Intro Stuff

library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.2     v purrr   0.3.4
## v tibble  3.0.4     v dplyr   1.0.2
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.0
## Warning: package 'tibble' was built under R version 4.0.3
## Warning: package 'tidyr' was built under R version 4.0.2
## Warning: package 'dplyr' was built under R version 4.0.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(infer)
## Warning: package 'infer' was built under R version 4.0.2
library(pastecs)
## Warning: package 'pastecs' was built under R version 4.0.3
## 
## Attaching package: 'pastecs'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## The following object is masked from 'package:tidyr':
## 
##     extract
library(mosaic)
## Warning: package 'mosaic' was built under R version 4.0.2
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following objects are masked from 'package:infer':
## 
##     prop_test, t_test
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following object is masked from 'package:purrr':
## 
##     cross
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
library(Hmisc)
## Warning: package 'Hmisc' was built under R version 4.0.3
## Loading required package: survival
## Loading required package: Formula
## Warning: package 'Formula' was built under R version 4.0.3
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units
library(gmodels)
## Warning: package 'gmodels' was built under R version 4.0.3
getwd()
## [1] "C:/Users/Jerome/Documents/From_Toshiba_HD_Work_Files/0000_Montgomery_College/Math_217/Final_Project/Working_Folder"
family_z34 <- read.csv ("family_z34.csv")

Examine Variables

table(family_z34$FM_SIZE)
## 
##  1  2  3  4  5  6  7  8  9 10 
## 70 88 61 56 30 17  5  1  1  1
table(family_z34$FM_TYPE)
## 
##   1   2   3   4 
##  70 112  36 112
table(family_z34$FM_STRP)
## 
## 11 12 21 22 23 31 32 41 42 43 44 45 
## 63  7 41 18 53 32  4 30 10 16 48  8
table(family_z34$FM_KIDS)
## 
##   0   1   2   3   4   5   6 
## 182  49  57  26  11   4   1
table(family_z34$FM_ELDR)
## 
##   0   1   2 
## 305  20   5
table(family_z34$FM_EDUC1)
## 
##  1  2  3  4  5  6  7  8  9 
##  1 15  5 66 98 48 16 62 19
table(family_z34$F10DVYN)
## 
##   1   2 
## 138 192
table(family_z34$FDMEDYN)
## 
##   1   2 
## 190 140
table(family_z34$FNMEDYN)
## 
##   1   2 
## 172 158
table(family_z34$FLIADLCT)
## 
##   0   1   2 
## 279  49   2
table(family_z34$FWKLIMCT)
## 
##   0   1   2   3 
## 189 117  19   5
table(family_z34$FHSTATEX)
## 
##   0   1   2   3   4   5   6 
## 221  47  30  11  12   5   4
family_z35 <- mutate(family_z34, health_ins = ifelse(FHIPRVCT > 0 | FHISINCT > 0  |FHICARCT > 0 | FHICADCT >0 |FHICHPCT >0 | FHIMILCT >0  | FHIPUBCT > 0 | FHIOGVCT > 0 | FHIIHSCT> 0 | FHIEXCT > 0, 1,0))
table(family_z35$health_ins)
## 
##   1 
## 330
table(family_z34$FHIPRVCT)
## 
##   0   1   2   3   4   5   6   7 
##   2 165  81  39  19  15   6   3
table(family_z34$FHISINCT)
## 
##   0   1   2   3   4   5   6   7 
## 139  89  45  23  13  14   5   2
table(family_z34$FHICARCT)
## 
##   0   1   2 
## 277  45   8
table(family_z34$FHICADCT)
## 
##   0   1   2   3   4   5   6 
## 229  36  30  18  10   5   2
table(family_z34$FHICHPCT)
## 
##   0   1   2   3   4 
## 321   3   3   2   1
table(family_z34$FHIMILCT)
## 
##   0   1   2   3 
## 319   9   1   1
table(family_z34$FHIPUBCT)
## 
##   0   1   2 
## 326   2   2
table(family_z34$FHIOGVCT)
## 
##   0 
## 330
table(family_z34$FHIIHSCT)
## 
##   0   1 
## 329   1
table(family_z34$FHIEXCT)
## 
##   0   1   2 
## 322   7   1
table(family_z35$INCGRP5)
## 
##   1   2   3   4 
## 135 160  15  20
table(family_z35$RAT_CAT5)
## 
##  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 
## 14 12 11 26 20 33 22 49 48 26 25 10  6 11  8  6  1  2
table(family_z34$COVCONF)
## 
##   1   2   3   4 
##   6  17  44 263
table(family_z34$FHICOST)
## 
##   0   1   2   3   4   5 
##  13  56 133  47  38  43
table(family_z34$FMEDBNOP)
## 
##   1   2 
## 227 103
table(family_z34$FSAF)
## 
##   1   2   9 
##  49 278   3
table(family_z34$FHICOVCT)
## 
##  1  2  3  4  5  6  7  8 10 
## 86 90 61 48 25 13  4  2  1
table(family_z34$FHICOVYN)
## 
##   1 
## 330
table(family_z34$FHIEBCCT)
## 
##   1   2   3   4   5   6   7 
## 175  76  36  17  16   5   3
table(family_z34$FMEDBILL)
## 
##   1 
## 330
write.csv(family_z35, file = "family_z35.csv", row.names = FALSE)
family_z35 <- read.csv("family_z35.csv")
family_z31 <- read.csv("family_z31.csv")
family_z50 <- mutate(family_z31, food_sec = ifelse(FSRUNOUT == 1 & FSLAST == 1 & FSSKIP == 1 & FSBALANC == 1 & FSLESS == 1 & FSHUNGRY == 1 & FSWEIGHT == 1 & FSNOTEAT == 1, 1,0))
table(family_z50$food_sec)
## 
##   0   1 
## 321   9
family_z51 <- mutate(family_z31, health_ins = ifelse(FHIPRVCT > 0 & FHISINCT > 0  & FHICARCT > 0 & FHICADCT >0 |FHICHPCT >0 & FHIMILCT >0  & FHIPUBCT > 0 & FHIOGVCT > 0 & FHIIHSCT> 0 & FHIEXCT > 0, 1,0))
table(family_z51$health_ins)
## 
##   0   1 
## 318  12
family_z17 <- read.csv("family_z17.csv")
family_z52 <- mutate(family_z17, health_ins = ifelse(FHIPRVCT > 0 & FHISINCT > 0  & FHICARCT > 0 & FHICADCT >0 & FHICHPCT >0 & FHIMILCT >0  & FHIPUBCT > 0 & FHIOGVCT > 0 & FHIIHSCT> 0 & FHIEXCT > 0, 1,0))
table(family_z52$health_ins)
## 
##    0 
## 2357
family_z52 <- mutate(family_z17, health_ins = ifelse(FHIPRVCT > 0 | FHISINCT > 0  | FHICARCT > 0 | FHICADCT >0 | FHICHPCT >0 | FHIMILCT >0  | FHIPUBCT > 0 | FHIOGVCT > 0 | FHIIHSCT> 0 | FHIEXCT > 0, 1,0))
table(family_z52$health_ins)
## 
##    0    1 
##  230 2127
family_0 <- read.csv("family_0.csv")
private_ins <- filter(family_0, FHIPRVCT > 0)
family_z53 <- mutate(family_0, health_ins = ifelse(FHIPRVCT > 0 | FHISINCT > 0  | FHICARCT > 0 | FHICADCT >0 | FHICHPCT >0 | FHIMILCT >0  | FHIPUBCT > 0 | FHIOGVCT > 0 | FHIIHSCT> 0 | FHIEXCT > 0, 1,0))
table(family_z53$health_ins)
## 
##     0     1 
##  1591 31566
family_z54 <- mutate(family_z53, food_sec = ifelse(FSRUNOUT == 1 | FSLAST == 1 | FSSKIP == 1 | FSBALANC == 1 | FSLESS == 1 | FSHUNGRY == 1 | FSWEIGHT == 1 | FSNOTEAT == 1, 1,0))
table(family_z54$food_sec)
## 
##    1 
## 2967
table(family_z54$health_ins)
## 
##     0     1 
##  1591 31566
write.csv(family_z54, file = "family_z54.csv", row.names = FALSE)
family_z54 <- read.csv("family_z54.csv")
table(family_z54$food_sec, family_z54$health_ins)
##    
##        0    1
##   1  273 2694

201201 Ready to Clean

Remove Variables

family_z55 <- family_z54[,-c(1:6)]
family_z55$FM_STRCP <- NULL
#family_z55$TELN_FLG <- NULL
family_z55$CURWRKN <- NULL
family_z55$TELCELN <- NULL
family_z55$WRKCELN <- NULL
family_z55$PHONEUSE <- NULL
family_z55$WTFA_FAM <- NULL
family_z55$F10DVCT <- NULL
family_z55$FDMEDCT <- NULL
family_z55$FHCDVCT <- NULL
family_z55$FHCDVYN <- NULL
family_z55$FHCHMCT <- NULL
family_z55$FHCHMYN <- NULL
family_z55$FHCPHRCT <- NULL
family_z55$FHCPHRYN <- NULL
family_z55$FHOSP2CT <- NULL
family_z55$FHOSP2YN <- NULL
family_z55$FNMEDCT <- NULL
family_z55$FSSKDAYS <- NULL
family_z55$FSNEDAYS <- NULL
family_z55$FHDSTCT <- NULL
family_z55$FDGLWCT1 <- NULL
family_z55$FDGLWCT2 <- NULL
family_z55$FWRKLWCT <- NULL
family_z55$FCHLMYN <- NULL
family_z55$FSPEDYN <- NULL
family_z55$FLAADLYN <- NULL
family_z55$FLIADLYN <- NULL
write.csv(family_z55, file = "family_z55.csv", row.names = FALSE)

At this point, deleted columns in Excel

family_z56 <- read.csv("family_z56.csv")
table(family_z56$FM_SIZE)
## 
##     1     2     3     4     5     6     7     8     9    10    11    12    13 
## 10799 10989  4582  3937  1841   653   211    86    33    18     3     3     1 
##    14 
##     1
table(family_z56$FM_TYPE)
## 
##     1     2     3     4 
## 10799 12755  1567  8036
table(family_z56$FLNGINTV)
## 
##     1     2     3     4     8 
## 31598   883   465   198    13
table(family_z56$FM_KIDS)
## 
##     0     1     2     3     4     5     6     7     8    10 
## 23550  4054  3521  1424   427   129    37    11     3     1
table(family_z56$FM_ELDR)
## 
##     0     1     2     3     5 
## 23220  6531  3361    44     1
table(family_z56$FM_EDUC1)
## 
##    1    2    3    4    5    6    7    8    9   97   99 
##  753 1694  620 5776 6094 2849 1572 7817 5812  118   52
family_z57 <- filter(family_z56, FM_EDUC1 < 10)
table(family_z57$FM_EDUC1)
## 
##    1    2    3    4    5    6    7    8    9 
##  753 1694  620 5776 6094 2849 1572 7817 5812
write.csv(family_z57, file = "family_z57.csv", row.names = FALSE)
table(family_z57$HOUSEOWN)
## 
##     1     2     3     7     8     9 
## 20733 10914   997   105   225    13
family_z58 <- filter(family_z57, HOUSEOWN < 4)
table(family_z58$HOUSEOWN)
## 
##     1     2     3 
## 20733 10914   997
write.csv(family_z58, file = "family_z58.csv", row.names = FALSE)
table(family_z58$FNMEDYN)
## 
##     1     2     7     9 
##  2879 29748     6    11
family_z59 <- filter(family_z58, FNMEDYN < 3)
table(family_z59$FNMEDYN)
## 
##     1     2 
##  2879 29748
table(family_z59$FANYLCT)
## 
##     0     1     2     3     4     5     6 
## 23355  7358  1641   229    33    10     1
table(family_z59$INCGRP5)
## 
##     1     2     3     4    96    99 
## 10083  8696  3409  7244  1633  1562
table(family_z59$RAT_CAT5)
## 
##    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
## 1394  947 1243 1252 1086 1276  975 2288 1813 2034 1399 1681 1250 7763  499  919 
##   17   18   96   99 
##  961 1324  961 1562
family_z60 <- filter(family_z59, INCGRP5 < 05)
table(family_z60$INCGRP5)
## 
##     1     2     3     4 
## 10083  8696  3409  7244
table(family_z60$RAT_CAT5)
## 
##    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
## 1394  947 1243 1252 1086 1276  975 2288 1813 2034 1399 1681 1250 7763  476  736 
##   17   18   96 
##  404 1153  262
family_z61 <- filter(family_z60, RAT_CAT5 < 19)
table(family_z61$RAT_CAT5)                   
## 
##    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
## 1394  947 1243 1252 1086 1276  975 2288 1813 2034 1399 1681 1250 7763  476  736 
##   17   18 
##  404 1153
table(family_z61$COVCONF)
## 
##    1    2    3    4    7    9 
## 2669 4246 3859 5282    6  225
table(family_z61$FHICOST)
## 
##    0    1    2    3    4    5    7    9 
## 4031 9943 8156 2531 1958 2161   24  366
table(family_z61$FMEDBILL)
## 
##     1     2     7     9 
##  3917 25215     3    35
table(family_z61$FMEDBNOP)
## 
##    1    2    7    9 
## 1998 1924    3   30
table(family_z61$FSAF)
## 
##     1     2     7     9 
##  3765 25134     6   265
table(family_z61$FHICOVCT)
## 
##    0    1    2    3    4    5    6    7    8    9   10   11 
## 1518 9863 9238 3719 2896 1301  434  124   51   16    9    1
table(family_z61$FHICOVYN)
## 
##     1     2     7     8     9 
## 27652  1474     9     1    34
table(family_z61$FHIEBCCT)
## 
##    0    1    2    3    4    5    6    7    8    9   10   11 
## 4057 6246 4982 2099 1857  742  208   38   16    8    1    1
family_z62 <- filter(family_z61, FHICOST <6)
table(family_z62$FHICOST)
## 
##    0    1    2    3    4    5 
## 4031 9943 8156 2531 1958 2161
table(family_z62$COVCONF)
## 
##    1    2    3    4    7    9 
## 2637 4195 3815 5216    5  214
family_z63 <- filter(family_z62, COVCONF < 5)
table(family_z63$FHICOST)
## 
##    0    1    2    3    4    5 
## 1165 5042 5122 1724 1375 1435
table(family_z63$COVCONF)
## 
##    1    2    3    4 
## 2637 4195 3815 5216
table(family_z63$COVCONF)
## 
##    1    2    3    4 
## 2637 4195 3815 5216
table(family_z63$FHICOST)
## 
##    0    1    2    3    4    5 
## 1165 5042 5122 1724 1375 1435
table(family_z63$FMEDBILL)
## 
##     1     2     9 
##  1877 13982     4
table(family_z63$FMEDBNOP)
## 
##    1    2    7    9 
##  817 1052    1   11
table(family_z63$FSAF)
## 
##     1     2     7     9 
##  3386 12302     2   173
table(family_z63$FHICOVCT)
## 
##    0    1    2    3    4    5    6    7    8    9   10   11 
##   16 4342 5394 2554 2178  932  310   85   35   10    6    1
table(family_z63$FHICOVYN)
## 
##     1     2 
## 15847    16
table(family_z63$FHIEBCCT)
## 
##    0    1    2    3    4    5    6    7    8    9   10   11 
##   36 6015 4847 2055 1818  728  199   37   16    8    1    1
family_z64 <- filter(family_z63, FSAF < 3)
table(family_z64$COVCONF)
## 
##    1    2    3    4 
## 2607 4138 3782 5161
table(family_z64$FHICOST)
## 
##    0    1    2    3    4    5 
## 1147 4961 5081 1708 1366 1425
table(family_z64$FMEDBILL)
## 
##     1     2     9 
##  1862 13822     4
table(family_z64$FMEDBNOP)
## 
##    1    2    7    9 
##  810 1044    1   11
table(family_z64$FSAF)
## 
##     1     2 
##  3386 12302
table(family_z64$FHICOVCT)
## 
##    0    1    2    3    4    5    6    7    8    9   10   11 
##   16 4273 5355 2532 2144  925  308   85   33   10    6    1
table(family_z64$FHICOVYN)
## 
##     1     2 
## 15672    16
table(family_z64$FHIEBCCT)
## 
##    0    1    2    3    4    5    6    7    8    9   10   11 
##   36 5930 4814 2030 1795  722  198   37   14    8    1    1
family_z65 <- filter(family_z64, FMEDBNOP < 3)
table(family_z65$FMEDBILL)
## 
##    1    9 
## 1850    4
table(family_z65$FMEDBNOP)
## 
##    1    2 
##  810 1044
family_z66 <- filter(family_z65, FMEDBILL < 3)
table(family_z66$FMEDBILL)
## 
##    1 
## 1850
write.csv(family_z66, file = "family_z66.csv", row.names = FALSE)
write.csv(family_z63, file = "family_z63.csv", row.names = FALSE)
family_z63$FMEDBNOP <- NULL
family_z63$FSAF <- NULL
write.csv(family_z63, file = "family_z63.csv", row.names = FALSE)
table(family_z63$COVCONF)
## 
##    1    2    3    4 
## 2637 4195 3815 5216
table(family_z63$FHICOST)
## 
##    0    1    2    3    4    5 
## 1165 5042 5122 1724 1375 1435
table(family_z63$FMEDBILL)
## 
##     1     2     9 
##  1877 13982     4
table(family_z64$FHICOVYN)
## 
##     1     2 
## 15672    16
family_z70 <- filter(family_z63, FMEDBILL < 3)
table(family_z70$FMEDBILL)
## 
##     1     2 
##  1877 13982
write.csv(family_z70, file = "family_z70.csv", row.names = FALSE)