 0.30
## D_Anxiety_5 0.27
## D_Anxiety_6 0.24
## D_Anxiety_7 0.28
## D_Anxiety_8 0.28
## D_Anxiety_9 0.25
## O_Worry     0.30
## D_Worry     0.30

Checking Literacy, Numeracy, and MinMax questions. Looking at min to max values they look okay.

##          vars  n mean   sd median trimmed  mad min max range  skew kurtosis
## Literacy    1 27 2.00 1.30      1    1.83 0.00   1   5     4  1.01    -0.26
## Num1        2 27 3.59 1.55      4    3.61 1.48   1   6     5 -0.23    -0.98
## Num2        3 27 4.37 1.64      5    4.52 1.48   1   6     5 -0.73    -0.62
## Num3        4 27 4.26 1.43      4    4.35 1.48   1   6     5 -0.29    -0.80
## Max_Min     5 27 3.59 1.74      4    3.61 2.97   1   6     5 -0.06    -1.39
##            se
## Literacy 0.25
## Num1     0.30
## Num2     0.32
## Num3     0.28
## Max_Min  0.33

Checking Debrief responses. They seem a nice bunch!

##  [1] ""                                        
##  [2] "very interesting!!!"                     
##  [3] ""                                        
##  [4] ""                                        
##  [5] ""                                        
##  [6] ""                                        
##  [7] ""                                        
##  [8] "Good smattering of questions."           
##  [9] "no thanks"                               
## [10] "none"                                    
## [11] "None"                                    
## [12] "None"                                    
## [13] ""                                        
## [14] ""                                        
## [15] "Easy to understand very straight forward"
## [16] ""                                        
## [17] ""                                        
## [18] ""                                        
## [19] ""                                        
## [20] ""                                        
## [21] ""                                        
## [22] ""                                        
## [23] ""                                        
## [24] ""                                        
## [25] ""                                        
## [26] ""                                        
## [27] ""