This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

plot(cars)
library(tidyverse)
Registered S3 methods overwritten by 'dbplyr':
  method         from
  print.tbl_lazy     
  print.tbl_sql      
-- Attaching packages --------------------------------------- tidyverse 1.3.0 --
v ggplot2 3.3.2     v purrr   0.3.4
v tibble  3.0.3     v dplyr   1.0.2
v tidyr   1.1.1     v stringr 1.4.0
v readr   1.3.1     v forcats 0.5.0
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
library(psych)

Attaching package: 㤼㸱psych㤼㸲

The following objects are masked from 㤼㸱package:ggplot2㤼㸲:

    %+%, alpha
library(lme4)
Loading required package: Matrix

Attaching package: 㤼㸱Matrix㤼㸲

The following objects are masked from 㤼㸱package:tidyr㤼㸲:

    expand, pack, unpack
X04275_0001_Data <- read_dta("EDUS 651/ICPSR_04275-V1/ICPSR_04275/DS0001/04275-0001-Data.dta")
glimpse(X04275_0001_Data)
Rows: 15,362
Columns: 907
$ STU_ID   <dbl> 101101, 101102, 101104, 101105, 101106, 101107, 101108...
$ SCH_ID   <dbl> 1011, 1011, 1011, 1011, 1011, 1011, 1011, 1011, 1011, ...
$ STRAT_ID <dbl> 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101,...
$ PSU      <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$ BYSTUWT  <dbl> 178.9513, 28.2951, 589.7248, 235.7822, 178.9513, 256.9...
$ SEX      <dbl+lbl> 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2,...
$ RACE     <dbl+lbl> 5, 2, 7, 3, 4, 4, 4, 7, 4, 3, 3, 4, 3, 2, 2, 3, 3,...
$ STLANG   <dbl+lbl> 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,...
$ HOMELANG <dbl+lbl> 1, 4, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1,...
$ DOBIRTHP <dbl+lbl> 198512, 198605, 198601, 198607, 198511, 198510, 19...
$ PARACE   <dbl+lbl>  7,  2,  7, -9,  4,  5,  4,  7,  4,  3,  3,  4,  3...
$ PARLANG  <dbl+lbl>  1,  4,  1, -9,  2,  1, -9,  1,  2,  1,  1,  1,  1...
$ BYFCOMP  <dbl+lbl> 3, 1, 1, 5, 1, 5, 1, 1, 1, 1, 3, 5, 1, 2, 1, 5, 5,...
$ PARED    <dbl+lbl> 5, 5, 2, 2, 1, 2, 6, 2, 2, 1, 6, 4, 4, 2, 7, 2, 7,...
$ MOTHED   <dbl+lbl> 1, 5, 2, 2, 1, 2, 6, 2, 2, 1, 6, 4, 3, 2, 7, 2, 2,...
$ FATHED   <dbl+lbl> 5, 5, 2, 2, 1, 1, 3, 2, 1, 1, 4, 2, 4, 2, 3, 2, 7,...
$ OCCUMOTH <dbl+lbl>  8,  0,  5,  4,  8,  5, 14,  1,  5,  9, 15, 14, 15...
$ OCCUFATH <dbl+lbl>  6,  9,  5,  6,  5,  8, 15, 12,  2,  5,  7, 12, 15...
$ INCOME   <dbl+lbl> 10, 11, 10,  2,  6,  9, 10, 10,  8,  3,  8,  8,  5...
$ SES1     <dbl> -0.25, 0.58, -0.85, -0.80, -1.41, -1.07, 0.27, -0.16, ...
$ SES1QU   <dbl+lbl> 2, 4, 1, 1, 1, 1, 3, 2, 1, 1, 2, 2, 1, 2, 4, 3, 3,...
$ SES2     <dbl> -0.23, 0.69, -0.68, -0.89, -1.28, -0.93, 0.36, -0.24, ...
$ SES2QU   <dbl+lbl> 2, 4, 1, 1, 1, 1, 3, 2, 1, 1, 2, 3, 1, 1, 4, 3, 3,...
$ STEXPECT <dbl+lbl>  3,  7, -1,  5,  5,  4, -1,  6,  7,  6, -1,  6,  6...
$ PARASPIR <dbl+lbl> 5, 7, 7, 6, 2, 3, 5, 5, 5, 2, 5, 3, 6, 5, 6, 3, 5,...
$ BYOCCHS  <dbl+lbl>  7, -3, -1, 15, 15, -3, -3, -1, -3,  9, -1, 16, 15...
$ BYOCC30  <dbl+lbl> -1,  9, 10, 10, 16, 11,  9, -1, 10, -1,  9, 16, 11...
$ SCHPROG  <dbl+lbl> 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 1, 1,...
$ BYSQSTAT <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$ BYQXDATP <dbl> 200204, 200204, 200204, 200204, 200204, 200204, 200204...
$ BYTXSTAT <dbl+lbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,...
$ BYTEQFLG <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,...
$ BYPQSTAT <dbl+lbl> 2, 1, 2, 0, 2, 2, 4, 2, 2, 3, 1, 1, 1, 2, 0, 2, 2,...
$ BYTXPAFG <dbl+lbl> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,...
$ BYADMFLG <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$ BYLMCFLG <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$ BYIEPFLG <dbl+lbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,...
$ BYTXACC  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYTXCSTD <dbl> 56.21, 57.66, 66.50, 46.46, 36.17, 30.72, 45.46, 68.39...
$ BYTXCQU  <dbl+lbl> 3, 4, 4, 2, 1, 1, 2, 4, 1, 2, 4, 2, 1, 3, 4, 1, 1,...
$ BYNELS2M <dbl> 47.84, 55.30, 66.24, 35.33, 29.97, 24.28, 45.16, 66.01...
$ BYNELS2R <dbl> 39.04, 36.35, 42.68, 27.86, 13.07, 11.70, 19.66, 45.37...
$ BYNELS0M <dbl> 41.25, 47.30, 54.15, 30.17, 25.26, 20.02, 38.95, 54.05...
$ BYPISARE <dbl> 616.89, 591.84, 654.43, 511.11, 379.17, 358.38, 435.98...
$ BYTXMIRR <dbl> 39.940, 47.361, 56.717, 29.603, 24.673, 19.458, 37.965...
$ BYTXMSTD <dbl> 52.11, 57.65, 66.44, 44.68, 40.57, 35.04, 50.71, 66.17...
$ BYTXMQU  <dbl+lbl> 3, 4, 4, 2, 1, 1, 3, 4, 1, 2, 4, 2, 1, 4, 4, 1, 1,...
$ BYTX1MPP <dbl> 0.998, 1.000, 1.000, 0.972, 0.906, 0.630, 0.997, 1.000...
$ BYTX2MPP <dbl> 0.991, 1.000, 1.000, 0.298, 0.029, 0.001, 0.971, 1.000...
$ BYTX3MPP <dbl> 0.729, 0.997, 1.000, 0.002, 0.000, 0.000, 0.345, 1.000...
$ BYTX4MPP <dbl> 0.029, 0.287, 0.974, 0.001, 0.000, 0.000, 0.012, 0.972...
$ BYTX5MPP <dbl> 0.000, 0.000, 0.020, 0.000, 0.000, 0.000, 0.000, 0.018...
$ BYTXRIRR <dbl> 39.806, 37.121, 43.536, 27.854, 13.732, 11.698, 19.084...
$ BYTXRSTD <dbl> 59.53, 56.70, 64.46, 48.69, 33.53, 28.85, 40.80, 68.28...
$ BYTXRQU  <dbl+lbl> 4, 3, 4, 2, 1, 1, 1, 4, 2, 1, 3, 1, 1, 1, 4, 1, 1,...
$ BYTX1RPP <dbl> 1.000, 1.000, 1.000, 0.999, 0.098, 0.021, 0.930, 1.000...
$ BYTX2RPP <dbl> 0.961, 0.890, 0.992, 0.276, 0.000, 0.000, 0.017, 0.998...
$ BYTX3RPP <dbl> 0.079, 0.021, 0.406, 0.000, 0.000, 0.000, 0.000, 0.812...
$ BYSF1RCE <dbl+lbl>  4,  2,  7,  3,  4,  4,  4,  3,  4,  7,  7,  4,  3...
$ BYSF2RCE <dbl+lbl>  4,  2,  7,  3,  4,  3,  7,  3, -3,  4,  7,  7,  3...
$ BYSF3RCE <dbl+lbl>  4,  3,  7, -9,  4,  3,  7,  7, -3,  3,  3,  4,  3...
$ BYBASEBL <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2...
$ BYSOFTBL <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  3,  2...
$ BYBSKTBL <dbl+lbl>  2,  2,  2,  3,  2,  2,  2,  2,  2,  2,  2,  2,  2...
$ BYFOOTBL <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  2,  2,  3,  4,  2,  2...
$ BYSOCCER <dbl+lbl>  2,  1,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2...
$ BYTEAMSP <dbl+lbl>  2,  2,  1,  2,  2,  4,  4,  3,  2,  2,  4,  2,  1...
$ BYSOLOSP <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  3,  2,  2,  4,  2,  2...
$ BYCHRDRL <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  3,  1...
$ BYWORKSY <dbl+lbl>  1,  0,  0,  0,  1,  0,  1,  0, -9,  0,  0,  0,  1...
$ BYERACE  <dbl+lbl>  3,  3,  7,  7,  7,  7,  7,  7,  6,  6,  7,  7,  3...
$ BYTEHDEG <dbl+lbl>  3,  3,  3,  3,  3,  3,  5,  3,  3,  3,  3,  3,  3...
$ BYMRACE  <dbl+lbl>  7,  7,  7,  7,  7,  7,  7,  7,  7,  7,  7,  7,  7...
$ BYTMHDEG <dbl+lbl>  3,  3,  5,  3,  5,  3,  4,  5,  3,  3,  5,  3,  4...
$ BYG10EP  <dbl+lbl> 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,...
$ BYSCENP  <dbl+lbl> -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9...
$ BYSCTRL  <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$ BYURBAN  <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$ BYREGION <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$ BYSPANP  <dbl+lbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,...
$ BY10FLP  <dbl+lbl> 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,...
$ SEXIM    <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
$ STLANGIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
$ FAMCMPIM <dbl+lbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,...
$ MOTHEDIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,...
$ FATHEDIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,...
$ OCCMOMIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,...
$ OCCFTHIM <dbl+lbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,...
$ INCOMEIM <dbl+lbl> 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0,...
$ STEXPTIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
$ PARASPIM <dbl+lbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,...
$ SCHPRGIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
$ BYTESTIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
$ BYMATHIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
$ BYREADIM <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
$ BYS14    <dbl+lbl> 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2,...
$ BYS15    <dbl+lbl> 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,...
$ BYS20A   <dbl+lbl>  2,  2,  3, -9,  2,  2,  3,  1,  3,  2,  2,  2,  3...
$ BYS20B   <dbl+lbl>  3,  3,  3,  2,  2,  3,  3,  2,  3,  2,  3,  3,  3...
$ BYS20C   <dbl+lbl>  1,  2,  3, -9,  2,  2,  1,  2,  3,  2,  1,  3,  2...
$ BYS20D   <dbl+lbl>  2,  2,  2, -9,  2,  1,  2,  2,  2,  2,  2,  2,  1...
$ BYS20E   <dbl+lbl>  2,  3,  3,  1,  3,  1,  2,  2,  3,  1,  1,  2,  3...
$ BYS20F   <dbl+lbl>  2,  2,  2,  2,  2,  1,  2,  2,  3,  2,  1,  2,  3...
$ BYS20G   <dbl+lbl>  3,  2,  3,  2,  3,  2,  2,  2,  3,  1,  2,  2,  3...
$ BYS20H   <dbl+lbl>  1,  4,  3, -9,  3,  3,  4,  4,  3,  3,  3,  3,  3...
$ BYS20I   <dbl+lbl>  3,  4,  3, -9,  3,  3,  4,  3,  3,  4,  3,  3,  4...
$ BYS20J   <dbl+lbl>  3,  3, -9, -9,  3,  3,  3,  3,  2,  2,  3,  3,  4...
$ BYS20K   <dbl+lbl>  3,  3,  2,  2,  2,  1,  2,  2,  2,  4,  2,  2,  1...
$ BYS20L   <dbl+lbl>  2,  2,  3, -9,  1,  4,  3,  2,  3,  1,  3,  3,  2...
$ BYS20M   <dbl+lbl>  2,  3,  2,  2,  1,  1,  2,  2,  2,  1,  3,  2,  1...
$ BYS20N   <dbl+lbl>  1,  4,  2, -9,  1,  2,  2, -9,  2,  1,  3,  2,  1...
$ BYS21A   <dbl+lbl>  2,  2,  2,  1,  1,  1,  3,  3,  2,  3,  2,  2,  1...
$ BYS21B   <dbl+lbl>  3,  3,  3, -9,  4,  2,  3,  3,  3,  2,  3,  2,  4...
$ BYS21C   <dbl+lbl>  4,  2,  2,  2,  3,  3,  2,  3,  3,  2,  3,  2,  2...
$ BYS21D   <dbl+lbl>  3,  2,  2,  2,  3,  2,  3,  3,  2,  3,  2,  2,  3...
$ BYS21E   <dbl+lbl>  2,  1,  2, -9,  2,  1,  2,  3,  2,  2,  3,  2,  2...
$ BYS22A   <dbl+lbl>  1,  2,  2,  2,  1,  1,  1,  1,  1,  3,  2,  1,  2...
$ BYS22B   <dbl+lbl>  1,  1,  1,  1,  3,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYS22C   <dbl+lbl>  1,  1,  2,  1,  2,  1,  1,  1,  1,  1,  2,  2,  1...
$ BYS22D   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  2...
$ BYS22E   <dbl+lbl>  1,  1,  1,  1,  3,  1,  1,  1,  1,  1,  3,  1,  2...
$ BYS22F   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYS22G   <dbl+lbl>  1,  1,  1,  1,  3,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYS22H   <dbl+lbl>  1,  1,  2,  1,  3,  1,  1,  1,  1,  1,  1,  2,  1...
$ BYS23A   <dbl+lbl>  1,  1,  1,  0,  0,  0,  0,  1,  1,  1,  1,  1,  1...
$ BYS23B   <dbl+lbl>  0,  0,  1, -9,  0,  0,  1,  1,  1,  0,  0,  1,  0...
$ BYS23C   <dbl+lbl>  0,  1,  1,  1,  1,  0,  0,  1,  1,  1,  1,  0,  1...
$ BYS23D   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0...
$ BYS23E   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1...
$ BYS23F   <dbl+lbl>  0,  0,  0, -9,  0,  0,  0,  0,  0,  0,  0,  0,  1...
$ BYS24A   <dbl+lbl>  3,  3,  2,  2,  2,  5,  3,  1,  2,  1,  2,  1,  4...
$ BYS24B   <dbl+lbl>  3,  2,  1,  1,  1,  2,  1,  1,  1,  1,  1,  1,  1...
$ BYS24C   <dbl+lbl>  3,  2,  2,  3,  2,  1,  1,  1,  2,  3,  1,  1,  4...
$ BYS24D   <dbl+lbl>  1,  1,  1,  1,  1,  2,  2,  1,  2,  1,  1,  1,  2...
$ BYS24E   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  2...
$ BYS24F   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  2...
$ BYS24G   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYS25AA  <dbl+lbl>  2,  2,  2, -9,  2,  1,  2,  1,  1,  2,  1,  1,  2...
$ BYS25BA  <dbl+lbl>  1,  0,  0, -9,  1,  1,  1,  0,  1,  0,  0,  1,  0...
$ BYS25DA  <dbl+lbl> 10, 10, 10, 10, 10, 10, 10, 10,  9, 10, 10,  9, 10...
$ BYS25EA  <dbl+lbl>  2,  3,  2,  3,  3,  2,  2,  3,  2,  3,  3,  3,  2...
$ BYS25FA  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  0,  1,  1,  1,  1,  1...
$ BYS25GA  <dbl+lbl>  0,  1,  1, -9,  1,  0,  1,  0,  1,  0,  0,  1,  1...
$ BYS25AB  <dbl+lbl>  1,  2,  2,  2,  1,  1,  1,  1, -3,  1,  1,  2,  2...
$ BYS25BB  <dbl+lbl>  1,  0,  0, -9,  1,  0,  0,  0, -3,  1,  0,  0,  0...
$ BYS25DB  <dbl+lbl> 10, 10, 10, 10, 10, 10, 10, 10, -3, 10, 10, 10, 10...
$ BYS25EB  <dbl+lbl>  2,  3,  3,  3,  3,  2,  2, -9, -3,  2,  3,  3,  2...
$ BYS25FB  <dbl+lbl>  0,  1,  1,  0,  1,  1,  1,  0, -3,  1,  1,  1,  1...
$ BYS25GB  <dbl+lbl>  0,  1,  1, -9, -9,  1,  1, -9, -3,  1,  1,  1,  1...
$ BYS25AC  <dbl+lbl>  2,  2,  1, -9,  1,  1,  1,  1, -3,  1,  1,  2,  2...
$ BYS25BC  <dbl+lbl>  1,  0,  0,  0,  1,  0,  0,  0, -3,  0,  0,  1,  0...
$ BYS25DC  <dbl+lbl> 12, 10, 10, 10, 10,  9, -9, 10, -3, 10, 10, 10, 10...
$ BYS25EC  <dbl+lbl>  3,  2,  2,  3,  3,  2,  2,  3, -3,  2,  3,  3,  3...
$ BYS25FC  <dbl+lbl>  1,  0,  1,  1,  0,  1,  1,  1, -3,  0,  1,  1,  1...
$ BYS25GC  <dbl+lbl>  1,  0,  1,  1,  0,  1,  1,  1, -3,  0,  0,  1,  1...
$ BYS26    <dbl+lbl>  2,  2,  2,  2,  3,  1,  2,  2,  2,  2,  2,  3,  3...
$ BYS27A   <dbl+lbl>  2,  2,  3,  1,  1,  2,  2,  2,  3,  2,  1,  2,  2...
$ BYS27B   <dbl+lbl>  2,  2,  3,  1,  1,  1,  3,  2,  3,  2,  2,  2,  2...
$ BYS27C   <dbl+lbl>  3,  2,  3,  4,  1,  3,  3,  2,  3,  4,  2,  3,  3...
$ BYS27D   <dbl+lbl>  2,  1,  1,  1,  1,  1,  2,  1,  1,  1,  1,  2,  1...
$ BYS27E   <dbl+lbl>  2,  1,  3,  2,  1,  4,  2,  1,  2,  4,  2,  3,  4...
$ BYS27F   <dbl+lbl>  3,  1,  2,  1,  2,  2,  2,  1,  3,  3,  1,  3,  4...
$ BYS27G   <dbl+lbl>  3,  1,  2,  1,  1,  1,  1,  1,  1,  1,  1,  2,  1...
$ BYS27H   <dbl+lbl>  2,  2, -9,  1,  1,  1,  1,  2,  2,  2,  2,  2,  3...
$ BYS27I   <dbl+lbl>  2,  1,  2,  1,  1,  1,  1,  1,  2,  1,  2,  2,  1...
$ BYS28    <dbl+lbl>  2,  2,  1,  3,  3,  3,  2,  2,  2,  3,  2,  3,  2...
$ BYS29A   <dbl+lbl>  2,  4,  4,  5,  5,  5,  3,  2,  5,  4,  4,  5,  3...
$ BYS29B   <dbl+lbl>  2,  5,  4,  2,  5,  2,  2,  5,  4,  5,  5,  5,  2...
$ BYS29C   <dbl+lbl>  2,  5,  5, -9,  5, -9,  5,  5,  5,  4,  4,  5,  5...
$ BYS29D   <dbl+lbl>  1,  2, -9,  4,  5,  3,  3,  1,  2,  3,  1,  2,  5...
$ BYS29E   <dbl+lbl>  2,  3,  5,  3,  4,  4,  4,  4,  5,  4,  5,  5,  5...
$ BYS29F   <dbl+lbl>  5,  3,  3, -9,  2,  2,  3,  4,  5,  2,  5,  5,  5...
$ BYS29G   <dbl+lbl>  1,  1,  4,  2,  1,  1,  2,  4,  2,  2,  5,  1,  1...
$ BYS29H   <dbl+lbl>  1,  1,  1,  3,  2,  1,  1,  1,  2,  3,  5,  5,  2...
$ BYS29I   <dbl+lbl>  1,  2,  1,  2,  4,  5,  2,  1,  4,  1,  2,  3,  2...
$ BYS29J   <dbl+lbl>  5,  2,  1, -9,  5,  2,  1,  1,  2,  5,  5,  4,  3...
$ BYS30    <dbl+lbl>  0,  0,  0,  0,  1,  0,  1,  0,  0,  1,  0,  0,  1...
$ BYS31A   <dbl+lbl> -3, -3, -3, -3,  1, -3,  1, -3, -3,  2, -3, -3,  1...
$ BYS31B   <dbl+lbl> -3, -3, -3, -3,  3, -3,  4, -3, -3,  3, -3, -3,  2...
$ BYS31C   <dbl+lbl> -3, -3, -3, -3,  1, -3,  1, -3, -3,  2, -3, -3,  2...
$ BYS31D   <dbl+lbl> -3, -3, -3, -3,  3, -3,  4, -3, -3,  3, -3, -3,  2...
$ BYS31E   <dbl+lbl> -3, -3, -3, -3,  1, -3,  1, -3, -3,  5, -3, -3,  2...
$ BYS31F   <dbl+lbl> -3, -3, -3, -3,  1, -3,  4, -3, -3,  2, -3, -3,  1...
$ BYS31G   <dbl+lbl> -3, -3, -3, -3,  1, -3,  1, -3, -3,  4, -3, -3,  1...
$ BYS31H   <dbl+lbl> -3, -3, -3, -3,  2, -3,  1, -3, -3,  3, -3, -3,  3...
$ BYS32AA  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  0,  1...
$ BYS32BA  <dbl+lbl>  1,  1,  1,  1,  1,  1,  0,  1,  1,  1,  1,  1,  1...
$ BYS32CA  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  1,  0,  0...
$ BYS32DA  <dbl+lbl>  0,  1,  0,  0,  0,  0,  0,  1,  0,  0,  1,  0,  0...
$ BYS32EA  <dbl+lbl>  0,  0,  0,  1,  1,  0,  0,  0,  0,  1,  0,  0,  0...
$ BYS32FA  <dbl+lbl>  0,  1,  0,  1,  1,  0,  0,  0,  0,  1,  0,  0,  0...
$ BYS32GA  <dbl+lbl>  1,  1, -9,  1, -3, -9,  0,  1,  1,  1,  1,  1,  0...
$ BYS32HA  <dbl+lbl>  1,  1,  1,  1, -3, -9,  0,  1,  1,  1,  1,  1,  0...
$ BYS32AB  <dbl+lbl>  0,  1,  1,  1,  1,  1,  0,  1,  1,  1,  1,  0,  1...
$ BYS32BB  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  0,  0...
$ BYS32CB  <dbl+lbl>  0,  1,  1,  0,  0,  0,  0,  1,  0,  0,  1,  0,  0...
$ BYS32DB  <dbl+lbl>  0,  1,  0,  0,  0,  0,  1,  1,  0,  1,  1,  0,  0...
$ BYS32EB  <dbl+lbl>  0,  0,  0,  1,  1,  0,  1,  0,  0,  1,  0,  0,  1...
$ BYS32FB  <dbl+lbl>  0,  0,  0,  1,  1,  1,  1,  0,  1,  1,  0,  0,  0...
$ BYS32GB  <dbl+lbl>  1,  1,  1,  0, -3,  1,  0,  1,  1,  0,  1,  1,  1...
$ BYS32HB  <dbl+lbl>  1,  1,  1,  1, -3,  1,  0,  1,  1,  1,  1,  1,  1...
$ BYS33A   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS33B   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS33C   <dbl+lbl>  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,  0,  0,  1...
$ BYS33D   <dbl+lbl>  0,  0,  0,  1,  1,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS33E   <dbl+lbl>  0,  0,  0,  1,  1,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS33F   <dbl+lbl>  1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS33G   <dbl+lbl>  0,  0,  0,  1,  1,  0,  0,  0,  1,  0,  0,  0,  0...
$ BYS33H   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS33I   <dbl+lbl>  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS33J   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS33K   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0...
$ BYS33L   <dbl+lbl>  1,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  1...
$ BYS34A   <dbl+lbl>  1,  1, -9,  4,  8,  7,  1,  2, -9,  7,  4,  1,  5...
$ BYS34B   <dbl+lbl>  6,  4, 18,  7,  2,  6, 11, 10, -9, 16,  5,  3,  2...
$ BYS35A   <dbl+lbl>  0,  1,  5,  4,  1,  7,  1,  1, -9,  5,  2,  1,  1...
$ BYS35B   <dbl+lbl>  2,  0,  4,  5,  3,  5,  1,  4, -9,  8,  2,  1,  1...
$ BYS36A   <dbl+lbl>  0,  1,  1,  2,  1,  0,  1,  1, -9,  3,  3,  1,  2...
$ BYS36B   <dbl+lbl>  4,  2,  5,  3,  3,  0,  1,  2, -9,  8,  2,  1,  1...
$ BYS37    <dbl+lbl> 3, 4, 4, 4, 4, 3, 2, 4, 4, 4, 3, 4, 3, 4, 4, 3, 3,...
$ BYS38A   <dbl+lbl>  2,  2,  1,  1,  4,  2,  3,  2,  4,  1,  2,  1,  1...
$ BYS38B   <dbl+lbl>  3,  1,  1, -9,  4,  1,  4,  2,  4,  1,  2,  1,  1...
$ BYS38C   <dbl+lbl>  2,  1,  2,  2,  4,  2,  3,  2,  4,  1,  2,  1,  2...
$ BYS39A   <dbl+lbl> -9,  2,  2,  2,  3,  2,  2,  1,  2,  1,  2,  2,  2...
$ BYS39B   <dbl+lbl>  3,  2,  2,  2,  3,  2,  2,  1,  2,  1,  2,  3,  2...
$ BYS39C   <dbl+lbl>  3,  2,  2,  3,  3,  2,  2,  1,  2,  1,  2,  2,  2...
$ BYS39D   <dbl+lbl>  3,  2,  2,  2,  3,  2,  2,  1,  2,  1,  2,  2,  2...
$ BYS39E   <dbl+lbl> -9,  2,  2,  2,  3,  2,  2,  1,  2,  1,  2,  2,  2...
$ BYS39F   <dbl+lbl>  3,  2,  3,  3,  3,  3,  3,  3,  2,  1,  2,  2,  3...
$ BYS39G   <dbl+lbl>  3,  2,  2, -9,  3,  2,  2,  1,  2,  2,  2,  2,  2...
$ BYS39H   <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  1,  2,  1,  2,  3,  3...
$ BYS40AA  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40AB  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYS40AC  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40AD  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40AE  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40BA  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40BB  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  0,  1...
$ BYS40BC  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0...
$ BYS40BD  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40BE  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40CA  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40CB  <dbl+lbl>  1,  1,  1,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYS40CC  <dbl+lbl>  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40CD  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40CE  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40DA  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40DB  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  0,  0,  1,  1...
$ BYS40DC  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  1,  0,  0...
$ BYS40DD  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0...
$ BYS40DE  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40EA  <dbl+lbl>  0,  1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40EB  <dbl+lbl>  1,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYS40EC  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40ED  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40EE  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40FA  <dbl+lbl>  0,  0,  1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1...
$ BYS40FB  <dbl+lbl>  1,  1,  0,  1,  1,  0,  0,  0,  1,  1,  0,  1,  0...
$ BYS40FC  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  1,  0,  0...
$ BYS40FD  <dbl+lbl>  0,  0,  0,  0,  0,  1,  1,  0,  0,  0,  1,  0,  0...
$ BYS40FE  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40GA  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40GB  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  0,  1,  1,  0,  1,  1...
$ BYS40GC  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  1,  0,  0...
$ BYS40GD  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0...
$ BYS40GE  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40HA  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1...
$ BYS40HB  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  0,  0...
$ BYS40HC  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0...
$ BYS40HD  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS40HE  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS41A   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYS41B   <dbl+lbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
$ BYS41C   <dbl+lbl> 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,...
$ BYS41D   <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
$ BYS41E   <dbl+lbl> 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,...
$ BYS41F   <dbl+lbl> 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,...
$ BYS41G   <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,...
$ BYS41H   <dbl+lbl>  0,  1,  1,  0,  0,  0,  0,  0,  1,  0,  0, -9,  1...
$ BYS41I   <dbl+lbl>  0,  0,  0, -9,  0,  0,  0,  0,  0,  0,  0,  0,  1...
$ BYS42    <dbl+lbl>  0,  2,  2, 14,  0,  8,  5, 18, -9,  2, 18, 15,  2...
$ BYS43    <dbl+lbl>  2,  2,  3,  5,  2, 12, -9,  0, -9,  2,  0,  2,  0...
$ BYS44A   <dbl+lbl>  4,  2,  3,  3,  2,  4,  4,  2,  2,  2,  2,  3,  3...
$ BYS44B   <dbl+lbl>  4,  2,  2,  1,  2,  1,  3,  3,  3,  3,  4,  1,  1...
$ BYS44C   <dbl+lbl>  1,  3,  1,  1,  1,  1,  4,  1,  1,  1,  1,  3,  1...
$ BYS44D   <dbl+lbl>  4,  3,  3,  3,  4,  1,  2,  1,  2,  4,  1,  3,  3...
$ BYS44E   <dbl+lbl>  4,  4,  1,  4,  1,  4,  3, -9,  3,  3,  1,  4,  3...
$ BYS44F   <dbl+lbl>  3,  1,  3,  1,  3,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYS44G   <dbl+lbl>  1,  1,  1,  1,  1,  4,  2, -9,  1,  2,  1,  4,  1...
$ BYS44H   <dbl+lbl>  1,  1,  3,  1, -9,  1,  3, -9,  3,  2,  1,  3,  1...
$ BYS45A   <dbl+lbl>  4,  5,  5,  5,  5,  3,  5,  5,  5,  3,  5,  5,  2...
$ BYS45B   <dbl+lbl>  2,  4,  4,  4,  4,  2,  4,  4,  5,  4,  4,  4,  3...
$ BYS45C   <dbl+lbl>  4,  4,  4,  5,  5,  1,  4,  4,  5,  5,  5,  5,  2...
$ BYS46A   <dbl+lbl>  1,  1,  1,  2,  3,  0,  1,  2, -9,  2,  3,  1,  2...
$ BYS46B   <dbl+lbl>  3,  5,  1,  4,  3,  0,  3,  6, -9,  3,  6,  3,  1...
$ BYS47A   <dbl+lbl>  4,  5,  5,  5,  5,  3,  5,  5,  5,  4,  5,  5,  3...
$ BYS47B   <dbl+lbl>  3,  2,  3,  3,  3,  2,  3,  5,  5,  3,  3,  4,  3...
$ BYS47C   <dbl+lbl>  2,  2,  2,  2,  2,  2,  3,  2,  5,  2,  2,  2,  2...
$ BYS47D   <dbl+lbl>  2,  3,  2,  2,  2,  2,  3,  3,  2,  2,  2,  3,  3...
$ BYS47E   <dbl+lbl>  3,  2,  2, -9,  2,  2,  3,  2,  2,  2,  2,  2,  2...
$ BYS48A   <dbl+lbl>  6,  2,  1,  6,  4,  3,  1,  2, -9,  3,  6,  1,  4...
$ BYS48B   <dbl+lbl>  6,  4,  6,  6,  4,  6,  1,  6, -9,  2,  6,  5,  3...
$ BYS49A   <dbl+lbl>  0,  2,  0,  1,  0,  0,  1,  1, -9,  0,  6,  0,  0...
$ BYS49B   <dbl+lbl>  1,  3,  2,  3,  0,  2,  1,  5, -9,  2,  6,  0,  0...
$ BYS50    <dbl+lbl>  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYS51A   <dbl+lbl> -3,  4,  2,  3,  1,  1,  3,  2,  3,  2,  3,  3,  2...
$ BYS51B   <dbl+lbl> -3,  2,  2,  3,  2,  2,  3,  2,  4,  3,  2,  3,  2...
$ BYS51C   <dbl+lbl> -3,  1,  1,  3,  2,  1,  3,  2,  2,  3,  1,  3,  2...
$ BYS51D   <dbl+lbl> -3,  4,  4,  4,  2,  1,  4,  3,  3,  4,  3,  3,  2...
$ BYS51E   <dbl+lbl> -3,  1,  1,  4,  1,  1,  2,  1,  2,  2,  1,  2,  1...
$ BYS51F   <dbl+lbl> -3,  1,  1,  4,  1,  1,  1,  1,  1,  2,  1,  2,  1...
$ BYS51G   <dbl+lbl> -3,  2,  1, -9,  1,  1,  1,  1,  3,  1,  1,  2,  1...
$ BYS51H   <dbl+lbl> -3,  1,  1, -9,  1,  1,  1,  1,  3,  1,  1,  2,  1...
$ BYS51I   <dbl+lbl> -3,  1,  1, -9,  2,  1,  2,  2,  3,  2,  2,  3,  2...
$ BYS52    <dbl+lbl> -3,  2,  2,  1,  2,  1,  2,  2,  2,  2,  2,  2,  3...
$ BYS53A   <dbl+lbl> -3,  3,  2,  1,  2,  2,  1,  2,  3,  3,  2,  1,  3...
$ BYS53B   <dbl+lbl> -3,  4,  2,  2,  2,  2,  2,  4,  3,  3,  2,  1,  3...
$ BYS53C   <dbl+lbl> -3,  4,  4,  1,  2,  2,  2,  4,  3,  2,  2,  1,  3...
$ BYS54A   <dbl+lbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3,...
$ BYS54B   <dbl+lbl> 1, 3, 3, 3, 3, 3, 2, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3,...
$ BYS54C   <dbl+lbl> 1, 2, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 1,...
$ BYS54D   <dbl+lbl> 3, 3, 3, 3, 3, 2, 3, 3, 2, 1, 3, 3, 3, 3, 3, 2, 2,...
$ BYS54E   <dbl+lbl>  3,  3,  3,  3,  3,  3,  2, -9,  3,  3,  3,  3,  3...
$ BYS54F   <dbl+lbl> 3, 2, 2, 3, 3, 2, 2, 2, 1, 3, 2, 2, 3, 3, 2, 1, 2,...
$ BYS54G   <dbl+lbl> 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,...
$ BYS54H   <dbl+lbl> 1, 2, 2, 3, 3, 2, 3, 2, 2, 1, 2, 2, 3, 3, 2, 3, 2,...
$ BYS54I   <dbl+lbl> 3, 2, 2, 1, 3, 1, 1, 3, 2, 3, 2, 3, 3, 2, 1, 2, 1,...
$ BYS54J   <dbl+lbl> 2, 2, 2, 3, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 1, 1, 3,...
$ BYS54K   <dbl+lbl> 1, 2, 2, 3, 3, 1, 1, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2,...
$ BYS54L   <dbl+lbl> 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 2, 3,...
$ BYS54N   <dbl+lbl> 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 3,...
$ BYS54O   <dbl+lbl>  3,  3,  3,  3,  3,  3,  2, -9,  3,  3,  3,  3,  3...
$ BYS55A   <dbl+lbl>  1,  4,  4,  4,  4,  4,  3,  3,  2,  4,  4,  4,  4...
$ BYS55B   <dbl+lbl>  5,  4,  5,  1,  4,  1,  5,  4,  5,  4,  5,  4,  2...
$ BYS55C   <dbl+lbl>  1,  4,  1,  1,  4,  2,  2,  4,  2,  4,  4,  1,  2...
$ BYS55D   <dbl+lbl>  4,  1,  1,  1,  3,  2,  2,  1,  2,  4,  5,  1,  3...
$ BYS56    <dbl+lbl>  3,  7, -1,  5,  5,  4, -1,  6,  7,  6, -1,  6,  6...
$ BYS57    <dbl+lbl>  3,  1,  1,  1,  4,  1,  2,  1,  1,  1,  1,  1,  1...
$ BYS58    <dbl+lbl>  3,  1,  1,  2,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYS59A   <dbl+lbl>  1,  0,  1,  1,  1,  1,  0,  0,  1,  1,  1,  1,  0...
$ BYS59B   <dbl+lbl>  0,  0,  1,  0,  1,  0,  0,  0,  1,  1,  1,  1,  0...
$ BYS59C   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  1,  0...
$ BYS59D   <dbl+lbl>  0,  1,  0,  1,  1,  0,  0,  0,  1,  1,  0,  1,  0...
$ BYS59E   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  1,  1,  1...
$ BYS59F   <dbl+lbl>  0,  0,  0,  1,  1,  0,  0,  0,  0,  0,  0,  0,  1...
$ BYS59G   <dbl+lbl>  0,  0,  0,  1,  0,  0,  0,  0,  1,  0,  0,  1,  0...
$ BYS59H   <dbl+lbl>  1,  0,  1,  0,  1,  0,  0,  1,  1,  1,  1,  1,  0...
$ BYS59I   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0...
$ BYS59J   <dbl+lbl>  0,  0,  0,  0,  1,  0,  0,  1,  1,  1,  1,  0,  0...
$ BYS59K   <dbl+lbl>  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0...
$ BYS60    <dbl+lbl>  0,  0,  0,  1,  1,  1,  1,  1,  0,  1,  1,  1,  1...
$ BYS61    <dbl+lbl> -3, -3, -3,  1,  0,  1,  1,  1, -3,  1,  1,  1,  1...
$ BYS62A   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3...
$ BYS62B   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3...
$ BYS62C   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3...
$ BYS62D   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3...
$ BYS62E   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3...
$ BYS62F   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3...
$ BYS62G   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3...
$ BYS62H   <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3...
$ BYS65A   <dbl+lbl> -9,  7,  5,  3,  1, -9, -1,  5,  7,  7, -9,  6,  6...
$ BYS65B   <dbl+lbl>  3,  7,  5,  4,  1, -9, -1, -9,  7, -9,  5,  5,  6...
$ BYS66A   <dbl+lbl>  4,  1,  1,  1,  1,  6,  1,  1,  1,  4, -9,  1,  1...
$ BYS66B   <dbl+lbl>  6,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYS66C   <dbl+lbl>  3, -1, -1,  6,  1, -3, -1,  6,  1,  6,  1,  1,  1...
$ BYS66D   <dbl+lbl>  3,  1, -1,  1,  1, -9,  1,  1,  1, -1,  1,  1,  1...
$ BYS66E   <dbl+lbl>  1, -1, -1,  1, -9, -3,  1,  1,  1,  1,  1,  1,  1...
$ BYS66F   <dbl+lbl>  1,  1, -1,  1,  1, -3,  1,  1,  1,  1,  1,  1, -3...
$ BYS66G   <dbl+lbl> -3, -3, -1,  1, -3, -9,  1,  1, -3, -1,  1,  1, -3...
$ BYS67    <dbl+lbl> 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,...
$ BYS69A   <dbl+lbl> -3,  4, -3, -3,  4,  2, -3, -3, -3, -3, -3,  3, -3...
$ BYS69B   <dbl+lbl> -3,  2, -3, -3,  4,  2, -3, -3, -3, -3, -3,  2, -3...
$ BYS69C   <dbl+lbl> -3,  2, -3, -3,  4,  2, -3, -3, -3, -3, -3,  2, -3...
$ BYS69D   <dbl+lbl> -3,  1, -3, -3,  2,  2, -3, -3, -3, -3, -3,  4, -3...
$ BYS70A   <dbl+lbl> -3,  1, -3, -3,  1,  1, -3, -3, -3, -3, -3,  1, -3...
$ BYS70B   <dbl+lbl> -3,  1, -3, -3,  1,  1, -3, -3, -3, -3, -3,  1, -3...
$ BYS70C   <dbl+lbl> -3,  1, -3, -3,  1,  1, -3, -3, -3, -3, -3,  1, -3...
$ BYS70D   <dbl+lbl> -3,  1, -3, -3,  1,  1, -3, -3, -3, -3, -3,  1, -3...
$ BYS71A   <dbl+lbl>  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,  1,  1...
$ BYS71B   <dbl+lbl>  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0...
$ BYS71C   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0...
$ BYS71D   <dbl+lbl>  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0...
$ BYS71E   <dbl+lbl>  0,  1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0...
$ BYS71F   <dbl+lbl>  0,  0,  1,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0...
$ BYS71G   <dbl+lbl>  1,  0,  0,  1,  0,  1,  0,  1,  1,  0,  1,  0,  0...
$ BYS72    <dbl+lbl>  2,  1,  1,  1,  2,  1,  2,  1,  3,  3,  1,  1,  2...
$ BYS73    <dbl+lbl>     -3,     -3,     -3,     -3,     -3,     -3,   ...
$ BYS74    <dbl+lbl> 200203,     -3,     -3,     -3, 200105,     -3, 20...
$ BYS75    <dbl+lbl> 27, -3, -3, -3, 14, -3,  5, -3, -9, -9, -3, -3, 29...
$ BYS76    <dbl+lbl> 17, -3, -3, -3, 15, -3,  0, -3, -9, -9, -3, -3, 14...
$ BYS77    <dbl+lbl>  1, -3, -3, -3,  4, -3, -9, -3, -6,  9, -3, -3,  3...
$ BYS79    <dbl+lbl>  3, -3, -3, -3,  3, -3,  1, -3, -6,  1, -3, -3,  7...
$ BYS80    <dbl+lbl>  3, -3, -3, -3,  2, -3,  3, -3,  3,  3, -3, -3,  3...
$ BYS83A   <dbl+lbl>  2,  5,  2,  2,  1, -9, -1, -1, -1,  2, -1,  6,  2...
$ BYS83B   <dbl+lbl>  4,  7,  4,  2,  1, -9, -1, -1, -1,  2, -1,  2,  5...
$ BYS84A   <dbl+lbl> 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1,...
$ BYS84B   <dbl+lbl> 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0,...
$ BYS84C   <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$ BYS84D   <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,...
$ BYS84E   <dbl+lbl>  1,  1,  1,  1,  0,  1,  0,  1,  1,  0,  1,  1,  1...
$ BYS84F   <dbl+lbl> 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0,...
$ BYS84G   <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,...
$ BYS84H   <dbl+lbl> 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0,...
$ BYS84I   <dbl+lbl> 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$ BYS84J   <dbl+lbl> 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0,...
$ BYS85A   <dbl+lbl>  4,  4,  4,  4,  4,  4,  2,  4,  4,  4,  2,  4,  2...
$ BYS85B   <dbl+lbl>  3,  4,  2,  4,  4,  4,  3,  2,  4,  3,  2,  4,  2...
$ BYS85C   <dbl+lbl>  3,  4,  3,  4,  4,  4,  4,  2,  4,  4,  4,  4,  3...
$ BYS85D   <dbl+lbl>  3,  4, -9, -9,  2,  4,  4,  2,  4,  2,  3,  4,  2...
$ BYS85E   <dbl+lbl>  3,  2,  3, -9,  4,  4,  4,  3,  4,  3,  4,  4,  3...
$ BYS85F   <dbl+lbl>  2,  2,  3,  2,  2,  1,  3,  2,  3,  1,  3,  1,  1...
$ BYS85G   <dbl+lbl>  3,  3,  4,  2,  3,  3,  4,  2,  4,  4,  3,  1,  3...
$ BYS86A   <dbl+lbl>  2,  3,  1,  3,  2,  1,  3,  2,  3,  3,  2,  2,  2...
$ BYS86B   <dbl+lbl>  2,  2,  2,  3,  2,  1,  3,  3,  3,  2,  2,  2,  2...
$ BYS86C   <dbl+lbl>  2,  3,  2,  3,  2, -9,  3,  3,  3,  2,  2,  2,  1...
$ BYS86D   <dbl+lbl>  3,  2,  2,  3,  3, -9,  3,  3,  3,  3,  2,  2,  2...
$ BYS86E   <dbl+lbl>  1,  1,  1,  1,  2, -9,  1,  1,  2,  2,  1,  1,  1...
$ BYS86F   <dbl+lbl>  1,  3,  1,  1,  2, -9,  2,  3,  3,  2,  2,  2,  1...
$ BYS86G   <dbl+lbl>  2,  3,  2,  3,  2,  3,  3,  3,  3,  3,  2,  3,  3...
$ BYS86H   <dbl+lbl>  2,  2,  2,  2,  2,  1,  1,  3,  1,  1,  1,  2,  1...
$ BYS86I   <dbl+lbl>  2,  1,  2,  3,  2,  1,  2,  2,  3,  3, -9,  3,  2...
$ BYS87A   <dbl+lbl>  3,  2,  3,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2...
$ BYS87B   <dbl+lbl>  3,  2,  1,  2,  2,  2,  3,  3,  2,  3,  3,  2,  3...
$ BYS87C   <dbl+lbl>  3,  2,  3,  2,  2,  2,  3,  3,  3,  3,  3,  2,  3...
$ BYS87D   <dbl+lbl>  3,  2,  1,  2,  2,  3,  3,  3,  2,  2, -9,  2,  3...
$ BYS87E   <dbl+lbl>  2,  2,  1,  2,  2, -9,  2,  2,  2,  2,  1,  2,  2...
$ BYS87F   <dbl+lbl>  3,  2,  3,  1,  2,  1,  3,  1,  2,  1,  2,  2,  2...
$ BYS88A   <dbl+lbl>  3,  1,  2,  1,  1,  1,  1,  2,  2,  1,  2,  2,  2...
$ BYS88B   <dbl+lbl>  2,  3,  3,  3,  2,  4,  4,  3,  3,  4,  3,  3,  4...
$ BYS89A   <dbl+lbl>  2,  4,  3,  4,  2,  2,  2,  4,  3,  4,  1,  2,  2...
$ BYS89B   <dbl+lbl>  1,  3,  2,  3,  2,  2,  1,  3,  3,  3,  2,  2,  2...
$ BYS89C   <dbl+lbl>  2,  3,  2,  3,  2,  4,  1,  3,  3,  3,  2,  2,  2...
$ BYS89D   <dbl+lbl>  1,  3,  2,  4,  3, -9,  2,  2,  3,  4,  2,  1,  3...
$ BYS89E   <dbl+lbl>  1,  3,  3,  4,  3,  3,  3,  3,  3,  4,  2,  1,  4...
$ BYS89F   <dbl+lbl>  1,  3,  2,  3,  3,  3,  2,  3,  3,  3,  2,  2,  3...
$ BYS89G   <dbl+lbl>  2,  3,  3,  4,  3,  3,  4,  2,  3,  3,  3,  1,  4...
$ BYS89H   <dbl+lbl>  1,  3,  2,  4,  3,  3,  3,  2,  3,  4,  2,  1,  4...
$ BYS89I   <dbl+lbl>  3,  3,  2,  4,  3,  3,  3,  3,  3,  4,  3,  1,  4...
$ BYS89J   <dbl+lbl>  1,  4,  3,  4,  3,  3,  3,  2,  3,  4,  3,  1,  4...
$ BYS89K   <dbl+lbl>  3,  3,  2,  4,  3,  3,  2,  3,  3,  4,  3,  1,  4...
$ BYS89L   <dbl+lbl>  2,  4,  2,  3,  3,  3,  2,  3,  3,  3,  2,  1,  2...
$ BYS89M   <dbl+lbl>  2,  3,  2,  4,  3,  3,  2,  3,  3,  3,  3,  1,  4...
$ BYS89N   <dbl+lbl>  3,  3,  3,  4,  3,  3,  3,  4,  3,  3,  2,  1,  4...
$ BYS89O   <dbl+lbl>  2,  4,  3,  3,  3,  3,  3,  4,  3,  3,  2,  1,  3...
$ BYS89P   <dbl+lbl>  2,  4,  3,  4,  3,  3,  4,  2,  3,  4,  3,  1,  4...
$ BYS89Q   <dbl+lbl>  1,  3,  2,  1,  3,  3,  3,  4,  3,  3,  2,  1,  2...
$ BYS89R   <dbl+lbl>  2,  4,  3,  3,  3,  3,  3,  3,  3,  3,  2,  1,  3...
$ BYS89S   <dbl+lbl>  2,  3,  3,  4,  3,  3,  4,  3,  3,  3,  2,  1,  3...
$ BYS89T   <dbl+lbl>  2,  3,  3, -9,  3, -9,  3,  4,  3,  3,  2,  1,  3...
$ BYS89U   <dbl+lbl>  1,  4,  2,  4,  3, -9,  3,  3,  3,  3,  1,  1,  3...
$ BYS89V   <dbl+lbl>  2,  3,  3,  4,  3, -9,  4,  2,  3,  4,  3,  1,  4...
$ BYS90A   <dbl+lbl>  2,  3,  2,  3,  3,  3,  3,  2,  3,  2,  2,  3,  3...
$ BYS90B   <dbl+lbl>  2,  3,  2,  3,  3,  3,  2,  2,  3,  2,  2,  2,  3...
$ BYS90C   <dbl+lbl>  3,  1,  1,  2,  3,  3,  2,  3,  1,  2,  2,  3,  2...
$ BYS90D   <dbl+lbl>  2,  2,  2,  3,  3,  3,  3,  2,  3,  3,  2,  3,  2...
$ BYS90E   <dbl+lbl>  2,  3,  1,  3,  3,  3,  2,  3,  1,  1,  2,  2,  1...
$ BYS90F   <dbl+lbl>  3,  3,  3,  3,  3,  3,  3,  2,  3,  3,  2,  3,  3...
$ BYS90G   <dbl+lbl>  2,  3,  1,  3,  1,  1,  2,  2,  1,  1,  2,  3,  2...
$ BYS90H   <dbl+lbl>  2,  3,  2,  2,  3,  3,  3,  2,  3,  3,  2,  3,  3...
$ BYS90J   <dbl+lbl>  1,  2,  2,  2,  3,  3,  2,  2,  1,  1,  2,  2,  2...
$ BYS90K   <dbl+lbl>  3,  2,  2,  3,  3,  3,  2,  2,  1,  2,  2,  3,  3...
$ BYS90L   <dbl+lbl>  3,  3,  2,  3,  2,  3,  3,  3,  2,  2,  2,  3,  3...
$ BYS90M   <dbl+lbl>  3,  3,  2,  3,  1, -9,  3,  3,  1,  1,  2,  3,  3...
$ BYS90Q   <dbl+lbl>  3,  3,  2,  3,  2,  3,  2,  3,  1,  2,  2,  3,  3...
$ BYS91    <dbl+lbl>  2,  2,  1,  1,  1,  1,  1,  1,  1,  1,  1,  2,  1...
$ BYS92A   <dbl+lbl>  1,  2,  1,  1,  3,  1,  2,  1,  2,  2,  2,  1,  1...
$ BYS92B   <dbl+lbl>  4,  3,  2,  2,  3,  1,  2,  3,  2,  3,  2,  3,  4...
$ BYS92C   <dbl+lbl>  1,  2,  2,  1,  3,  1,  1,  1,  2,  2,  2,  2,  3...
$ BYS92D   <dbl+lbl>  1,  2, -9,  3,  3,  3,  3,  4,  2,  2,  1,  1,  1...
$ BYS94    <dbl+lbl>  1,  1,  1,  1,  0,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYS96    <dbl+lbl>  0,  1,  0,  1,  1,  1,  1,  1,  0,  0,  1,  1,  0...
$ BYS97A   <dbl+lbl> -3,  1, -3,  1,  0,  1,  1,  1, -3, -3,  1,  1, -3...
$ BYS97B   <dbl+lbl> -3,  0, -3,  0,  1,  0,  0,  0, -3, -3,  0,  0, -3...
$ BYS97C   <dbl+lbl> -3,  0, -3,  0,  0,  0,  0,  0, -3, -3,  0,  0, -3...
$ BYS97D   <dbl+lbl> -3,  0, -3,  0,  0,  0,  0,  0, -3, -3,  0,  0, -3...
$ BYS97E   <dbl+lbl> -3,  0, -3,  0,  0,  0,  0,  0, -3, -3,  0,  0, -3...
$ BYP01    <dbl+lbl>  2,  2,  1, -4,  1,  1,  1,  1,  2,  1,  2,  1,  1...
$ BYP02    <dbl+lbl> -3, -3, -3, -4, -3, -3, -3, -3, -3, -3, -3, -3, -3...
$ BYP03    <dbl+lbl>  1, -9,  1, -4,  1, -9,  1,  1,  1,  1,  1,  0,  1...
$ BYP04    <dbl+lbl>  5,  1,  2, -4,  2, -9,  2,  2,  1,  2,  5, -3,  2...
$ BYP05    <dbl+lbl>  1,  1,  1, -4,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYP06    <dbl+lbl>  1,  8,  2, -4,  3,  3, -7,  4,  2, -7,  3,  2,  5...
$ BYP07A   <dbl+lbl>  0, -9,  1, -4,  1,  1, -7,  2,  0, -7,  1,  0, -9...
$ BYP07B   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,  0, -9...
$ BYP07C   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,  0, -9...
$ BYP07D   <dbl+lbl>  0, -9,  0, -4,  2,  1, -7,  1,  1, -7,  1,  1, -9...
$ BYP07E   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,  0, -9...
$ BYP07F   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,  0, -9...
$ BYP07G   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  2, -7,  0,  0, -9...
$ BYP07H   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,  0, -9...
$ BYP07I   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,  0, -9...
$ BYP07J   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  1,  0, -9...
$ BYP07K   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,  0, -9...
$ BYP07L   <dbl+lbl>  0, -9,  0, -4,  0,  0, -7,  0,  0, -7,  0,  0, -9...
$ BYP08    <dbl+lbl>  6,  5,  1, -4,  5,  2, -7,  3,  2, -7,  2,  5,  4...
$ BYP09    <dbl+lbl>  3,  0, -1, -4,  0,  0, -7,  0,  0, -7,  0,  0,  0...
$ BYP10    <dbl+lbl>  1,  1,  1, -4,  1,  2,  1,  1,  1,  1,  1,  5,  1...
$ BYP11    <dbl+lbl> 1959, 1953, 1965,   -4, 1964, 1970, 1962, 1955, 19...
$ BYP12    <dbl+lbl> 1945, 1964, 1963,   -4, 1955, 1966, 1960, 1955, 19...
$ BYP13    <dbl+lbl>  0,  0,  0, -4,  1,  1,  1,  0,  1,  0,  0,  1,  0...
$ BYP17    <dbl+lbl>  2,  3,  1, -4,  2,  1,  2,  1,  2,  1, -1,  1,  1...
$ BYP18    <dbl+lbl> 25, 13, -3, -4, 30, -3, -7, -3, 21, -3, -3, -3, -3...
$ BYP20    <dbl+lbl>  1,  3,  1, -4,  2,  1,  1,  1,  2,  1, -1,  2,  1...
$ BYP21    <dbl+lbl> -3, 13, -3, -4, 40, -3, -3, -3, 43, -3, -3, 36, -3...
$ BYP23    <dbl+lbl>  1,  3,  1, -4,  1,  1,  1,  1,  1,  1,  3,  1,  1...
$ BYP24    <dbl+lbl> -3,  2, -3, -4, -3, -3, -3, -3, -3, -3, 11, -3, -3...
$ BYP25    <dbl+lbl>  0,  0,  0, -4,  0,  0, -7,  0,  0, -7,  0,  0,  0...
$ BYP26A   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP26B   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP26C   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP26D   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP26E   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP26F   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP26G   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP26H   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP26I   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP26J   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP26K   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP26L   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP27    <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP28    <dbl+lbl>  1,  0,  1, -4,  0,  1,  0,  1,  0,  1,  1,  1,  1...
$ BYP30A   <dbl+lbl> -3,  3, -3, -4,  4, -3, -7, -3,  4, -3, -3, -3, -3...
$ BYP30B   <dbl+lbl> -3,  1, -3, -4,  4, -3, -7, -3,  2, -3, -3, -3, -3...
$ BYP30C   <dbl+lbl> -3,  2, -3, -4,  4, -3, -7, -3,  4, -3, -3, -3, -3...
$ BYP30D   <dbl+lbl> -3,  2, -3, -4,  4, -3, -7, -3,  4, -3, -3, -3, -3...
$ BYP31A   <dbl+lbl> -3,  1, -3, -4,  2, -3, -7, -3,  1, -3, -3, -3, -3...
$ BYP31B   <dbl+lbl> -3,  1, -3, -4,  2, -3, -7, -3,  1, -3, -3, -3, -3...
$ BYP31C   <dbl+lbl> -3,  1, -3, -4,  2, -3, -7, -3,  3, -3, -3, -3, -3...
$ BYP31D   <dbl+lbl> -3,  1, -3, -4,  2, -3, -7, -3,  4, -3, -3, -3, -3...
$ BYP32A   <dbl+lbl> -3,  0, -3, -4,  0, -3, -7, -3,  1, -3, -3, -3, -3...
$ BYP32B   <dbl+lbl> -3,  0, -3, -4,  0, -3, -7, -3,  1, -3, -3, -3, -3...
$ BYP32C   <dbl+lbl> -3,  0, -3, -4,  0, -3, -7, -3,  0, -3, -3, -3, -3...
$ BYP32D   <dbl+lbl> -3,  0, -3, -4,  0, -3, -7, -3,  0, -3, -3, -3, -3...
$ BYP32E   <dbl+lbl> -3,  0, -3, -4,  0, -3, -7, -3,  0, -3, -3, -3, -3...
$ BYP33    <dbl+lbl>  6,  8, -1, -4,  1,  2, -7,  1,  1, -7,  2,  1, 11...
$ BYP34A   <dbl+lbl>  5,  5,  2, -4,  1,  2,  6,  2,  1,  1,  4,  4,  3...
$ BYP34B   <dbl+lbl>  1, -9,  2, -4,  1,  1,  3,  2,  2,  1,  6, -3,  4...
$ BYP35A   <dbl+lbl>  1,  1,  1, -4, -1, -2, -7,  2,  1, -7, -1,  2,  2...
$ BYP35B   <dbl+lbl>  2,  7,  1, -4,  2, -2, -7,  2,  1, -7, -1,  1,  4...
$ BYP35C   <dbl+lbl> -1,  1,  2, -4, -1, -2, -7,  2, -1, -7, -1, -3, -9...
$ BYP35D   <dbl+lbl> -1,  8,  2, -4, -1, -2, -7,  2, -1, -7, -1, -3, -9...
$ BYP36    <dbl+lbl>  1,  1,  1, -4,  3,  3,  1,  3,  1,  1,  1,  1,  1...
$ BYP37    <dbl+lbl> -3, -3, -3, -4,  2,  2, -3,  1, -3, -3, -3, -3, -3...
$ BYP38    <dbl+lbl>  1,  1,  1, -4,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYP39C   <dbl+lbl>  6,  9,  5, -4,  8,  5, 14,  1, -9,  9,  7, 14, 15...
$ BYP40    <dbl+lbl>  1,  3,  1, -4,  1,  3,  1,  1,  1,  3, -3, -3,  3...
$ BYP41    <dbl+lbl> -3, -9, -3, -4, -3,  1, -3, -3, -3,  4, -3, -3,  3...
$ BYP42    <dbl+lbl>  1,  0,  1, -4,  1,  1,  1,  1,  1,  1, -3, -3,  1...
$ BYP43C   <dbl+lbl>  8, -3,  5, -4,  5,  8, 15, 12,  5,  5, -3, -3, 15...
$ BYP44A   <dbl+lbl>  0,  1,  0, -4,  0,  0, -7,  1,  0, -7,  0,  1, -9...
$ BYP44B   <dbl+lbl>  1,  1,  1, -4,  0,  0, -7,  1,  1, -7,  1,  1, -9...
$ BYP44C   <dbl+lbl>  0,  0,  0, -4,  1,  0, -7,  0,  0, -7,  0,  0, -9...
$ BYP44D   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,  1, -9...
$ BYP45    <dbl+lbl>  4,  0,  2, -4,  0,  0, -7,  2,  0, -7,  4,  0,  3...
$ BYP46    <dbl+lbl>  0,  0,  0, -4,  0,  0, -7,  0,  0, -7,  0,  0,  1...
$ BYP47A   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3,  0...
$ BYP47B   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3,  1...
$ BYP47C   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3,  0...
$ BYP48A   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3,  0...
$ BYP48B   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3,  0...
$ BYP48C   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3,  0...
$ BYP48D   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3,  1...
$ BYP48E   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3,  0...
$ BYP48F   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3,  0...
$ BYP48G   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3,  0...
$ BYP48H   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3,  0...
$ BYP48I   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3,  0...
$ BYP48J   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3,  0...
$ BYP48K   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3,  0...
$ BYP49    <dbl+lbl>  0,  0,  0, -4,  0,  0, -7,  0,  0, -7,  0,  0,  0...
$ BYP50A   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP50B   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP50C   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP50D   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP50E   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP50F   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP50G   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP50H   <dbl+lbl> -3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3, -3, -3...
$ BYP51    <dbl+lbl>  0,  0,  0, -4,  0,  0, -7,  0,  0, -7,  0,  0,  0...
$ BYP52A   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  2,  2, -7,  1,  2,  1...
$ BYP52B   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  3,  1, -7,  3,  1,  1...
$ BYP52C   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  2,  1,  1...
$ BYP52D   <dbl+lbl>  2,  1,  1, -4,  1,  1, -7,  1,  1, -7,  2,  1,  1...
$ BYP52E   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,  1,  2...
$ BYP52F   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,  1,  1...
$ BYP52G   <dbl+lbl>  1,  1, -1, -4,  1,  1, -7,  1,  4, -7,  1,  2,  2...
$ BYP52H   <dbl+lbl>  1,  2,  1, -4,  1,  1, -7,  1,  1, -7,  1,  1,  2...
$ BYP52I   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,  1,  2...
$ BYP52J   <dbl+lbl>  1,  1,  2, -4,  2,  1, -7,  1,  1, -7,  2,  2,  2...
$ BYP53A   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  2,  1, -7,  1,  3,  1...
$ BYP53B   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  2,  1, -7,  3,  2, -9...
$ BYP53C   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  2,  1, -7,  2,  2, -9...
$ BYP53D   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  2,  1, -7,  2,  2, -9...
$ BYP53E   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  2,  1, -7,  1,  1, -9...
$ BYP53F   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  2,  2, -7,  1,  1, -9...
$ BYP53G   <dbl+lbl>  1,  2,  1, -4,  1,  1, -7,  2,  1, -7,  1,  2, -9...
$ BYP53H   <dbl+lbl>  1,  2,  1, -4,  1,  1, -7,  2,  1, -7,  1,  2, -9...
$ BYP53I   <dbl+lbl>  1,  2,  1, -4,  1,  1, -7,  2,  1, -7,  1,  3, -9...
$ BYP53J   <dbl+lbl>  1,  1,  2, -4,  1,  1, -7,  2,  1, -7,  2,  2, -9...
$ BYP54A   <dbl+lbl>  0,  0,  0, -4,  0,  0, -7,  0,  0, -7,  0,  1,  0...
$ BYP54B   <dbl+lbl>  0,  1,  0, -4,  1,  0, -7,  0,  0, -7,  0,  1, -9...
$ BYP54C   <dbl+lbl>  0,  1,  0, -4,  0,  0, -7,  0,  0, -7,  0,  1, -9...
$ BYP54D   <dbl+lbl>  0,  1,  0, -4,  0,  0, -7,  0,  0, -7,  0,  1, -9...
$ BYP54E   <dbl+lbl>  1,  0,  0, -4,  0,  0, -7,  0,  0, -7,  0,  1,  1...
$ BYP55A   <dbl+lbl>  3,  2,  4, -4,  4,  2, -7,  4,  4, -7,  2,  3,  3...
$ BYP55B   <dbl+lbl>  4,  2,  4, -4,  4,  4, -7,  4,  4, -7,  4,  4,  4...
$ BYP55C   <dbl+lbl>  4,  3,  4, -4,  4,  4, -7,  4,  4, -7,  3,  4, -9...
$ BYP55D   <dbl+lbl>  4,  1,  4, -4,  4,  4, -7,  4,  4, -7,  4,  4,  4...
$ BYP56A   <dbl+lbl>  2,  3, -1, -4,  3,  3, -7,  3,  3, -7,  1,  3,  2...
$ BYP56B   <dbl+lbl>  2,  3,  2, -4,  3,  3, -7,  3,  3, -7,  1,  2,  2...
$ BYP56C   <dbl+lbl>  2,  2, -1, -4,  3,  3, -7,  2,  3, -7,  2,  1,  2...
$ BYP56D   <dbl+lbl>  3,  3,  1, -4,  3,  3, -7,  2,  1, -7,  2,  2,  2...
$ BYP56E   <dbl+lbl>  2,  3,  1, -4,  1,  3, -7,  2,  2, -7,  1,  2,  2...
$ BYP56F   <dbl+lbl>  2,  2,  3, -4,  1,  3, -7,  2,  1, -7,  1,  3,  2...
$ BYP57A   <dbl+lbl>  2,  4,  1, -4,  4,  4, -7,  3,  3, -7,  3,  3,  3...
$ BYP57B   <dbl+lbl>  2,  4,  1, -4,  4,  4, -7,  3,  4, -7,  3,  3,  3...
$ BYP57C   <dbl+lbl>  1,  4,  3, -4,  4,  4, -7,  1,  3, -7,  3,  3,  3...
$ BYP57D   <dbl+lbl>  4,  3,  1, -4,  2,  4, -7,  3,  2, -7,  1,  2,  3...
$ BYP57E   <dbl+lbl>  4,  3,  1, -4,  4,  4, -7,  3,  4, -7,  1,  4,  3...
$ BYP57F   <dbl+lbl>  4,  4,  4, -4,  4,  4, -7,  3,  2, -7,  1,  3,  3...
$ BYP57G   <dbl+lbl>  3,  2,  4, -4,  4,  4, -7,  2,  2, -7,  3,  2,  3...
$ BYP57H   <dbl+lbl>  3,  2,  1, -4,  2,  4, -7,  1,  4, -7,  1,  3,  3...
$ BYP57I   <dbl+lbl>  4,  4,  4, -4,  4,  4, -7,  3,  3, -7,  1,  3,  3...
$ BYP57J   <dbl+lbl>  4,  3,  3, -4,  4,  4, -7,  3,  3, -7,  1,  3,  3...
$ BYP57K   <dbl+lbl>  4,  3,  4, -4,  4,  4, -7,  4,  4, -7,  1,  3,  3...
$ BYP57L   <dbl+lbl>  3,  3,  3, -4,  4,  4, -7,  4,  3, -7,  1,  3,  3...
$ BYP58A   <dbl+lbl>  1,  2,  2, -4,  2,  2, -7,  2,  1, -7,  2,  2,  2...
$ BYP58B   <dbl+lbl>  4,  3,  2, -4,  2,  3, -7,  3,  2, -7,  3,  3,  3...
$ BYP59BA  <dbl+lbl>  0,  1,  1, -4,  0,  1, -7,  1,  1, -7,  1,  1,  1...
$ BYP59CA  <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,  1,  1...
$ BYP59DA  <dbl+lbl>  1,  1,  1, -4,  1,  0, -7,  1,  1, -7,  0,  1,  1...
$ BYP59EA  <dbl+lbl>  1,  1,  1, -4,  1,  0, -7,  1,  1, -7,  0,  1,  0...
$ BYP59BB  <dbl+lbl>  1,  1,  1, -4, -3,  1, -7,  1, -3, -7,  1,  1,  1...
$ BYP59CB  <dbl+lbl>  1,  1,  1, -4, -3,  1, -7,  1, -3, -7,  1,  1,  1...
$ BYP59DB  <dbl+lbl>  1,  1,  1, -4, -3,  1, -7,  1, -3, -7,  0,  1,  1...
$ BYP59EB  <dbl+lbl>  0,  1,  1, -4, -3,  1, -7,  1, -3, -7,  0,  0,  0...
$ BYP59BC  <dbl+lbl>  0, -3,  1, -4, -3,  1, -7,  1, -3, -7,  1,  1,  1...
$ BYP59CC  <dbl+lbl>  1, -3,  1, -4, -3,  1, -7,  1, -3, -7,  0,  1,  1...
$ BYP59DC  <dbl+lbl>  1, -3,  1, -4, -3,  0, -7,  0, -3, -7,  0,  0,  1...
$ BYP59EC  <dbl+lbl>  1, -3,  1, -4, -3,  1, -7,  0, -3, -7,  0,  0,  1...
$ BYP60A   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,  2,  2...
$ BYP60B   <dbl+lbl>  4,  1,  1, -4,  1,  1, -7,  2,  1, -7,  1,  4,  2...
$ BYP60C   <dbl+lbl>  4,  2,  1, -4,  3,  1, -7,  2,  1, -7,  1,  4,  2...
$ BYP60D   <dbl+lbl>  1,  1,  2, -4,  3,  2, -7,  1,  1, -7,  2,  1,  2...
$ BYP61    <dbl+lbl>  1,  0,  0, -4,  0,  0, -7,  0,  0, -7,  0,  1,  0...
$ BYP62    <dbl+lbl>  1, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,  1, -3...
$ BYP63    <dbl+lbl>  3, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,  2, -3...
$ BYP64A   <dbl+lbl>  0, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,  0, -3...
$ BYP64B   <dbl+lbl>  0, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,  0, -3...
$ BYP64C   <dbl+lbl>  1, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,  0, -3...
$ BYP64D   <dbl+lbl>  0, -3, -3, -4, -3, -3, -7, -3, -3, -7, -3,  1, -3...
$ BYP65    <dbl+lbl> 13,  6, 17, -4, 23,  0, -7, 14, 19, -7,  6,  1,  7...
$ BYP66    <dbl+lbl>  1,  1, -1, -4,  1,  1, -7,  1,  2, -7,  2,  1,  2...
$ BYP67    <dbl+lbl>  2,  3,  3, -4,  3,  3, -7,  3,  3, -7,  3,  3,  3...
$ BYP68    <dbl+lbl>  2,  1,  1, -4,  3,  1, -7,  1,  1, -7,  2,  1,  2...
$ BYP69A   <dbl+lbl>  1,  1,  1, -4,  0,  1, -7,  1,  0, -7,  1,  1,  1...
$ BYP69B   <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,  1,  1...
$ BYP69C   <dbl+lbl>  1,  0, -1, -4,  1,  1, -7,  1,  1, -7,  1,  1,  1...
$ BYP69D   <dbl+lbl>  1,  1, -1, -4,  0,  1, -7,  0,  1, -7,  1,  1,  0...
$ BYP70    <dbl+lbl>  5,  2,  6, -4,  7,  5,  5,  4,  2,  7,  4,  5,  3...
$ BYP71    <dbl+lbl>  1,  1,  1, -4,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYP72    <dbl+lbl>  1,  1,  1, -4,  1,  1, -7,  1,  1, -7,  1,  1,  1...
$ BYP73    <dbl+lbl>  3, -6,  3, -4,  1,  3, -7,  3,  3, -7,  3,  1,  1...
$ BYP74A   <dbl+lbl> -3,  1, -3, -4,  1, -3, -7, -3, -3, -7, -3,  4,  2...
$ BYP74B   <dbl+lbl> -3,  1, -3, -4,  3, -3, -7, -3, -3, -7, -3,  5,  2...
$ BYP74C   <dbl+lbl> -3,  1, -3, -4,  5, -3, -7, -3, -3, -7, -3,  2,  2...
$ BYP74D   <dbl+lbl> -3,  2, -3, -4,  3, -3, -7, -3, -3, -7, -3,  2,  4...
$ BYP74E   <dbl+lbl> -3,  2, -3, -4,  1, -3, -7, -3, -3, -7, -3,  3,  2...
$ BYP75    <dbl+lbl> -1,  1,  1, -4,  0,  1, -7,  1,  1, -7,  0,  1,  1...
$ BYP76    <dbl+lbl> -3,  2,  1, -4, -3,  1, -7,  1,  3, -7, -3,  3,  1...
$ BYP77A   <dbl+lbl>  2,  3,  4, -4,  2,  1, -7,  3,  2, -7,  3,  3,  3...
$ BYP77B   <dbl+lbl>  4,  2,  1, -4,  2,  1, -7,  2,  1, -7,  2,  2,  2...
$ BYP77C   <dbl+lbl>  3,  3,  1, -4,  2,  1, -7,  2,  1, -7,  2,  2,  1...
$ BYP77D   <dbl+lbl>  2,  2,  1, -4,  2,  3, -7,  2,  1, -7,  2,  3,  2...
$ BYP77E   <dbl+lbl>  2,  2,  1, -4,  3,  1, -7,  2,  1, -7,  2,  2,  1...
$ BYP77F   <dbl+lbl>  2,  2,  2, -4,  2,  2, -7,  2,  1, -7,  2,  4,  3...
$ BYP77G   <dbl+lbl>  2,  4,  2, -4,  2,  1, -7,  2,  1, -7,  2,  4,  2...
$ BYP77H   <dbl+lbl>  2,  4,  2, -4,  2,  1, -7,  2,  4, -7,  2, -1,  1...
$ BYP77I   <dbl+lbl>  2,  4,  2, -4,  2,  1, -7,  2,  1, -7,  2,  2,  3...
$ BYP77J   <dbl+lbl>  3, -1, -1, -4,  3,  3, -7,  3,  3, -7,  4, -1,  4...
$ BYP77K   <dbl+lbl>  3, -1, -1, -4,  2,  3, -7, -1,  3, -7,  4, -1, -1...
$ BYP77L   <dbl+lbl>  2, -1,  2, -4,  2,  3, -7, -1,  3, -7,  4, -1, -1...
$ BYP77M   <dbl+lbl>  2, -1,  2, -4,  2,  3, -7,  2,  3, -7,  2,  1,  3...
$ BYP77N   <dbl+lbl>  3, -1,  2, -4,  2,  3, -7,  3,  3, -7,  3,  2,  3...
$ BYP77O   <dbl+lbl>  3,  4,  3, -4,  2,  1, -7,  3,  3, -7,  2,  2,  3...
$ BYP78    <dbl+lbl>  2,  2,  1, -4,  2,  2,  1,  1,  1,  2,  2,  2,  1...
$ BYP79    <dbl+lbl>  5,  7,  7, -4,  2,  3,  5,  5,  5,  2,  5,  3,  6...
$ BYP80A   <dbl+lbl>  3,  2,  2, -4, -3,  1, -7,  2,  1, -3,  1,  1,  1...
$ BYP80B   <dbl+lbl>  2,  1,  2, -4, -3,  1, -7,  2,  1, -3,  1,  1,  1...
$ BYP80C   <dbl+lbl>  2,  1,  2, -4, -3,  1, -7,  2,  1, -3,  1,  1,  1...
$ BYP80D   <dbl+lbl>  3,  2,  3, -4, -3,  1, -7,  2,  1, -3,  2,  1,  2...
$ BYP80E   <dbl+lbl>  3,  3,  3, -4, -3,  2, -7,  2,  1, -3,  2,  1,  3...
$ BYP80F   <dbl+lbl>  2,  2,  2, -4, -3,  1, -7,  2,  1, -3,  2,  1,  1...
$ BYP80G   <dbl+lbl>  2,  2,  3, -4, -3,  2, -7,  2,  3, -3,  2,  3,  2...
$ BYP80H   <dbl+lbl>  2,  3,  3, -4, -3,  3, -7,  2,  1, -3,  3,  1,  1...
$ BYP80I   <dbl+lbl>  1,  2,  1, -4, -3,  1, -7,  2,  1, -3,  1,  1,  1...
$ BYP80J   <dbl+lbl>  1,  2,  2, -4, -3,  1, -7,  2,  1, -3,  2,  1,  1...
$ BYP80K   <dbl+lbl>  1,  2,  2, -4, -3,  1, -7,  2,  1, -3,  2,  1,  1...
$ BYP80L   <dbl+lbl>  1,  2,  2, -4, -3,  1, -7,  2,  1, -3,  2,  1,  1...
$ BYP80M   <dbl+lbl>  3,  2,  2, -4, -3,  1, -7,  2,  1, -3,  2,  1,  1...
$ BYP80N   <dbl+lbl>  3,  2,  3, -4, -3,  2, -7,  2,  1, -3,  3,  1,  3...
$ BYP80O   <dbl+lbl>  3,  2,  3, -4, -3,  2, -7,  2,  1, -3,  2,  1,  3...
$ BYP81    <dbl+lbl>  2,  7,  6, -4,  5,  3, -7,  5,  5, -7,  5,  3,  6...
$ BYP82    <dbl+lbl> -3,  1,  0, -4,  0,  0, -7,  0,  1, -7,  0,  1, -9...
$ BYP83A   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  1, -7, -3,  1,  1...
$ BYP83B   <dbl+lbl> -3,  1, -3, -4, -3, -3, -7, -3,  1, -7, -3,  1,  1...
$ BYP83C   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  0, -7, -3,  0,  0...
$ BYP83D   <dbl+lbl> -3,  1, -3, -4, -3, -3, -7, -3,  0, -7, -3,  1,  1...
$ BYP83E   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  0, -7, -3,  0,  0...
$ BYP83F   <dbl+lbl> -3, -9, -3, -4, -3, -3, -7, -3,  0, -7, -3,  0,  1...
$ BYP83G   <dbl+lbl> -3,  1, -3, -4, -3, -3, -7, -3,  0, -7, -3,  1,  1...
$ BYP83H   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  0, -7, -3,  0,  1...
$ BYP83I   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  0, -7, -3,  1,  1...
$ BYP83J   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  0, -7, -3,  0,  0...
$ BYP83K   <dbl+lbl> -3,  1, -3, -4, -3, -3, -7, -3,  0, -7, -3,  0,  0...
$ BYP83L   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  0, -7, -3,  0,  1...
$ BYP83M   <dbl+lbl> -3,  0, -3, -4, -3, -3, -7, -3,  0, -7, -3,  0,  0...
$ BYP84    <dbl+lbl> -3,  4, -3, -4, -3, -3, -7, -3,  4, -7, -3,  5,  1...
$ BYP85    <dbl+lbl> 10, 11, 10, -4,  6, -9, 10, 10,  8, -9,  8,  8,  5...
$ BYP86    <dbl+lbl>  2,  1,  2, -4,  2, -2, -7,  1,  2, -7,  1,  1,  2...
$ BYP97    <dbl+lbl>  0,  0,  0, -4,  0,  0, -9,  0,  0, -9,  1,  0,  1...
$ BYP98A   <dbl+lbl> -3, -3, -3, -4, -3, -3, -9, -3, -3, -9,  1, -3,  1...
$ BYP98B   <dbl+lbl> -3, -3, -3, -4, -3, -3, -9, -3, -3, -9,  0, -3,  0...
$ BYP98C   <dbl+lbl> -3, -3, -3, -4, -3, -3, -9, -3, -3, -9,  0, -3,  0...
$ BYP98D   <dbl+lbl> -3, -3, -3, -4, -3, -3, -9, -3, -3, -9,  0, -3,  0...
$ BYP98E   <dbl+lbl> -3, -3, -3, -4, -3, -3, -9, -3, -3, -9,  0, -3,  0...
$ BYP99    <dbl+lbl> 200207, 200206, 200207,     -4, 200207, 200208, 20...
$ BYTE01   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYTE02   <dbl+lbl>  2,  2,  1,  1,  1,  1,  1,  2,  1,  1,  1,  1,  2...
$ BYTE03   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYTE04   <dbl+lbl>  0,  1,  1,  1,  1,  1,  0,  1,  0,  1,  1,  0,  0...
$ BYTE05   <dbl+lbl>  1,  1,  0,  1,  1,  1,  1,  1,  0,  1,  0,  0,  1...
$ BYTE06   <dbl+lbl>  0,  0,  1,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0...
$ BYTE07   <dbl+lbl>  1,  1,  0,  0,  0,  1,  1,  0,  1,  1,  0,  1,  1...
$ BYTE08A  <dbl+lbl>  1, -3,  0,  0,  0,  0,  1, -3,  0, -3,  0,  1,  1...
$ BYTE08B  <dbl+lbl> -3, -3,  0,  0,  0,  0,  0, -3, -3, -3,  1,  0, -3...
$ BYTE08C  <dbl+lbl>  1, -3,  0,  0,  0,  0,  1, -3,  0, -3,  0,  1,  1...
$ BYTE08D  <dbl+lbl>  1, -3,  0,  0,  0,  0,  0, -3, -3, -3,  0,  0, -3...
$ BYTE08E  <dbl+lbl>  1,  1,  0,  0,  1,  1,  0,  1,  0,  0,  0,  1,  1...
$ BYTE09   <dbl+lbl>  2,  2, -1,  3,  1,  2,  2,  2,  2,  1,  1,  2,  2...
$ BYTE10   <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  3,  2,  3,  2,  1,  3...
$ BYTE11   <dbl+lbl>  1,  0,  0,  0,  0,  0,  0,  0, -1,  0,  1,  0,  0...
$ BYTE12   <dbl+lbl>  1,  0,  1,  0,  0,  0,  0,  0,  1,  0,  0,  1,  1...
$ BYTE12A  <dbl+lbl>  0, -3,  0, -3, -3, -3, -3, -3,  0, -3, -3,  0,  0...
$ BYTE12B  <dbl+lbl>  0, -3,  0, -3, -3, -3, -3, -3,  0, -3, -3,  0,  0...
$ BYTE12C  <dbl+lbl>  0, -3,  0, -3, -3, -3, -3, -3,  0, -3, -3,  0,  0...
$ BYTE12D  <dbl+lbl>  1, -3,  1, -3, -3, -3, -3, -3,  1, -3, -3,  1,  1...
$ BYTE12E  <dbl+lbl>  1, -3,  0, -3, -3, -3, -3, -3,  1, -3, -3,  1,  1...
$ BYTE13   <dbl+lbl>  3,  5,  3,  4,  4, -9,  4,  4,  3,  4,  4,  4,  3...
$ BYTE14   <dbl+lbl>  2,  1,  2,  2,  2,  2,  2,  2,  3,  3,  2,  2,  2...
$ BYTE15   <dbl+lbl>  1,  1,  1,  1,  1,  3,  1,  1,  3,  1,  2,  1,  1...
$ BYTE16   <dbl+lbl>  4,  5,  3,  4,  4,  5,  4,  4,  2,  4,  3,  4,  4...
$ BYTE17   <dbl+lbl>  2,  1,  1,  2,  2,  1,  1,  1,  1,  1,  2,  1,  2...
$ BYTE18A  <dbl+lbl>  1, -3,  0, -3, -3, -3,  1, -3,  1, -3,  0,  0,  1...
$ BYTE18B  <dbl+lbl> -3, -3,  0, -3, -9, -3,  0, -3, -3, -3,  1,  0, -3...
$ BYTE19   <dbl+lbl> -3, -3,  1, -3,  0,  0,  0,  1,  0,  0,  0,  0, -3...
$ BYTE20   <dbl+lbl>  6,  6,  5,  3,  3,  3,  3,  5,  3,  5,  6,  3,  5...
$ BYTE21A  <dbl+lbl>  2,  2,  2,  3,  3,  3,  3,  2,  3,  3,  1,  3,  3...
$ BYTE21B  <dbl+lbl>  2,  2,  3,  3,  3,  4,  3,  2,  4,  3,  2,  3,  2...
$ BYTE21C  <dbl+lbl>  2,  2,  2,  3,  4,  4,  4,  3,  5,  4,  1,  3,  3...
$ BYTE21D  <dbl+lbl>  1,  1,  1,  4,  4,  4,  3,  2,  5,  5,  2,  2,  2...
$ BYTE22   <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2...
$ BYTE23   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYTE25   <dbl+lbl> 1942, 1942, 1950, 1976, 1959, 1965, 1953, 1947, 19...
$ BYTE26A  <dbl+lbl>  0,  0,  0,  0,  0,  1,  0,  2,  0,  0,  1, -9,  0...
$ BYTE26B  <dbl+lbl> 25, 25, 25,  3,  3,  4, 26,  5,  1,  1,  4, -9, 25...
$ BYTE26C  <dbl+lbl> 25, 25, 25,  3,  3,  5, 26,  7,  1,  1,  5, 21, 25...
$ BYTE27   <dbl+lbl> 25, 25, 27,  2,  3,  3,  5,  5,  1,  1,  3, 17, 25...
$ BYTE28   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYTE29   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  2,  2,  1,  1,  1...
$ BYTE30A  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYTE30B  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYTE30C  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYTE30D  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYTE30E  <dbl+lbl>  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0...
$ BYTE30F  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYTE30G  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYTE31A  <dbl+lbl>  1,  1,  1,  2,  1,  2, -9,  2,  2,  2,  2,  2,  1...
$ BYTE31B  <dbl+lbl>  2,  2,  2,  1, -3,  1, -9,  1,  1,  1,  1,  1,  2...
$ BYTE32A  <dbl+lbl> -3, -3, -3, -3, -3, -3, 10, -3, -3, -3, -3, -3, -3...
$ BYTE32B  <dbl+lbl> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3...
$ BYTE33A  <dbl+lbl>  5,  5, -9,  5,  3,  5,  5,  5,  5,  5,  5,  5,  5...
$ BYTE33B  <dbl+lbl>  5,  5,  5, -3, -3,  2,  2,  2, -3, -3,  2,  2,  5...
$ BYTE34   <dbl+lbl>  1,  1,  3,  1,  1,  1,  4,  1,  1,  1,  1,  4,  1...
$ BYTE35A  <dbl+lbl>  5,  5,  5,  4,  4,  5,  5,  4,  6,  6,  5,  4,  5...
$ BYTE35B  <dbl+lbl>  4,  4,  5,  4,  2,  4,  3,  3,  4,  4,  4,  2,  4...
$ BYTE35C  <dbl+lbl>  3,  3,  3,  3,  2,  4,  3,  2,  3,  3,  4,  1,  3...
$ BYTE35D  <dbl+lbl>  3,  3,  3,  3,  2,  3,  1,  2,  2,  2,  3,  1,  3...
$ BYTE35E  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYTE35F  <dbl+lbl>  2,  2,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  2...
$ BYTE35G  <dbl+lbl>  2,  2,  1,  2,  1,  3,  1,  2,  2,  2,  3,  1,  2...
$ BYTE35H  <dbl+lbl>  2,  2,  3,  2,  1,  2,  1,  2,  3,  3,  2,  1,  2...
$ BYTE35I  <dbl+lbl>  3,  3,  6,  6,  1,  1,  1,  3,  6,  6,  1,  1,  3...
$ BYTE35J  <dbl+lbl>  2,  2,  3,  2,  1,  2,  1,  2,  2,  2,  2,  1,  2...
$ BYTE35K  <dbl+lbl>  6,  6,  6,  1,  3,  6,  4,  1,  6,  6,  6,  4,  6...
$ BYTE35L  <dbl+lbl>  4,  4,  3,  3,  3,  6,  2,  3,  4,  4,  6,  3,  4...
$ BYTE35M  <dbl+lbl>  3,  3,  3,  5,  1,  3,  2,  2,  3,  3,  3,  2,  3...
$ BYTE35N  <dbl+lbl>  1,  1,  1,  6,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYTE36   <dbl+lbl> 24, 24,  6, 15, 40,  0,  0,  4,  0,  0,  0,  0, 24...
$ BYTE37   <dbl+lbl>  1,  1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1...
$ BYTE38A  <dbl+lbl>  1,  1,  1,  1,  1,  1,  0,  1,  1,  1,  1,  0,  1...
$ BYTE38B  <dbl+lbl>  1,  1,  1,  1,  1,  1,  0, -9,  1,  1,  1,  0,  1...
$ BYTE38C  <dbl+lbl>  1,  1,  1,  1,  1,  1,  0,  1,  1,  1,  1,  0,  1...
$ BYTE38D  <dbl+lbl>  1,  1,  1,  1,  0,  1,  0,  0,  1,  1,  1,  0,  1...
$ BYTE38E  <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  0,  1...
$ BYTE38F  <dbl+lbl>  1,  1,  1,  1,  0,  0, -9,  0,  1,  1,  0,  0,  1...
$ BYTE39   <dbl+lbl> 10, 10,  5,  6,  2,  1,  3,  2, -9, -9,  1,  2, 10...
$ BYTE40   <dbl+lbl>  0,  0,  0,  3,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYTE41   <dbl+lbl> -3, -3, -3,  1, -3, -3, -3, -3, -3, -3, -3, -3, -3...
$ BYTE42   <dbl+lbl>  3,  3,  0,  3,  1,  0,  0,  1,  1,  1,  0,  0,  3...
$ BYTE43   <dbl+lbl>  1,  1, -3,  0,  1, -3, -3,  1,  0,  0, -3, -3,  1...
$ BYTE44A  <dbl+lbl>  2,  2,  2,  2,  2,  2,  1,  2,  1,  1,  2,  1,  2...
$ BYTE44B  <dbl+lbl>  2,  2,  2,  2,  3,  2,  2,  2,  3,  3,  2,  1,  2...
$ BYTE44C  <dbl+lbl>  1,  1,  2,  1,  1,  2,  2,  1,  1,  1,  2,  1,  1...
$ BYTE44D  <dbl+lbl>  1,  1,  2,  1,  1,  1,  2,  1,  2,  2,  1,  2,  1...
$ BYTE44E  <dbl+lbl>  1,  1,  2,  1,  1,  1,  1,  1,  1,  1,  1,  2,  1...
$ BYTE44F  <dbl+lbl>  1,  1,  2,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYTE47   <dbl+lbl> 200204, 200204, 200204, 200204, 200204, 200207, 20...
$ BYTM01   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  0,  0,  1,  0,  1...
$ BYTM02   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1, -3, -3,  1, -3,  1...
$ BYTM03   <dbl+lbl>  1,  1,  1, -9,  1, -9,  1,  1,  1,  1,  0,  1,  1...
$ BYTM04   <dbl+lbl>  1,  1,  1,  1,  1,  0,  1,  1,  0,  0,  1,  0,  1...
$ BYTM05   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, -1,  1...
$ BYTM06   <dbl+lbl>  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,  1,  0...
$ BYTM07   <dbl+lbl>  1,  0,  0,  0,  0,  1,  1,  0,  1,  0,  1,  0,  0...
$ BYTM08A  <dbl+lbl>  0,  0,  0,  0, -3,  0,  1,  0,  0,  0,  0,  0, -3...
$ BYTM08B  <dbl+lbl>  0,  0,  0, -3, -3, -3,  1,  0, -3, -3,  0, -3,  0...
$ BYTM08C  <dbl+lbl>  0,  0,  0, -3, -3,  0,  1,  0,  1,  0,  0,  1,  0...
$ BYTM08D  <dbl+lbl>  0,  0,  0, -3, -3, -3, -3,  0,  0, -3,  0, -3,  0...
$ BYTM08E  <dbl+lbl>  1,  1,  0,  0,  0,  0,  1,  0,  0, -3,  0,  0,  0...
$ BYTM09   <dbl+lbl>  2,  1,  2, -1,  2, -1,  1,  2, -1, -1,  2, -1, -1...
$ BYTM10   <dbl+lbl>  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  3...
$ BYTM11   <dbl+lbl>  1,  0,  0,  1,  1,  0,  0,  0,  0,  0,  0, -1,  0...
$ BYTM12   <dbl+lbl>  1,  0,  0,  0,  0,  1,  1,  0,  1,  0,  0,  1,  1...
$ BYTM12A  <dbl+lbl>  1, -3, -3, -3, -3,  0,  1, -3, -9, -3, -3,  0,  0...
$ BYTM12B  <dbl+lbl>  0, -3, -3, -3, -3,  0,  0, -3, -9, -3, -3,  0,  0...
$ BYTM12C  <dbl+lbl>  0, -3, -3, -3, -3,  0,  0, -3, -9, -3, -3,  0,  1...
$ BYTM12D  <dbl+lbl>  0, -3, -3, -3, -3,  1,  1, -3, -9, -3, -3,  1,  1...
$ BYTM12E  <dbl+lbl>  0, -3, -3, -3, -3,  0,  0, -3, -9, -3, -3,  0,  0...
$ BYTM13   <dbl+lbl>  5,  5,  5,  4,  5,  3,  4,  5,  3,  3,  5,  3,  4...
$ BYTM14   <dbl+lbl>  2,  2,  2,  2,  2,  3,  2,  2,  3,  3,  2,  2,  3...
$ BYTM15   <dbl+lbl>  1,  1,  2,  1,  1,  2,  1,  2,  3,  2,  2,  1,  3...
$ BYTM16   <dbl+lbl>  5,  5,  5,  5,  5,  4,  4,  5,  3,  3,  4,  3,  3...
$ BYTM17   <dbl+lbl>  1,  1,  1,  1,  1,  1,  2,  1,  1,  2,  1,  1,  2...
$ BYTM18A  <dbl+lbl>  1, -3,  0, -3, -3, -3,  1,  0, -3, -3,  0, -3,  1...
$ BYTM18B  <dbl+lbl> -3, -3,  0, -3, -3, -3,  1,  0, -3, -3, -9, -3,  1...
$ BYTM19   <dbl+lbl>  0,  1,  1, -3, -3,  0,  1,  1,  0,  0,  1,  0,  1...
$ BYTM20   <dbl+lbl>  3,  7,  5,  3,  2,  3,  5,  5,  2,  3,  5,  4,  3...
$ BYTM22   <dbl+lbl>  1,  1,  2,  2,  2,  2,  2,  2,  2,  2,  1,  2,  2...
$ BYTM23   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYTM25   <dbl+lbl> 1964, 1964, 1964, 1967, 1968, 1967, 1958, 1964, 19...
$ BYTM26A  <dbl+lbl>  0,  0,  0,  0,  1,  0,  0,  0, -9,  0,  0, -9,  0...
$ BYTM26B  <dbl+lbl> 10, 10, 14, 13,  4, 13,  6, 14, -9,  7, 28, -9,  6...
$ BYTM26C  <dbl+lbl> -9, -9, 14, 13,  5, 13,  6, 14, 19,  7, 28, 19,  6...
$ BYTM27   <dbl+lbl> 10, 10, 13, 13,  4, 13,  3, 13, 19,  4, 25, 19,  3...
$ BYTM28   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYTM29   <dbl+lbl>  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYTM30A  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYTM30B  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  1,  1,  0...
$ BYTM30C  <dbl+lbl>  1,  1,  1,  1,  0,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYTM30D  <dbl+lbl>  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  1...
$ BYTM30E  <dbl+lbl>  0,  0,  1,  0,  1,  0,  0,  1,  0,  0,  1,  0,  0...
$ BYTM30F  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYTM30G  <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYTM31A  <dbl+lbl> -9, -9,  3,  1, 10,  1,  3,  3, -9, -9,  3, -9,  3...
$ BYTM31B  <dbl+lbl> -9, -9,  1,  3, -3,  3,  1,  1, -9, 10, 10, -9,  1...
$ BYTM32A  <dbl+lbl> -3, -3,  3, -3,  1, -3, -9,  3, -3, -3, -3, -3, -9...
$ BYTM32B  <dbl+lbl> -3, -3, -3, -3, -3, -3, -9, -3, -3, -3, -9, -3, -9...
$ BYTM33C  <dbl+lbl> -9, -9,  5,  5, -3,  5,  5,  5,  5,  5,  5,  5,  5...
$ BYTM33D  <dbl+lbl> -9, -9,  5, -3, -3, -3,  2,  5,  1, -3,  5,  1,  2...
$ BYTM34   <dbl+lbl>  1,  1,  4,  1,  2,  1,  4,  4,  1,  1,  2,  1,  4...
$ BYTM35A  <dbl+lbl>  4,  4,  5,  2,  5,  2,  4,  5,  4,  3,  4,  4,  4...
$ BYTM35B  <dbl+lbl>  1,  1,  2,  3,  2,  3,  3,  2, -9,  2,  4, -9,  3...
$ BYTM35C  <dbl+lbl>  1,  1,  2,  1,  2,  1,  2,  2,  3,  1,  4,  3,  2...
$ BYTM35D  <dbl+lbl>  1,  1,  2,  1,  2,  1,  3,  2,  3,  1,  4,  3,  3...
$ BYTM35E  <dbl+lbl>  1,  1,  2,  1,  1,  1,  1,  2,  1,  1,  4,  1,  1...
$ BYTM35F  <dbl+lbl>  1,  1,  2,  1,  1,  1,  1,  2,  1,  3,  4,  1,  1...
$ BYTM35G  <dbl+lbl>  3,  3,  2,  1,  1,  1,  2,  2,  2,  2,  4,  2,  2...
$ BYTM35H  <dbl+lbl>  1,  1,  2,  1,  2,  1,  2,  2,  1,  2,  4,  1,  2...
$ BYTM35I  <dbl+lbl>  1,  1,  1,  1,  6,  1,  3,  1,  6,  1,  4,  6,  3...
$ BYTM35J  <dbl+lbl>  1,  1,  2,  1,  1,  1,  2,  2,  2,  2,  4,  2,  2...
$ BYTM35K  <dbl+lbl>  3,  3,  3,  4,  4,  4,  3,  3,  3,  2,  4,  3,  3...
$ BYTM35L  <dbl+lbl>  2,  2,  3,  3,  3,  3,  1,  3,  3,  3,  4,  3,  1...
$ BYTM35M  <dbl+lbl>  1,  1,  3,  1,  3,  1,  1,  3,  5,  4,  4,  5,  1...
$ BYTM35N  <dbl+lbl>  1,  1,  1,  1,  6,  1,  1,  1,  6,  5,  4,  6,  1...
$ BYTM36   <dbl+lbl>  0,  0,  3, 30, 50, 30,  3,  3,  0, 22, 10,  0,  3...
$ BYTM37   <dbl+lbl>  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYTM38A  <dbl+lbl>  1,  1,  1,  1,  0,  1,  0,  1,  1,  1,  1,  1,  0...
$ BYTM38B  <dbl+lbl>  0,  0,  1,  1,  0,  1,  1,  1,  1,  1,  1,  1,  1...
$ BYTM38C  <dbl+lbl>  1,  1,  1,  1,  0,  1,  0,  1,  0,  1,  1,  0,  0...
$ BYTM38D  <dbl+lbl>  0,  0,  0,  0,  1,  0,  1,  0,  0,  1,  1,  0,  1...
$ BYTM38E  <dbl+lbl>  1,  1,  1,  0,  1,  0,  1,  1,  1,  1,  1,  1,  1...
$ BYTM38F  <dbl+lbl>  0,  0,  1,  0,  0,  0,  0,  1,  0,  1,  1,  0,  0...
$ BYTM39   <dbl+lbl> 10, 10,  2,  1,  1,  1,  2,  2, 40,  2,  0, 40,  2...
$ BYTM40   <dbl+lbl>  1,  1,  0,  0,  1,  0,  0,  0,  0,  0,  0,  0,  0...
$ BYTM41   <dbl+lbl>  0,  0, -3, -3,  0, -3, -3, -3, -3, -3, -3, -3, -3...
$ BYTM42   <dbl+lbl>  1,  1,  0,  3,  0,  3,  3,  0,  0,  0,  0,  0,  3...
$ BYTM43   <dbl+lbl>  0,  0, -3,  0, -3,  0,  1, -3, -3, -3, -3, -3,  1...
$ BYTM44A  <dbl+lbl>  1,  1,  1,  1,  1,  1,  2,  1,  2,  1,  2,  2,  2...
$ BYTM44B  <dbl+lbl>  2,  2,  2,  2,  2,  2,  3,  2,  2, -9,  2,  2,  3...
$ BYTM44C  <dbl+lbl>  1,  1,  1,  1,  2,  1,  2,  1,  2, -9,  2,  2,  2...
$ BYTM44D  <dbl+lbl>  2,  2,  1,  2,  3,  2,  2,  1,  2, -9,  2,  2,  2...
$ BYTM44E  <dbl+lbl>  1,  1,  2,  2,  3,  2,  2,  2,  2, -9,  2,  2,  2...
$ BYTM44F  <dbl+lbl>  1,  1,  2,  1,  3,  1,  1,  2,  1, -9,  2,  1,  1...
$ BYTM45A  <dbl+lbl>  2,  2,  2,  2,  3,  2,  1,  2,  1,  2,  2,  1,  1...
$ BYTM45B  <dbl+lbl>  3,  3,  3,  3,  2,  3,  4,  3,  4,  2,  3,  4,  4...
$ BYTM47   <dbl+lbl> 200205, 200205, 200208, 200204, 200204, 200204, 20...
ELS.clean <- X04275_0001_Data
ELS.clean <- ELS.clean %>%
  select(., BYS20J,
         BYS21B,
         BYS20G,
         BYS20F,
         BYS20H,
         BYS20A,
         BYS20I,
         BYS20C,
         BYS88B,
         BYS88A,
         BYS89R,
         BYS89A,
         BYS89B,
         BYS89U,
         BYS89L,
         BYS29B,
         BYS29E,
         BYS29C,
         BYS29J,
         SCH_ID,
         STU_ID,
         SEX,
         RACE)
glimpse(ELS.clean)
Rows: 15,362
Columns: 23
$ BYS20J <dbl+lbl>  3,  3, -9, -9,  3,  3,  3,  3,  2,  2,  3,  3,  4, ...
$ BYS21B <dbl+lbl>  3,  3,  3, -9,  4,  2,  3,  3,  3,  2,  3,  2,  4, ...
$ BYS20G <dbl+lbl>  3,  2,  3,  2,  3,  2,  2,  2,  3,  1,  2,  2,  3, ...
$ BYS20F <dbl+lbl>  2,  2,  2,  2,  2,  1,  2,  2,  3,  2,  1,  2,  3, ...
$ BYS20H <dbl+lbl>  1,  4,  3, -9,  3,  3,  4,  4,  3,  3,  3,  3,  3, ...
$ BYS20A <dbl+lbl>  2,  2,  3, -9,  2,  2,  3,  1,  3,  2,  2,  2,  3, ...
$ BYS20I <dbl+lbl>  3,  4,  3, -9,  3,  3,  4,  3,  3,  4,  3,  3,  4, ...
$ BYS20C <dbl+lbl>  1,  2,  3, -9,  2,  2,  1,  2,  3,  2,  1,  3,  2, ...
$ BYS88B <dbl+lbl>  2,  3,  3,  3,  2,  4,  4,  3,  3,  4,  3,  3,  4, ...
$ BYS88A <dbl+lbl>  3,  1,  2,  1,  1,  1,  1,  2,  2,  1,  2,  2,  2, ...
$ BYS89R <dbl+lbl>  2,  4,  3,  3,  3,  3,  3,  3,  3,  3,  2,  1,  3, ...
$ BYS89A <dbl+lbl>  2,  4,  3,  4,  2,  2,  2,  4,  3,  4,  1,  2,  2, ...
$ BYS89B <dbl+lbl>  1,  3,  2,  3,  2,  2,  1,  3,  3,  3,  2,  2,  2, ...
$ BYS89U <dbl+lbl>  1,  4,  2,  4,  3, -9,  3,  3,  3,  3,  1,  1,  3, ...
$ BYS89L <dbl+lbl>  2,  4,  2,  3,  3,  3,  2,  3,  3,  3,  2,  1,  2, ...
$ BYS29B <dbl+lbl>  2,  5,  4,  2,  5,  2,  2,  5,  4,  5,  5,  5,  2, ...
$ BYS29E <dbl+lbl>  2,  3,  5,  3,  4,  4,  4,  4,  5,  4,  5,  5,  5, ...
$ BYS29C <dbl+lbl>  2,  5,  5, -9,  5, -9,  5,  5,  5,  4,  4,  5,  5, ...
$ BYS29J <dbl+lbl>  5,  2,  1, -9,  5,  2,  1,  1,  2,  5,  5,  4,  3, ...
$ SCH_ID <dbl> 1011, 1011, 1011, 1011, 1011, 1011, 1011, 1011, 1011, 10...
$ STU_ID <dbl> 101101, 101102, 101104, 101105, 101106, 101107, 101108, ...
$ SEX    <dbl+lbl> 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2...
$ RACE   <dbl+lbl> 5, 2, 7, 3, 4, 4, 4, 7, 4, 3, 3, 4, 3, 2, 2, 3, 3, 4...
ELS.clean.mu <- ELS.clean %>%
mutate(.,
       sch.clim.sch1 = BYS20J,
       sch.clim.sch2 = BYS21B,
       sch.clim.tea1 = BYS20G,
       sch.clim.tea2 = BYS20F,
       sch.clim.tea3 = BYS20H,
       sch.clim.tea4 = BYS20A,
       sch.clim.st1 = BYS20I,
       sch.clim.racial1 = BYS20C,
       mindset.entity = BYS88B,
       mindset.growth = BYS88A,
       math.se1 = BYS89R,
       math.se2 = BYS89A,
       math.se3 = BYS89B,
       math.se4 = BYS89U,
       math.se5 = BYS89L,
       math.engage1 = BYS29B,
       math.engage2 = BYS29E,
       math.engage3 = BYS29C,
       math.engage4 = BYS29J,
       SCH_ID.fac = as_factor(SCH_ID),
       STU_ID.fac = as_factor(STU_ID),
       sex.fac = as_factor(SEX),
       race.fac = as_factor(RACE))
filter(! (-9))
`filter_()` is deprecated as of dplyr 0.7.0.
Please use `filter()` instead.
See vignette('programming') for more help
This warning is displayed once every 8 hours.
Call `lifecycle::last_warnings()` to see where this warning was generated.Error in UseMethod("filter_") : 
  no applicable method for 'filter_' applied to an object of class "logical"
table(ELS.clean.mu$sch.clim.sch1)

  -9   -7   -6    1    2    3    4 
 247  586   23  391 1191 6969 5955 
ELS.clean.filter <- ELS.clean.mu %>%
  filter(.,
         !sch.clim.sch1 %in% 
             (-9), 
         !sch.clim.sch1 %in% 
             (-7),
         !sch.clim.sch1 %in% 
             (-6),
         !sch.clim.sch2 %in% 
             (-9), 
         !sch.clim.sch2 %in% 
             (-7),
         !sch.clim.sch2 %in% 
             (-6),
         !sch.clim.tea1 %in% 
             (-9), 
         !sch.clim.tea1 %in% 
             (-7),
         !sch.clim.tea1 %in% 
             (-6),
         !sch.clim.tea2 %in% 
             (-9), 
         !sch.clim.tea2 %in% 
             (-7),
         !sch.clim.tea2 %in% 
             (-6),
         !sch.clim.tea3 %in% 
             (-9), 
         !sch.clim.tea3 %in% 
             (-7),
         !sch.clim.tea3 %in% 
             (-6),
         !sch.clim.tea4 %in% 
             (-9), 
         !sch.clim.tea4 %in% 
             (-7),
         !sch.clim.tea4 %in% 
             (-6),
         !sch.clim.st1 %in% 
             (-9), 
         !sch.clim.st1 %in% 
             (-7),
         !sch.clim.st1 %in% 
             (-6),
         !sch.clim.racial1 %in% 
             (-9), 
         !sch.clim.racial1 %in% 
             (-7),
         !sch.clim.racial1 %in% 
             (-6),
         !mindset.entity %in% 
             (-9), 
         !mindset.entity %in% 
             (-7),
         !mindset.entity %in% 
             (-6),
         !mindset.growth %in% 
             (-9), 
         !mindset.growth %in% 
             (-7),
         !mindset.growth %in% 
             (-6),
         !math.se1 %in% 
             (-9), 
         !math.se1 %in% 
             (-7),
         !math.se1 %in% 
             (-6),
        !math.se2 %in% 
             (-9), 
         !math.se2 %in% 
             (-7),
         !math.se2 %in% 
             (-6),
         !math.se3 %in% 
             (-9), 
         !math.se3 %in% 
             (-7),
         !math.se3 %in% 
             (-6),
         !math.se4 %in% 
             (-9), 
         !math.se4 %in% 
             (-7),
         !math.se4 %in% 
             (-6),
         !math.se5 %in% 
             (-9), 
         !math.se5 %in% 
             (-7),
         !math.se5 %in% 
             (-6),
         !math.engage1 %in% 
             (-9), 
         !math.engage1 %in% 
             (-7),
         !math.engage1 %in% 
             (-6),
        !math.engage2 %in% 
             (-9), 
         !math.engage2 %in% 
             (-7),
         !math.engage2 %in% 
             (-6),
        !math.engage3 %in% 
             (-9), 
         !math.engage3 %in% 
             (-7),
         !math.engage3 %in% 
             (-6),
        !math.engage4 %in% 
             (-9), 
         !math.engage4 %in% 
             (-7),
         !math.engage4 %in% 
             (-6))
        
ELS.clean.filter <- ELS.clean.filter %>%
  mutate(.,
         sch.clim.sch2.recode = case_when(
           sch.clim.sch2 == 1 ~ 4,
           sch.clim.sch2 == 2 ~ 3,
           sch.clim.sch2 == 3 ~ 2,
           sch.clim.sch2 == 4 ~ 1),
         sch.clim.tea1.recode = case_when(
           sch.clim.tea1 == 1 ~ 4,
           sch.clim.tea1 == 2 ~ 3,
           sch.clim.tea1 == 3 ~ 2,
           sch.clim.tea1 == 4 ~ 1),
         sch.clim.tea2.recode = case_when(
           sch.clim.tea2 == 1 ~ 4,
           sch.clim.tea2 == 2 ~ 3,
           sch.clim.tea2 == 3 ~ 2,
           sch.clim.tea2 == 4 ~ 1),
        sch.clim.tea4.recode = case_when(
           sch.clim.tea4 == 1 ~ 4,
           sch.clim.tea4 == 2 ~ 3,
           sch.clim.tea4 == 3 ~ 2,
           sch.clim.tea4 == 4 ~ 1),
        sch.clim.racial1.recode = case_when(
           sch.clim.racial1 == 1 ~ 4,
           sch.clim.racial1 == 2 ~ 3,
           sch.clim.racial1 == 3 ~ 2,
           sch.clim.racial1 == 4 ~ 1),
        mindset.growth.recode = case_when(
           mindset.growth == 1 ~ 4,
           mindset.growth == 2 ~ 3,
           mindset.growth == 3 ~ 2,
           mindset.growth == 4 ~ 1))
se_items <- ELS.clean.filter %>%
  select(.,
         math.se1,
       math.se2,
       math.se3,
       math.se4,
       math.se5)
alpha(se_items)

Reliability analysis   
Call: alpha(x = se_items)

 

 lower alpha upper     95% confidence boundaries
0.93 0.93 0.94 

 Reliability if an item is dropped:

 Item statistics 

Non missing response frequency for each item
            1    2    3    4 miss
math.se1 0.10 0.38 0.30 0.22    0
math.se2 0.10 0.46 0.24 0.21    0
math.se3 0.17 0.43 0.26 0.14    0
math.se4 0.10 0.37 0.31 0.23    0
math.se5 0.15 0.39 0.27 0.18    0
engage_items <- ELS.clean.filter %>%
  select(.,
       math.engage1,
       math.engage3,
       math.engage4)
alpha(engage_items)

Reliability analysis   
Call: alpha(x = engage_items)

 

 lower alpha upper     95% confidence boundaries
0.43 0.45 0.47 

 Reliability if an item is dropped:

 Item statistics 

Non missing response frequency for each item
                1    2    3    4    5 miss
math.engage1 0.03 0.10 0.04 0.15 0.68    0
math.engage3 0.05 0.09 0.05 0.15 0.67    0
math.engage4 0.39 0.25 0.11 0.14 0.11    0
my.keys.list <- list(school.climate.school = c("sch.clim.sch1", "sch.clim.sch2.recode"),
                     School.climate.teacher = c("sch.clim.tea1.recode", "sch.clim.tea2.recode", "sch.clim.tea3", "sch.clim.tea4.recode"),
                     math.se = c("math.se1", "math.se2", "math.se3", "math.se4", "math.se5"),
                     growth.mindset = c("mindset.growth.recode", "mindset.entity"))
                     
my.scales <- scoreItems(my.keys.list, ELS.clean.filter, impute = "none")
print(my.scales, short = FALSE)
Call: scoreItems(keys = my.keys.list, items = ELS.clean.filter, impute = "none")

(Standardized) Alpha:
      school.climate.school School.climate.teacher math.se growth.mindset
alpha                  0.33                   0.66    0.93           0.49

Standard errors of unstandardized Alpha:
      school.climate.school School.climate.teacher math.se growth.mindset
ASE                   0.019                 0.0094  0.0044          0.018

Standardized Alpha of observed scales:
     school.climate.school School.climate.teacher math.se growth.mindset
[1,]                  0.33                   0.66    0.93           0.49

Average item correlation:
          school.climate.school School.climate.teacher math.se
average.r                   0.2                   0.33    0.74
          growth.mindset
average.r           0.32

Median item correlation:
 school.climate.school School.climate.teacher                math.se 
                  0.20                   0.31                   0.73 
        growth.mindset 
                  0.33 

 Guttman 6* reliability: 
         school.climate.school School.climate.teacher math.se
Lambda.6                  0.31                   0.63    0.92
         growth.mindset
Lambda.6           0.35

Signal/Noise based upon av.r : 
             school.climate.school School.climate.teacher math.se
Signal/Noise                  0.49                      2      14
             growth.mindset
Signal/Noise           0.95

Scale intercorrelations corrected for attenuation 
 raw correlations below the diagonal, alpha on the diagonal 
 corrected correlations above the diagonal:

Note that these are the correlations of the complete scales based on the correlation matrix,
 not the observed scales based on the raw items.
                       school.climate.school School.climate.teacher
school.climate.school                   0.33                   1.07
School.climate.teacher                  0.50                   0.66
math.se                                 0.16                   0.23
growth.mindset                          0.10                   0.13
                       math.se growth.mindset
school.climate.school     0.30           0.25
School.climate.teacher    0.30           0.23
math.se                   0.93           0.32
growth.mindset            0.22           0.49

Item by scale correlations:
 corrected for item overlap and scale reliability
                      school.climate.school School.climate.teacher math.se
sch.clim.sch1                          0.41                   0.45    0.12
sch.clim.sch2.recode                   0.45                   0.52    0.15
sch.clim.tea1.recode                   0.55                   0.57    0.18
sch.clim.tea2.recode                   0.70                   0.68    0.18
sch.clim.tea3                          0.65                   0.48    0.16
sch.clim.tea4.recode                   0.64                   0.50    0.16
math.se1                               0.30                   0.28    0.87
math.se2                               0.26                   0.27    0.83
math.se3                               0.22                   0.22    0.84
math.se4                               0.31                   0.28    0.86
math.se5                               0.23                   0.25    0.86
mindset.growth.recode                  0.23                   0.20    0.29
mindset.entity                         0.08                   0.07    0.10
                      growth.mindset
sch.clim.sch1                   0.10
sch.clim.sch2.recode            0.16
sch.clim.tea1.recode            0.18
sch.clim.tea2.recode            0.17
sch.clim.tea3                   0.20
sch.clim.tea4.recode            0.06
math.se1                        0.34
math.se2                        0.34
math.se3                        0.28
math.se4                        0.34
math.se5                        0.33
mindset.growth.recode           0.54
mindset.entity                  0.44

Non missing response frequency for each item
                         1    2    3    4 miss
sch.clim.sch1         0.02 0.07 0.48 0.42    0
sch.clim.sch2.recode  0.10 0.35 0.49 0.07    0
sch.clim.tea1.recode  0.04 0.30 0.51 0.15    0
sch.clim.tea2.recode  0.03 0.20 0.61 0.15    0
sch.clim.tea3         0.03 0.10 0.58 0.29    0
sch.clim.tea4.recode  0.03 0.20 0.71 0.06    0
math.se1              0.10 0.38 0.30 0.22    0
math.se2              0.10 0.46 0.24 0.21    0
math.se3              0.17 0.43 0.26 0.14    0
math.se4              0.10 0.37 0.31 0.23    0
math.se5              0.15 0.39 0.27 0.18    0
mindset.growth.recode 0.03 0.19 0.60 0.19    0
mindset.entity        0.07 0.24 0.51 0.17    0
school_items <- ELS.clean.filter %>%
  select(.,
         sch.clim.sch1,
         sch.clim.sch2.recode)
alpha(school_items)

Reliability analysis   
Call: alpha(x = school_items)

 

 lower alpha upper     95% confidence boundaries
0.3 0.33 0.35 

 Reliability if an item is dropped:

 Item statistics 

Non missing response frequency for each item
                        1    2    3    4 miss
sch.clim.sch1        0.02 0.07 0.48 0.42    0
sch.clim.sch2.recode 0.10 0.35 0.49 0.07    0
 ELS.clean.filter <- ELS.clean.filter %>%
  group_by(SCH_ID.fac) %>% 
  mutate(.,
            sch_sch.clim.sch1 = mean(sch.clim.sch1, na.rm = TRUE),
         sch_sch.clim.sch2.recode = mean(sch.clim.sch2.recode, na.rm = TRUE)) %>%
  ungroup()
sch_school_items <- ELS.clean.filter %>%
  select(.,
         sch_sch.clim.sch1,
         sch_sch.clim.sch2.recode)
alpha(sch_school_items)

Reliability analysis   
Call: alpha(x = sch_school_items)

 

 lower alpha upper     95% confidence boundaries
0.47 0.49 0.51 

 Reliability if an item is dropped:

 Item statistics 
my.scores <- as_tibble(my.scales$scores)
Error in as_tibble(my.scales$scores) : 
  could not find function "as_tibble"
ELS.clean.filter.1 <-bind_cols(ELS.clean.filter, my.scores)
 ELS.clean.filter.1 <- ELS.clean.filter.1 %>%
  group_by(SCH_ID.fac) %>% 
  mutate(.,
            sch_level_school.climate = mean(sch.clim.sch1, na.rm = TRUE),
         sch_level_school.climate.teacher = mean(School.climate.teacher, na.rm = TRUE),
         sch_level_school.climate.student = mean(sch.clim.st1, na.rm = TRUE),
         sch_level_school.climate.racial = mean(sch.clim.racial1, na.rm = TRUE)) %>%
  ungroup()
ELS.clean.filter.1 <- ELS.clean.filter.1 %>%       
  mutate(.,
         mindset.entity.recode = case_when(
           mindset.entity == 1 ~ 4,
           mindset.entity == 2 ~ 3,
           mindset.entity == 3 ~ 2,
           mindset.entity == 4 ~ 1))
ELS.final <- ELS.clean.filter.1 %>%
  select(.,
         sch_level_school.climate,
         sch_level_school.climate.teacher,
         sch_level_school.climate.student,
         sch_level_school.climate.racial,
         mindset.entity.recode,
         mindset.growth.recode,
         math.se,
         sex.fac,
         race.fac,
         SCH_ID.fac,
         STU_ID.fac,
         SCH_ID)
model.null <- lmer(math.se ~ (1|SCH_ID.fac), REML = FALSE, data = ELS.final)
summary(model.null)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: math.se ~ (1 | SCH_ID.fac)
   Data: ELS.final

     AIC      BIC   logLik deviance df.resid 
 22974.2  22995.6 -11484.1  22968.2     9317 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.1065 -0.6845 -0.1471  0.6954  2.0416 

Random effects:
 Groups     Name        Variance Std.Dev.
 SCH_ID.fac (Intercept) 0.02003  0.1415  
 Residual               0.67149  0.8194  
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
            Estimate Std. Error t value
(Intercept)  2.54703    0.01015     251
ICC <- 0.02/(0.02 + 0.67)
ICC
[1] 0.02898551
model.1 <- lmer(math.se ~ race.fac + sex.fac + mindset.entity.recode + mindset.growth.recode + (1|SCH_ID.fac), REML = FALSE, data = ELS.final)
summary(model.1)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
math.se ~ race.fac + sex.fac + mindset.entity.recode + mindset.growth.recode +  
    (1 | SCH_ID.fac)
   Data: ELS.final

     AIC      BIC   logLik deviance df.resid 
 22022.8  22108.5 -10999.4  21998.8     9308 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6652 -0.7424 -0.1377  0.6953  3.0764 

Random effects:
 Groups     Name        Variance Std.Dev.
 SCH_ID.fac (Intercept) 0.02115  0.1454  
 Residual               0.60300  0.7765  
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
                                                 Estimate Std. Error
(Intercept)                                       1.73844    0.11254
race.facAsian, Hawaii/Pac. Islander,non-Hispanic  0.10554    0.10362
race.facBlack or African American, non-Hispanic  -0.06835    0.10338
race.facHispanic, no race specified              -0.04652    0.10586
race.facHispanic, race specified                 -0.10863    0.10482
race.facMultiracial, non-Hispanic                -0.03909    0.10653
race.facWhite, non-Hispanic                       0.02246    0.10044
sex.facFemale                                    -0.21329    0.01659
mindset.entity.recode                            -0.01519    0.01062
mindset.growth.recode                             0.32169    0.01269
                                                 t value
(Intercept)                                       15.447
race.facAsian, Hawaii/Pac. Islander,non-Hispanic   1.018
race.facBlack or African American, non-Hispanic   -0.661
race.facHispanic, no race specified               -0.439
race.facHispanic, race specified                  -1.036
race.facMultiracial, non-Hispanic                 -0.367
race.facWhite, non-Hispanic                        0.224
sex.facFemale                                    -12.858
mindset.entity.recode                             -1.431
mindset.growth.recode                             25.355

Correlation of Fixed Effects:
            (Intr) r.A,HI r.oAAn r.Hnrs r.H,rs r.M,n- r.W,n- sx.fcF
r.A,H/P.I,- -0.848                                                 
rc.BoAA,n-H -0.852  0.931                                          
rc.fcHs,nrs -0.834  0.910  0.911                                   
rc.fcHsp,rs -0.840  0.917  0.919  0.900                            
rc.fcMl,n-H -0.832  0.904  0.905  0.883  0.891                     
rc.fcWh,n-H -0.883  0.957  0.960  0.936  0.945  0.931              
sex.facFeml -0.123 -0.001 -0.008  0.004 -0.004  0.003  0.001       
mndst.ntty. -0.311 -0.007 -0.002 -0.002 -0.010 -0.006 -0.012  0.057
mndst.grwt. -0.412 -0.016 -0.011 -0.006 -0.005  0.005  0.012  0.101
            mndst.n.
r.A,H/P.I,-         
rc.BoAA,n-H         
rc.fcHs,nrs         
rc.fcHsp,rs         
rc.fcMl,n-H         
rc.fcWh,n-H         
sex.facFeml         
mndst.ntty.         
mndst.grwt.  0.319  

mindset.entity isn’t significant, taking out of model

model.2 <- lmer(math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate +
         sch_level_school.climate.teacher + sch_level_school.climate.student +
         sch_level_school.climate.racial + (1|SCH_ID.fac), REML = FALSE, data = ELS.final)
summary(model.2)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate +  
    sch_level_school.climate.teacher + sch_level_school.climate.student +  
    sch_level_school.climate.racial + (1 | SCH_ID.fac)
   Data: ELS.final

     AIC      BIC   logLik deviance df.resid 
 21969.4  22033.7 -10975.7  21951.4     9311 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6958 -0.7340 -0.1352  0.7005  2.9215 

Random effects:
 Groups     Name        Variance Std.Dev.
 SCH_ID.fac (Intercept) 0.01272  0.1128  
 Residual               0.60600  0.7785  
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
                                 Estimate Std. Error t value
(Intercept)                       0.12664    0.21471   0.590
sex.facFemale                    -0.21613    0.01649 -13.108
mindset.growth.recode             0.32449    0.01190  27.257
sch_level_school.climate          0.05221    0.03655   1.428
sch_level_school.climate.teacher  0.37118    0.05870   6.323
sch_level_school.climate.student  0.09239    0.04444   2.079
sch_level_school.climate.racial   0.02488    0.03877   0.642

Correlation of Fixed Effects:
                    (Intr) sx.fcF mnds.. sch__. sch_lvl_schl.clmt.t
sex.facFeml         -0.043                                         
mndst.grwt.         -0.194  0.088                                  
sch_lvl_sc.         -0.141  0.020  0.056                           
sch_lvl_schl.clmt.t -0.480 -0.019 -0.028 -0.465                    
sch_lvl_schl.clmt.s -0.469 -0.022  0.002 -0.140 -0.176             
sch_lvl_schl.clmt.r -0.638  0.017  0.049  0.080  0.205             
                    sch_lvl_schl.clmt.s
sex.facFeml                            
mndst.grwt.                            
sch_lvl_sc.                            
sch_lvl_schl.clmt.t                    
sch_lvl_schl.clmt.s                    
sch_lvl_schl.clmt.r  0.153             

sch_level_school.climate.racial not significant-might try with an interaction with race

sch_level_school.climate.student not significant sch_level_school.climate not significant

model.3 <- lmer(math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.racial + sch_level_school.climate.teacher + race.fac + race.fac:sch_level_school.climate.racial + (1|SCH_ID.fac), REML = FALSE, data = ELS.final)
summary(model.3)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.racial +  
    sch_level_school.climate.teacher + race.fac + race.fac:sch_level_school.climate.racial +  
    (1 | SCH_ID.fac)
   Data: ELS.final

     AIC      BIC   logLik deviance df.resid 
 21956.4  22092.1 -10959.2  21918.4     9301 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.7077 -0.7350 -0.1296  0.7042  3.0810 

Random effects:
 Groups     Name        Variance Std.Dev.
 SCH_ID.fac (Intercept) 0.0131   0.1145  
 Residual               0.6035   0.7769  
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
                                                                                 Estimate
(Intercept)                                                                       0.83580
sex.facFemale                                                                    -0.21510
mindset.growth.recode                                                             0.32433
sch_level_school.climate.racial                                                  -0.21143
sch_level_school.climate.teacher                                                  0.43010
race.facAsian, Hawaii/Pac. Islander,non-Hispanic                                 -0.52377
race.facBlack or African American, non-Hispanic                                  -0.57555
race.facHispanic, no race specified                                              -0.41585
race.facHispanic, race specified                                                 -0.38271
race.facMultiracial, non-Hispanic                                                -0.19381
race.facWhite, non-Hispanic                                                      -0.31036
sch_level_school.climate.racial:race.facAsian, Hawaii/Pac. Islander,non-Hispanic  0.35093
sch_level_school.climate.racial:race.facBlack or African American, non-Hispanic   0.29389
sch_level_school.climate.racial:race.facHispanic, no race specified               0.20437
sch_level_school.climate.racial:race.facHispanic, race specified                  0.14705
sch_level_school.climate.racial:race.facMultiracial, non-Hispanic                 0.07884
sch_level_school.climate.racial:race.facWhite, non-Hispanic                       0.18106
                                                                                 Std. Error
(Intercept)                                                                         0.75794
sex.facFemale                                                                       0.01647
mindset.growth.recode                                                               0.01200
sch_level_school.climate.racial                                                     0.40593
sch_level_school.climate.teacher                                                    0.05049
race.facAsian, Hawaii/Pac. Islander,non-Hispanic                                    0.77241
race.facBlack or African American, non-Hispanic                                     0.76450
race.facHispanic, no race specified                                                 0.79338
race.facHispanic, race specified                                                    0.77405
race.facMultiracial, non-Hispanic                                                   0.78085
race.facWhite, non-Hispanic                                                         0.74704
sch_level_school.climate.racial:race.facAsian, Hawaii/Pac. Islander,non-Hispanic    0.42256
sch_level_school.climate.racial:race.facBlack or African American, non-Hispanic     0.41783
sch_level_school.climate.racial:race.facHispanic, no race specified                 0.43581
sch_level_school.climate.racial:race.facHispanic, race specified                    0.42483
sch_level_school.climate.racial:race.facMultiracial, non-Hispanic                   0.42818
sch_level_school.climate.racial:race.facWhite, non-Hispanic                         0.40818
                                                                                 t value
(Intercept)                                                                        1.103
sex.facFemale                                                                    -13.059
mindset.growth.recode                                                             27.038
sch_level_school.climate.racial                                                   -0.521
sch_level_school.climate.teacher                                                   8.518
race.facAsian, Hawaii/Pac. Islander,non-Hispanic                                  -0.678
race.facBlack or African American, non-Hispanic                                   -0.753
race.facHispanic, no race specified                                               -0.524
race.facHispanic, race specified                                                  -0.494
race.facMultiracial, non-Hispanic                                                 -0.248
race.facWhite, non-Hispanic                                                       -0.415
sch_level_school.climate.racial:race.facAsian, Hawaii/Pac. Islander,non-Hispanic   0.830
sch_level_school.climate.racial:race.facBlack or African American, non-Hispanic    0.703
sch_level_school.climate.racial:race.facHispanic, no race specified                0.469
sch_level_school.climate.racial:race.facHispanic, race specified                   0.346
sch_level_school.climate.racial:race.facMultiracial, non-Hispanic                  0.184
sch_level_school.climate.racial:race.facWhite, non-Hispanic                        0.444

Correlation matrix not shown by default, as p = 17 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
interplot::interplot(model.interaction, var1 = "race.fac", var2 = "sch_level_school.climate.racial")
Error in quantile.default(m.sims@fixef[, match(var1[j + 1], unlist(dimnames(m@pp$X)[2]))] +  : 
  missing values and NaN's not allowed if 'na.rm' is FALSE
model.4 <- lmer(math.se ~ sex.fac + mindset.growth.recode + 
         sch_level_school.climate.teacher + (race.fac|SCH_ID.fac), REML = FALSE, data = ELS.final)
boundary (singular) fit: see ?isSingular
summary(model.4)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.teacher +  
    (race.fac | SCH_ID.fac)
   Data: ELS.final

     AIC      BIC   logLik deviance df.resid 
 22007.7  22243.3 -10970.8  21941.7     9287 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6851 -0.7376 -0.1324  0.6987  2.7319 

Random effects:
 Groups     Name                                            
 SCH_ID.fac (Intercept)                                     
            race.facAsian, Hawaii/Pac. Islander,non-Hispanic
            race.facBlack or African American, non-Hispanic 
            race.facHispanic, no race specified             
            race.facHispanic, race specified                
            race.facMultiracial, non-Hispanic               
            race.facWhite, non-Hispanic                     
 Residual                                                   
 Variance Std.Dev. Corr                               
 0.15805  0.3976                                      
 0.11418  0.3379   -0.84                              
 0.11409  0.3378   -0.99  0.88                        
 0.12975  0.3602   -1.00  0.84  1.00                  
 0.06795  0.2607   -0.94  0.62  0.91  0.94            
 0.28076  0.5299   -0.98  0.83  0.99  0.99  0.92      
 0.14211  0.3770   -0.95  0.96  0.97  0.95  0.79  0.95
 0.59975  0.7744                                      
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
                                 Estimate Std. Error t value
(Intercept)                       0.42255    0.13946   3.030
sex.facFemale                    -0.21538    0.01645 -13.094
mindset.growth.recode             0.32310    0.01186  27.247
sch_level_school.climate.teacher  0.44175    0.04660   9.479

Correlation of Fixed Effects:
            (Intr) sx.fcF mnds..
sex.facFeml -0.062              
mndst.grwt. -0.243  0.088       
sch_lvl_s.. -0.962 -0.023 -0.014
convergence code: 0
boundary (singular) fit: see ?isSingular
model.5 <- lmer(math.se ~ sex.fac + mindset.growth.recode + 
         sch_level_school.climate.teacher + (1|SCH_ID.fac), REML = FALSE, data = ELS.final)
summary(model.5)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.teacher +  
    (1 | SCH_ID.fac)
   Data: ELS.final

     AIC      BIC   logLik deviance df.resid 
 21970.7  22013.5 -10979.3  21958.7     9314 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6855 -0.7361 -0.1346  0.6971  2.9337 

Random effects:
 Groups     Name        Variance Std.Dev.
 SCH_ID.fac (Intercept) 0.01347  0.1161  
 Residual               0.60590  0.7784  
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
                                 Estimate Std. Error t value
(Intercept)                       0.43234    0.14146   3.056
sex.facFemale                    -0.21601    0.01649 -13.101
mindset.growth.recode             0.32325    0.01188  27.213
sch_level_school.climate.teacher  0.44002    0.04731   9.300

Correlation of Fixed Effects:
            (Intr) sx.fcF mnds..
sex.facFeml -0.059              
mndst.grwt. -0.239  0.086       
sch_lvl_s.. -0.963 -0.025 -0.015
library(modelsummary)

Attaching package: 㤼㸱modelsummary㤼㸲

The following object is masked from 㤼㸱package:psych㤼㸲:

    SD
library(broom.mixed)
Registered S3 method overwritten by 'broom.mixed':
  method      from 
  tidy.gamlss broom
library(tables)
models <- list(model.1, model.2, model.3, model.4, model.5)
modelsummary(models, output = "markdown")
Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 1.738 0.127 0.836 0.423 0.432
(0.113) (0.215) (0.758) (0.139) (0.141)
race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.106 -0.524
(0.104) (0.772)
race.facBlack or African American, non-Hispanic -0.068 -0.576
(0.103) (0.764)
race.facHispanic, no race specified -0.047 -0.416
(0.106) (0.793)
race.facHispanic, race specified -0.109 -0.383
(0.105) (0.774)
race.facMultiracial, non-Hispanic -0.039 -0.194
(0.107) (0.781)
race.facWhite, non-Hispanic 0.022 -0.310
(0.100) (0.747)
sex.facFemale -0.213 -0.216 -0.215 -0.215 -0.216
(0.017) (0.016) (0.016) (0.016) (0.016)
mindset.entity.recode -0.015
(0.011)
mindset.growth.recode 0.322 0.324 0.324 0.323 0.323
(0.013) (0.012) (0.012) (0.012) (0.012)
sd__(Intercept) 0.145 0.113 0.114 0.398 0.116
sd__Observation 0.777 0.778 0.777 0.774 0.778
sch_level_school.climate 0.052
(0.037)
sch_level_school.climate.teacher 0.371 0.430 0.442 0.440
(0.059) (0.050) (0.047) (0.047)
sch_level_school.climate.student 0.092
(0.044)
sch_level_school.climate.racial 0.025 -0.211
(0.039) (0.406)
sch_level_school.climate.racial × race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.351
(0.423)
sch_level_school.climate.racial × race.facBlack or African American, non-Hispanic 0.294
(0.418)
sch_level_school.climate.racial × race.facHispanic, no race specified 0.204
(0.436)
sch_level_school.climate.racial × race.facHispanic, race specified 0.147
(0.425)
sch_level_school.climate.racial × race.facMultiracial, non-Hispanic 0.079
(0.428)
sch_level_school.climate.racial × race.facWhite, non-Hispanic 0.181
(0.408)
cor__(Intercept).race.facAsian, Hawaii/Pac. Islander,non-Hispanic -0.842
cor__(Intercept).race.facBlack or African American, non-Hispanic -0.994
cor__(Intercept).race.facHispanic, no race specified -0.996
cor__(Intercept).race.facHispanic, race specified -0.943
cor__(Intercept).race.facMultiracial, non-Hispanic -0.980
cor__(Intercept).race.facWhite, non-Hispanic -0.947
sd__race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.338
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facBlack or African American, non-Hispanic 0.881
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facHispanic, no race specified 0.842
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facHispanic, race specified 0.615
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facMultiracial, non-Hispanic 0.834
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facWhite, non-Hispanic 0.963
sd__race.facBlack or African American, non-Hispanic 0.338
cor__race.facBlack or African American, non-Hispanic.race.facHispanic, no race specified 0.997
cor__race.facBlack or African American, non-Hispanic.race.facHispanic, race specified 0.911
cor__race.facBlack or African American, non-Hispanic.race.facMultiracial, non-Hispanic 0.990
cor__race.facBlack or African American, non-Hispanic.race.facWhite, non-Hispanic 0.973
sd__race.facHispanic, no race specified 0.360
cor__race.facHispanic, no race specified.race.facHispanic, race specified 0.938
cor__race.facHispanic, no race specified.race.facMultiracial, non-Hispanic 0.994
cor__race.facHispanic, no race specified.race.facWhite, non-Hispanic 0.953
sd__race.facHispanic, race specified 0.261
cor__race.facHispanic, race specified.race.facMultiracial, non-Hispanic 0.919
cor__race.facHispanic, race specified.race.facWhite, non-Hispanic 0.792
sd__race.facMultiracial, non-Hispanic 0.530
cor__race.facMultiracial, non-Hispanic.race.facWhite, non-Hispanic 0.952
sd__race.facWhite, non-Hispanic 0.377
AIC 22022.8 21969.4 21956.4 22007.7 21970.7
BIC 22108.5 22033.7 22092.1 22243.3 22013.5
Log.Lik. -10999.404 -10975.698 -10959.215 -10970.833 -10979.347
describe(ELS.final, fast = TRUE)
no non-missing arguments to min; returning Infno non-missing arguments to min; returning Infno non-missing arguments to min; returning Infno non-missing arguments to min; returning Infno non-missing arguments to max; returning -Infno non-missing arguments to max; returning -Infno non-missing arguments to max; returning -Infno non-missing arguments to max; returning -Inf
diagnostics <- augment(model.5)
ggplot(data = diagnostics, mapping = aes(x = .resid)) +
  geom_histogram(binwidth = .25) + theme_classic() + 
  labs(title = "Histogram of Residuals for Education Longitudinal Study Model",
                      x = "Residual Value") +
  geom_vline(xintercept = c(-2.5, 2.5), linetype = "dotted")

Assess Normality of Residuals Visually, with a Histogram: A little skewed

shapiro.test(diagnostics$.resid)
Error in shapiro.test(diagnostics$.resid) : 
  sample size must be between 3 and 5000

too many observaitons to check

ggplot(data = diagnostics, mapping = aes(x = .fitted, y = .resid)) +
  geom_point() + labs(title = "RVF Plot for Education Longitudinal Study Model",
                      x = "Predicted Value, math self-efficacy",
                      y = "Residual Value") + theme_classic()

Use Residuals vs. Fitted (RVF) Plot to Assess Homoskedasticity of Errors: Looks like there is a pattern

ggplot(data = diagnostics, mapping = aes(x = .fitted, y = .cooksd, label = SCH_ID.fac)) +
  geom_point() + geom_text(nudge_x = .25) + theme_classic() + 
  labs(title = "Cook's Distance Plot for School Education Longitudinal Study Model",
                      x = "Predicted Value, math self-efficacy",
                      y = "Cook's Distance") + 
  geom_hline(yintercept = 4/816, linetype = "dotted")

prod.trimmed <- diagnostics %>%
  filter(., .cooksd < .30)
model.trimmed <- lmer(math.se ~ sex.fac + mindset.growth.recode + 
         sch_level_school.climate.teacher + (1|SCH_ID.fac), REML = FALSE, data = prod.trimmed)
summary(model.trimmed)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
math.se ~ sex.fac + mindset.growth.recode + sch_level_school.climate.teacher +  
    (1 | SCH_ID.fac)
   Data: prod.trimmed

     AIC      BIC   logLik deviance df.resid 
 21970.7  22013.5 -10979.3  21958.7     9314 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6855 -0.7361 -0.1346  0.6971  2.9337 

Random effects:
 Groups     Name        Variance Std.Dev.
 SCH_ID.fac (Intercept) 0.01347  0.1161  
 Residual               0.60590  0.7784  
Number of obs: 9320, groups:  SCH_ID.fac, 744

Fixed effects:
                                 Estimate Std. Error t value
(Intercept)                       0.43234    0.14146   3.056
sex.facFemale                    -0.21601    0.01649 -13.101
mindset.growth.recode             0.32325    0.01188  27.213
sch_level_school.climate.teacher  0.44002    0.04731   9.300

Correlation of Fixed Effects:
            (Intr) sx.fcF mnds..
sex.facFeml -0.059              
mndst.grwt. -0.239  0.086       
sch_lvl_s.. -0.963 -0.025 -0.015
models <- list(model.1, model.2, model.3, model.4, model.5)
modelsummary(models, output = "html")
Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 1.738 0.127 0.836 0.423 0.432
(0.113) (0.215) (0.758) (0.139) (0.141)
race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.106 -0.524
(0.104) (0.772)
race.facBlack or African American, non-Hispanic -0.068 -0.576
(0.103) (0.764)
race.facHispanic, no race specified -0.047 -0.416
(0.106) (0.793)
race.facHispanic, race specified -0.109 -0.383
(0.105) (0.774)
race.facMultiracial, non-Hispanic -0.039 -0.194
(0.107) (0.781)
race.facWhite, non-Hispanic 0.022 -0.310
(0.100) (0.747)
sex.facFemale -0.213 -0.216 -0.215 -0.215 -0.216
(0.017) (0.016) (0.016) (0.016) (0.016)
mindset.entity.recode -0.015
(0.011)
mindset.growth.recode 0.322 0.324 0.324 0.323 0.323
(0.013) (0.012) (0.012) (0.012) (0.012)
sd__(Intercept) 0.145 0.113 0.114 0.398 0.116
sd__Observation 0.777 0.778 0.777 0.774 0.778
sch_level_school.climate 0.052
(0.037)
sch_level_school.climate.teacher 0.371 0.430 0.442 0.440
(0.059) (0.050) (0.047) (0.047)
sch_level_school.climate.student 0.092
(0.044)
sch_level_school.climate.racial 0.025 -0.211
(0.039) (0.406)
sch_level_school.climate.racial × race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.351
(0.423)
sch_level_school.climate.racial × race.facBlack or African American, non-Hispanic 0.294
(0.418)
sch_level_school.climate.racial × race.facHispanic, no race specified 0.204
(0.436)
sch_level_school.climate.racial × race.facHispanic, race specified 0.147
(0.425)
sch_level_school.climate.racial × race.facMultiracial, non-Hispanic 0.079
(0.428)
sch_level_school.climate.racial × race.facWhite, non-Hispanic 0.181
(0.408)
cor__(Intercept).race.facAsian, Hawaii/Pac. Islander,non-Hispanic -0.842
cor__(Intercept).race.facBlack or African American, non-Hispanic -0.994
cor__(Intercept).race.facHispanic, no race specified -0.996
cor__(Intercept).race.facHispanic, race specified -0.943
cor__(Intercept).race.facMultiracial, non-Hispanic -0.980
cor__(Intercept).race.facWhite, non-Hispanic -0.947
sd__race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.338
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facBlack or African American, non-Hispanic 0.881
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facHispanic, no race specified 0.842
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facHispanic, race specified 0.615
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facMultiracial, non-Hispanic 0.834
cor__race.facAsian, Hawaii/Pac. Islander,non-Hispanic.race.facWhite, non-Hispanic 0.963
sd__race.facBlack or African American, non-Hispanic 0.338
cor__race.facBlack or African American, non-Hispanic.race.facHispanic, no race specified 0.997
cor__race.facBlack or African American, non-Hispanic.race.facHispanic, race specified 0.911
cor__race.facBlack or African American, non-Hispanic.race.facMultiracial, non-Hispanic 0.990
cor__race.facBlack or African American, non-Hispanic.race.facWhite, non-Hispanic 0.973
sd__race.facHispanic, no race specified 0.360
cor__race.facHispanic, no race specified.race.facHispanic, race specified 0.938
cor__race.facHispanic, no race specified.race.facMultiracial, non-Hispanic 0.994
cor__race.facHispanic, no race specified.race.facWhite, non-Hispanic 0.953
sd__race.facHispanic, race specified 0.261
cor__race.facHispanic, race specified.race.facMultiracial, non-Hispanic 0.919
cor__race.facHispanic, race specified.race.facWhite, non-Hispanic 0.792
sd__race.facMultiracial, non-Hispanic 0.530
cor__race.facMultiracial, non-Hispanic.race.facWhite, non-Hispanic 0.952
sd__race.facWhite, non-Hispanic 0.377
AIC 22022.8 21969.4 21956.4 22007.7 21970.7
BIC 22108.5 22033.7 22092.1 22243.3 22013.5
Log.Lik. -10999.404 -10975.698 -10959.215 -10970.833 -10979.347

`

models.1 <- list(model.1, model.2, model.3, model.5)
modelsummary(models.1, output = "html")
Model 1 Model 2 Model 3 Model 4
(Intercept) 1.738 0.127 0.836 0.432
(0.113) (0.215) (0.758) (0.141)
race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.106 -0.524
(0.104) (0.772)
race.facBlack or African American, non-Hispanic -0.068 -0.576
(0.103) (0.764)
race.facHispanic, no race specified -0.047 -0.416
(0.106) (0.793)
race.facHispanic, race specified -0.109 -0.383
(0.105) (0.774)
race.facMultiracial, non-Hispanic -0.039 -0.194
(0.107) (0.781)
race.facWhite, non-Hispanic 0.022 -0.310
(0.100) (0.747)
sex.facFemale -0.213 -0.216 -0.215 -0.216
(0.017) (0.016) (0.016) (0.016)
mindset.entity.recode -0.015
(0.011)
mindset.growth.recode 0.322 0.324 0.324 0.323
(0.013) (0.012) (0.012) (0.012)
sd__(Intercept) 0.145 0.113 0.114 0.116
sd__Observation 0.777 0.778 0.777 0.778
sch_level_school.climate 0.052
(0.037)
sch_level_school.climate.teacher 0.371 0.430 0.440
(0.059) (0.050) (0.047)
sch_level_school.climate.student 0.092
(0.044)
sch_level_school.climate.racial 0.025 -0.211
(0.039) (0.406)
sch_level_school.climate.racial × race.facAsian, Hawaii/Pac. Islander,non-Hispanic 0.351
(0.423)
sch_level_school.climate.racial × race.facBlack or African American, non-Hispanic 0.294
(0.418)
sch_level_school.climate.racial × race.facHispanic, no race specified 0.204
(0.436)
sch_level_school.climate.racial × race.facHispanic, race specified 0.147
(0.425)
sch_level_school.climate.racial × race.facMultiracial, non-Hispanic 0.079
(0.428)
sch_level_school.climate.racial × race.facWhite, non-Hispanic 0.181
(0.408)
AIC 22022.8 21969.4 21956.4 21970.7
BIC 22108.5 22033.7 22092.1 22013.5
Log.Lik. -10999.404 -10975.698 -10959.215 -10979.347
models.2 <- list(model.5, model.trimmed)
modelsummary(models.2, output = "html")

Model 1 Model 2
(Intercept) 0.432 0.432
(0.141) (0.141)
sex.facFemale -0.216 -0.216
(0.016) (0.016)
mindset.growth.recode 0.323 0.323
(0.012) (0.012)
sch_level_school.climate.teacher 0.440 0.440
(0.047) (0.047)
sd__(Intercept) 0.116 0.116
sd__Observation 0.778 0.778
AIC 21970.7 21970.7
BIC 22013.5 22013.5
Log.Lik. -10979.347 -10979.347

NA
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiANCg0KVHJ5IGV4ZWN1dGluZyB0aGlzIGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqUnVuKiBidXR0b24gd2l0aGluIHRoZSBjaHVuayBvciBieSBwbGFjaW5nIHlvdXIgY3Vyc29yIGluc2lkZSBpdCBhbmQgcHJlc3NpbmcgKkN0cmwrU2hpZnQrRW50ZXIqLiANCg0KYGBge3J9DQpwbG90KGNhcnMpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkocHN5Y2gpDQpsaWJyYXJ5KGxtZTQpDQpgYGANCg0KDQoNCmBgYHtyfQ0KWDA0Mjc1XzAwMDFfRGF0YSA8LSByZWFkX2R0YSgiRURVUyA2NTEvSUNQU1JfMDQyNzUtVjEvSUNQU1JfMDQyNzUvRFMwMDAxLzA0Mjc1LTAwMDEtRGF0YS5kdGEiKQ0KZ2xpbXBzZShYMDQyNzVfMDAwMV9EYXRhKQ0KYGBgDQpgYGB7cn0NCkVMUy5jbGVhbiA8LSBYMDQyNzVfMDAwMV9EYXRhDQpgYGANCg0KYGBge3J9DQpFTFMuY2xlYW4gPC0gRUxTLmNsZWFuICU+JQ0KICBzZWxlY3QoLiwgQllTMjBKLA0KICAgICAgICAgQllTMjFCLA0KICAgICAgICAgQllTMjBHLA0KICAgICAgICAgQllTMjBGLA0KICAgICAgICAgQllTMjBILA0KICAgICAgICAgQllTMjBBLA0KICAgICAgICAgQllTMjBJLA0KICAgICAgICAgQllTMjBDLA0KICAgICAgICAgQllTODhCLA0KICAgICAgICAgQllTODhBLA0KICAgICAgICAgQllTODlSLA0KICAgICAgICAgQllTODlBLA0KICAgICAgICAgQllTODlCLA0KICAgICAgICAgQllTODlVLA0KICAgICAgICAgQllTODlMLA0KICAgICAgICAgQllTMjlCLA0KICAgICAgICAgQllTMjlFLA0KICAgICAgICAgQllTMjlDLA0KICAgICAgICAgQllTMjlKLA0KICAgICAgICAgU0NIX0lELA0KICAgICAgICAgU1RVX0lELA0KICAgICAgICAgU0VYLA0KICAgICAgICAgUkFDRSkNCmdsaW1wc2UoRUxTLmNsZWFuKQ0KYGBgDQpgYGB7cn0NCkVMUy5jbGVhbi5tdSA8LSBFTFMuY2xlYW4gJT4lDQptdXRhdGUoLiwNCiAgICAgICBzY2guY2xpbS5zY2gxID0gQllTMjBKLA0KICAgICAgIHNjaC5jbGltLnNjaDIgPSBCWVMyMUIsDQogICAgICAgc2NoLmNsaW0udGVhMSA9IEJZUzIwRywNCiAgICAgICBzY2guY2xpbS50ZWEyID0gQllTMjBGLA0KICAgICAgIHNjaC5jbGltLnRlYTMgPSBCWVMyMEgsDQogICAgICAgc2NoLmNsaW0udGVhNCA9IEJZUzIwQSwNCiAgICAgICBzY2guY2xpbS5zdDEgPSBCWVMyMEksDQogICAgICAgc2NoLmNsaW0ucmFjaWFsMSA9IEJZUzIwQywNCiAgICAgICBtaW5kc2V0LmVudGl0eSA9IEJZUzg4QiwNCiAgICAgICBtaW5kc2V0Lmdyb3d0aCA9IEJZUzg4QSwNCiAgICAgICBtYXRoLnNlMSA9IEJZUzg5UiwNCiAgICAgICBtYXRoLnNlMiA9IEJZUzg5QSwNCiAgICAgICBtYXRoLnNlMyA9IEJZUzg5QiwNCiAgICAgICBtYXRoLnNlNCA9IEJZUzg5VSwNCiAgICAgICBtYXRoLnNlNSA9IEJZUzg5TCwNCiAgICAgICBtYXRoLmVuZ2FnZTEgPSBCWVMyOUIsDQogICAgICAgbWF0aC5lbmdhZ2UyID0gQllTMjlFLA0KICAgICAgIG1hdGguZW5nYWdlMyA9IEJZUzI5QywNCiAgICAgICBtYXRoLmVuZ2FnZTQgPSBCWVMyOUosDQogICAgICAgU0NIX0lELmZhYyA9IGFzX2ZhY3RvcihTQ0hfSUQpLA0KICAgICAgIFNUVV9JRC5mYWMgPSBhc19mYWN0b3IoU1RVX0lEKSwNCiAgICAgICBzZXguZmFjID0gYXNfZmFjdG9yKFNFWCksDQogICAgICAgcmFjZS5mYWMgPSBhc19mYWN0b3IoUkFDRSkpDQoNCmBgYA0KDQpgYGB7cn0NCnRhYmxlKEVMUy5jbGVhbi5tdSRzY2guY2xpbS5zY2gxKQ0KYGBgDQoNCg0KYGBge3J9DQpFTFMuY2xlYW4uZmlsdGVyIDwtIEVMUy5jbGVhbi5tdSAlPiUNCiAgZmlsdGVyKC4sDQogICAgICAgICAhc2NoLmNsaW0uc2NoMSAlaW4lIA0KICAgICAgICAgICAgICgtOSksIA0KICAgICAgICAgIXNjaC5jbGltLnNjaDEgJWluJSANCiAgICAgICAgICAgICAoLTcpLA0KICAgICAgICAgIXNjaC5jbGltLnNjaDEgJWluJSANCiAgICAgICAgICAgICAoLTYpLA0KICAgICAgICAgIXNjaC5jbGltLnNjaDIgJWluJSANCiAgICAgICAgICAgICAoLTkpLCANCiAgICAgICAgICFzY2guY2xpbS5zY2gyICVpbiUgDQogICAgICAgICAgICAgKC03KSwNCiAgICAgICAgICFzY2guY2xpbS5zY2gyICVpbiUgDQogICAgICAgICAgICAgKC02KSwNCiAgICAgICAgICFzY2guY2xpbS50ZWExICVpbiUgDQogICAgICAgICAgICAgKC05KSwgDQogICAgICAgICAhc2NoLmNsaW0udGVhMSAlaW4lIA0KICAgICAgICAgICAgICgtNyksDQogICAgICAgICAhc2NoLmNsaW0udGVhMSAlaW4lIA0KICAgICAgICAgICAgICgtNiksDQogICAgICAgICAhc2NoLmNsaW0udGVhMiAlaW4lIA0KICAgICAgICAgICAgICgtOSksIA0KICAgICAgICAgIXNjaC5jbGltLnRlYTIgJWluJSANCiAgICAgICAgICAgICAoLTcpLA0KICAgICAgICAgIXNjaC5jbGltLnRlYTIgJWluJSANCiAgICAgICAgICAgICAoLTYpLA0KICAgICAgICAgIXNjaC5jbGltLnRlYTMgJWluJSANCiAgICAgICAgICAgICAoLTkpLCANCiAgICAgICAgICFzY2guY2xpbS50ZWEzICVpbiUgDQogICAgICAgICAgICAgKC03KSwNCiAgICAgICAgICFzY2guY2xpbS50ZWEzICVpbiUgDQogICAgICAgICAgICAgKC02KSwNCiAgICAgICAgICFzY2guY2xpbS50ZWE0ICVpbiUgDQogICAgICAgICAgICAgKC05KSwgDQogICAgICAgICAhc2NoLmNsaW0udGVhNCAlaW4lIA0KICAgICAgICAgICAgICgtNyksDQogICAgICAgICAhc2NoLmNsaW0udGVhNCAlaW4lIA0KICAgICAgICAgICAgICgtNiksDQogICAgICAgICAhc2NoLmNsaW0uc3QxICVpbiUgDQogICAgICAgICAgICAgKC05KSwgDQogICAgICAgICAhc2NoLmNsaW0uc3QxICVpbiUgDQogICAgICAgICAgICAgKC03KSwNCiAgICAgICAgICFzY2guY2xpbS5zdDEgJWluJSANCiAgICAgICAgICAgICAoLTYpLA0KICAgICAgICAgIXNjaC5jbGltLnJhY2lhbDEgJWluJSANCiAgICAgICAgICAgICAoLTkpLCANCiAgICAgICAgICFzY2guY2xpbS5yYWNpYWwxICVpbiUgDQogICAgICAgICAgICAgKC03KSwNCiAgICAgICAgICFzY2guY2xpbS5yYWNpYWwxICVpbiUgDQogICAgICAgICAgICAgKC02KSwNCiAgICAgICAgICFtaW5kc2V0LmVudGl0eSAlaW4lIA0KICAgICAgICAgICAgICgtOSksIA0KICAgICAgICAgIW1pbmRzZXQuZW50aXR5ICVpbiUgDQogICAgICAgICAgICAgKC03KSwNCiAgICAgICAgICFtaW5kc2V0LmVudGl0eSAlaW4lIA0KICAgICAgICAgICAgICgtNiksDQogICAgICAgICAhbWluZHNldC5ncm93dGggJWluJSANCiAgICAgICAgICAgICAoLTkpLCANCiAgICAgICAgICFtaW5kc2V0Lmdyb3d0aCAlaW4lIA0KICAgICAgICAgICAgICgtNyksDQogICAgICAgICAhbWluZHNldC5ncm93dGggJWluJSANCiAgICAgICAgICAgICAoLTYpLA0KICAgICAgICAgIW1hdGguc2UxICVpbiUgDQogICAgICAgICAgICAgKC05KSwgDQogICAgICAgICAhbWF0aC5zZTEgJWluJSANCiAgICAgICAgICAgICAoLTcpLA0KICAgICAgICAgIW1hdGguc2UxICVpbiUgDQogICAgICAgICAgICAgKC02KSwNCiAgICAgICAgIW1hdGguc2UyICVpbiUgDQogICAgICAgICAgICAgKC05KSwgDQogICAgICAgICAhbWF0aC5zZTIgJWluJSANCiAgICAgICAgICAgICAoLTcpLA0KICAgICAgICAgIW1hdGguc2UyICVpbiUgDQogICAgICAgICAgICAgKC02KSwNCiAgICAgICAgICFtYXRoLnNlMyAlaW4lIA0KICAgICAgICAgICAgICgtOSksIA0KICAgICAgICAgIW1hdGguc2UzICVpbiUgDQogICAgICAgICAgICAgKC03KSwNCiAgICAgICAgICFtYXRoLnNlMyAlaW4lIA0KICAgICAgICAgICAgICgtNiksDQogICAgICAgICAhbWF0aC5zZTQgJWluJSANCiAgICAgICAgICAgICAoLTkpLCANCiAgICAgICAgICFtYXRoLnNlNCAlaW4lIA0KICAgICAgICAgICAgICgtNyksDQogICAgICAgICAhbWF0aC5zZTQgJWluJSANCiAgICAgICAgICAgICAoLTYpLA0KICAgICAgICAgIW1hdGguc2U1ICVpbiUgDQogICAgICAgICAgICAgKC05KSwgDQogICAgICAgICAhbWF0aC5zZTUgJWluJSANCiAgICAgICAgICAgICAoLTcpLA0KICAgICAgICAgIW1hdGguc2U1ICVpbiUgDQogICAgICAgICAgICAgKC02KSwNCiAgICAgICAgICFtYXRoLmVuZ2FnZTEgJWluJSANCiAgICAgICAgICAgICAoLTkpLCANCiAgICAgICAgICFtYXRoLmVuZ2FnZTEgJWluJSANCiAgICAgICAgICAgICAoLTcpLA0KICAgICAgICAgIW1hdGguZW5nYWdlMSAlaW4lIA0KICAgICAgICAgICAgICgtNiksDQogICAgICAgICFtYXRoLmVuZ2FnZTIgJWluJSANCiAgICAgICAgICAgICAoLTkpLCANCiAgICAgICAgICFtYXRoLmVuZ2FnZTIgJWluJSANCiAgICAgICAgICAgICAoLTcpLA0KICAgICAgICAgIW1hdGguZW5nYWdlMiAlaW4lIA0KICAgICAgICAgICAgICgtNiksDQogICAgICAgICFtYXRoLmVuZ2FnZTMgJWluJSANCiAgICAgICAgICAgICAoLTkpLCANCiAgICAgICAgICFtYXRoLmVuZ2FnZTMgJWluJSANCiAgICAgICAgICAgICAoLTcpLA0KICAgICAgICAgIW1hdGguZW5nYWdlMyAlaW4lIA0KICAgICAgICAgICAgICgtNiksDQogICAgICAgICFtYXRoLmVuZ2FnZTQgJWluJSANCiAgICAgICAgICAgICAoLTkpLCANCiAgICAgICAgICFtYXRoLmVuZ2FnZTQgJWluJSANCiAgICAgICAgICAgICAoLTcpLA0KICAgICAgICAgIW1hdGguZW5nYWdlNCAlaW4lIA0KICAgICAgICAgICAgICgtNikpDQogICAgICAgIA0KYGBgDQoNCg0KYGBge3J9DQpFTFMuY2xlYW4uZmlsdGVyIDwtIEVMUy5jbGVhbi5maWx0ZXIgJT4lDQogIG11dGF0ZSguLA0KICAgICAgICAgc2NoLmNsaW0uc2NoMi5yZWNvZGUgPSBjYXNlX3doZW4oDQogICAgICAgICAgIHNjaC5jbGltLnNjaDIgPT0gMSB+IDQsDQogICAgICAgICAgIHNjaC5jbGltLnNjaDIgPT0gMiB+IDMsDQogICAgICAgICAgIHNjaC5jbGltLnNjaDIgPT0gMyB+IDIsDQogICAgICAgICAgIHNjaC5jbGltLnNjaDIgPT0gNCB+IDEpLA0KICAgICAgICAgc2NoLmNsaW0udGVhMS5yZWNvZGUgPSBjYXNlX3doZW4oDQogICAgICAgICAgIHNjaC5jbGltLnRlYTEgPT0gMSB+IDQsDQogICAgICAgICAgIHNjaC5jbGltLnRlYTEgPT0gMiB+IDMsDQogICAgICAgICAgIHNjaC5jbGltLnRlYTEgPT0gMyB+IDIsDQogICAgICAgICAgIHNjaC5jbGltLnRlYTEgPT0gNCB+IDEpLA0KICAgICAgICAgc2NoLmNsaW0udGVhMi5yZWNvZGUgPSBjYXNlX3doZW4oDQogICAgICAgICAgIHNjaC5jbGltLnRlYTIgPT0gMSB+IDQsDQogICAgICAgICAgIHNjaC5jbGltLnRlYTIgPT0gMiB+IDMsDQogICAgICAgICAgIHNjaC5jbGltLnRlYTIgPT0gMyB+IDIsDQogICAgICAgICAgIHNjaC5jbGltLnRlYTIgPT0gNCB+IDEpLA0KICAgICAgICBzY2guY2xpbS50ZWE0LnJlY29kZSA9IGNhc2Vfd2hlbigNCiAgICAgICAgICAgc2NoLmNsaW0udGVhNCA9PSAxIH4gNCwNCiAgICAgICAgICAgc2NoLmNsaW0udGVhNCA9PSAyIH4gMywNCiAgICAgICAgICAgc2NoLmNsaW0udGVhNCA9PSAzIH4gMiwNCiAgICAgICAgICAgc2NoLmNsaW0udGVhNCA9PSA0IH4gMSksDQogICAgICAgIHNjaC5jbGltLnJhY2lhbDEucmVjb2RlID0gY2FzZV93aGVuKA0KICAgICAgICAgICBzY2guY2xpbS5yYWNpYWwxID09IDEgfiA0LA0KICAgICAgICAgICBzY2guY2xpbS5yYWNpYWwxID09IDIgfiAzLA0KICAgICAgICAgICBzY2guY2xpbS5yYWNpYWwxID09IDMgfiAyLA0KICAgICAgICAgICBzY2guY2xpbS5yYWNpYWwxID09IDQgfiAxKSwNCiAgICAgICAgbWluZHNldC5ncm93dGgucmVjb2RlID0gY2FzZV93aGVuKA0KICAgICAgICAgICBtaW5kc2V0Lmdyb3d0aCA9PSAxIH4gNCwNCiAgICAgICAgICAgbWluZHNldC5ncm93dGggPT0gMiB+IDMsDQogICAgICAgICAgIG1pbmRzZXQuZ3Jvd3RoID09IDMgfiAyLA0KICAgICAgICAgICBtaW5kc2V0Lmdyb3d0aCA9PSA0IH4gMSkpDQpgYGANCg0KYGBge3J9DQpzZV9pdGVtcyA8LSBFTFMuY2xlYW4uZmlsdGVyICU+JQ0KICBzZWxlY3QoLiwNCiAgICAgICAgIG1hdGguc2UxLA0KICAgICAgIG1hdGguc2UyLA0KICAgICAgIG1hdGguc2UzLA0KICAgICAgIG1hdGguc2U0LA0KICAgICAgIG1hdGguc2U1KQ0KYWxwaGEoc2VfaXRlbXMpDQpgYGANCmBgYHtyfQ0KZW5nYWdlX2l0ZW1zIDwtIEVMUy5jbGVhbi5maWx0ZXIgJT4lDQogIHNlbGVjdCguLA0KICAgICAgIG1hdGguZW5nYWdlMSwNCiAgICAgICBtYXRoLmVuZ2FnZTMsDQogICAgICAgbWF0aC5lbmdhZ2U0KQ0KYWxwaGEoZW5nYWdlX2l0ZW1zKQ0KYGBgDQoNCg0KDQoNCg0KYGBge3J9DQpteS5rZXlzLmxpc3QgPC0gbGlzdChzY2hvb2wuY2xpbWF0ZS5zY2hvb2wgPSBjKCJzY2guY2xpbS5zY2gxIiwgInNjaC5jbGltLnNjaDIucmVjb2RlIiksDQogICAgICAgICAgICAgICAgICAgICBTY2hvb2wuY2xpbWF0ZS50ZWFjaGVyID0gYygic2NoLmNsaW0udGVhMS5yZWNvZGUiLCAic2NoLmNsaW0udGVhMi5yZWNvZGUiLCAic2NoLmNsaW0udGVhMyIsICJzY2guY2xpbS50ZWE0LnJlY29kZSIpLA0KICAgICAgICAgICAgICAgICAgICAgbWF0aC5zZSA9IGMoIm1hdGguc2UxIiwgIm1hdGguc2UyIiwgIm1hdGguc2UzIiwgIm1hdGguc2U0IiwgIm1hdGguc2U1IiksDQogICAgICAgICAgICAgICAgICAgICBncm93dGgubWluZHNldCA9IGMoIm1pbmRzZXQuZ3Jvd3RoLnJlY29kZSIsICJtaW5kc2V0LmVudGl0eSIpKQ0KICAgICAgICAgICAgICAgICAgICAgDQpteS5zY2FsZXMgPC0gc2NvcmVJdGVtcyhteS5rZXlzLmxpc3QsIEVMUy5jbGVhbi5maWx0ZXIsIGltcHV0ZSA9ICJub25lIikNCmBgYA0KDQpgYGB7cn0NCnByaW50KG15LnNjYWxlcywgc2hvcnQgPSBGQUxTRSkNCmBgYA0KDQpgYGB7cn0NCnNjaG9vbF9pdGVtcyA8LSBFTFMuY2xlYW4uZmlsdGVyICU+JQ0KICBzZWxlY3QoLiwNCiAgICAgICAgIHNjaC5jbGltLnNjaDEsDQogICAgICAgICBzY2guY2xpbS5zY2gyLnJlY29kZSkNCmFscGhhKHNjaG9vbF9pdGVtcykNCmBgYA0KDQpgYGB7cn0NCiBFTFMuY2xlYW4uZmlsdGVyIDwtIEVMUy5jbGVhbi5maWx0ZXIgJT4lDQogIGdyb3VwX2J5KFNDSF9JRC5mYWMpICU+JSANCiAgbXV0YXRlKC4sDQogICAgICAgICAgICBzY2hfc2NoLmNsaW0uc2NoMSA9IG1lYW4oc2NoLmNsaW0uc2NoMSwgbmEucm0gPSBUUlVFKSwNCiAgICAgICAgIHNjaF9zY2guY2xpbS5zY2gyLnJlY29kZSA9IG1lYW4oc2NoLmNsaW0uc2NoMi5yZWNvZGUsIG5hLnJtID0gVFJVRSkpICU+JQ0KICB1bmdyb3VwKCkNCmBgYA0KDQpgYGB7cn0NCnNjaF9zY2hvb2xfaXRlbXMgPC0gRUxTLmNsZWFuLmZpbHRlciAlPiUNCiAgc2VsZWN0KC4sDQogICAgICAgICBzY2hfc2NoLmNsaW0uc2NoMSwNCiAgICAgICAgIHNjaF9zY2guY2xpbS5zY2gyLnJlY29kZSkNCg0KYGBgDQoNCg0KYGBge3J9DQphbHBoYShzY2hfc2Nob29sX2l0ZW1zKQ0KYGBgDQpgYGB7cn0NCm15LnNjb3JlcyA8LSBhc190aWJibGUobXkuc2NhbGVzJHNjb3JlcykNCmBgYA0KDQpgYGB7cn0NCkVMUy5jbGVhbi5maWx0ZXIuMSA8LWJpbmRfY29scyhFTFMuY2xlYW4uZmlsdGVyLCBteS5zY29yZXMpDQpgYGANCg0KDQoNCg0KYGBge3J9DQogRUxTLmNsZWFuLmZpbHRlci4xIDwtIEVMUy5jbGVhbi5maWx0ZXIuMSAlPiUNCiAgZ3JvdXBfYnkoU0NIX0lELmZhYykgJT4lIA0KICBtdXRhdGUoLiwNCiAgICAgICAgICAgIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZSA9IG1lYW4oc2NoLmNsaW0uc2NoMSwgbmEucm0gPSBUUlVFKSwNCiAgICAgICAgIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS50ZWFjaGVyID0gbWVhbihTY2hvb2wuY2xpbWF0ZS50ZWFjaGVyLCBuYS5ybSA9IFRSVUUpLA0KICAgICAgICAgc2NoX2xldmVsX3NjaG9vbC5jbGltYXRlLnN0dWRlbnQgPSBtZWFuKHNjaC5jbGltLnN0MSwgbmEucm0gPSBUUlVFKSwNCiAgICAgICAgIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS5yYWNpYWwgPSBtZWFuKHNjaC5jbGltLnJhY2lhbDEsIG5hLnJtID0gVFJVRSkpICU+JQ0KICB1bmdyb3VwKCkNCmBgYA0KDQpgYGB7cn0NCkVMUy5jbGVhbi5maWx0ZXIuMSA8LSBFTFMuY2xlYW4uZmlsdGVyLjEgJT4lICAgICAgIA0KICBtdXRhdGUoLiwNCiAgICAgICAgIG1pbmRzZXQuZW50aXR5LnJlY29kZSA9IGNhc2Vfd2hlbigNCiAgICAgICAgICAgbWluZHNldC5lbnRpdHkgPT0gMSB+IDQsDQogICAgICAgICAgIG1pbmRzZXQuZW50aXR5ID09IDIgfiAzLA0KICAgICAgICAgICBtaW5kc2V0LmVudGl0eSA9PSAzIH4gMiwNCiAgICAgICAgICAgbWluZHNldC5lbnRpdHkgPT0gNCB+IDEpKQ0KYGBgDQoNCg0KYGBge3J9DQpFTFMuZmluYWwgPC0gRUxTLmNsZWFuLmZpbHRlci4xICU+JQ0KICBzZWxlY3QoLiwNCiAgICAgICAgIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZSwNCiAgICAgICAgIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS50ZWFjaGVyLA0KICAgICAgICAgc2NoX2xldmVsX3NjaG9vbC5jbGltYXRlLnN0dWRlbnQsDQogICAgICAgICBzY2hfbGV2ZWxfc2Nob29sLmNsaW1hdGUucmFjaWFsLA0KICAgICAgICAgbWluZHNldC5lbnRpdHkucmVjb2RlLA0KICAgICAgICAgbWluZHNldC5ncm93dGgucmVjb2RlLA0KICAgICAgICAgbWF0aC5zZSwNCiAgICAgICAgIHNleC5mYWMsDQogICAgICAgICByYWNlLmZhYywNCiAgICAgICAgIFNDSF9JRC5mYWMsDQogICAgICAgICBTVFVfSUQuZmFjLA0KICAgICAgICAgU0NIX0lEKQ0KDQpgYGANCg0KYGBge3J9DQptb2RlbC5udWxsIDwtIGxtZXIobWF0aC5zZSB+ICgxfFNDSF9JRC5mYWMpLCBSRU1MID0gRkFMU0UsIGRhdGEgPSBFTFMuZmluYWwpDQpzdW1tYXJ5KG1vZGVsLm51bGwpDQpgYGANCmBgYHtyfQ0KSUNDIDwtIDAuMDIvKDAuMDIgKyAwLjY3KQ0KSUNDDQpgYGANCg0KYGBge3J9DQptb2RlbC4xIDwtIGxtZXIobWF0aC5zZSB+IHJhY2UuZmFjICsgc2V4LmZhYyArIG1pbmRzZXQuZW50aXR5LnJlY29kZSArIG1pbmRzZXQuZ3Jvd3RoLnJlY29kZSArICgxfFNDSF9JRC5mYWMpLCBSRU1MID0gRkFMU0UsIGRhdGEgPSBFTFMuZmluYWwpDQpzdW1tYXJ5KG1vZGVsLjEpDQpgYGANCm1pbmRzZXQuZW50aXR5IGlzbid0IHNpZ25pZmljYW50LCB0YWtpbmcgb3V0IG9mIG1vZGVsDQoNCmBgYHtyfQ0KbW9kZWwuMiA8LSBsbWVyKG1hdGguc2UgfiBzZXguZmFjICsgbWluZHNldC5ncm93dGgucmVjb2RlICsgc2NoX2xldmVsX3NjaG9vbC5jbGltYXRlICsNCiAgICAgICAgIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS50ZWFjaGVyICsgc2NoX2xldmVsX3NjaG9vbC5jbGltYXRlLnN0dWRlbnQgKw0KICAgICAgICAgc2NoX2xldmVsX3NjaG9vbC5jbGltYXRlLnJhY2lhbCArICgxfFNDSF9JRC5mYWMpLCBSRU1MID0gRkFMU0UsIGRhdGEgPSBFTFMuZmluYWwpDQpzdW1tYXJ5KG1vZGVsLjIpDQpgYGANCnNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS5yYWNpYWwgbm90IHNpZ25pZmljYW50LW1pZ2h0IHRyeSB3aXRoIGFuIGludGVyYWN0aW9uIHdpdGggcmFjZQ0KDQpzY2hfbGV2ZWxfc2Nob29sLmNsaW1hdGUuc3R1ZGVudCBub3Qgc2lnbmlmaWNhbnQNCnNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZSBub3Qgc2lnbmlmaWNhbnQNCmBgYHtyfQ0KbW9kZWwuMyA8LSBsbWVyKG1hdGguc2UgfiBzZXguZmFjICsgbWluZHNldC5ncm93dGgucmVjb2RlICsgc2NoX2xldmVsX3NjaG9vbC5jbGltYXRlLnJhY2lhbCArIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS50ZWFjaGVyICsgcmFjZS5mYWMgKyByYWNlLmZhYzpzY2hfbGV2ZWxfc2Nob29sLmNsaW1hdGUucmFjaWFsICsgKDF8U0NIX0lELmZhYyksIFJFTUwgPSBGQUxTRSwgZGF0YSA9IEVMUy5maW5hbCkNCnN1bW1hcnkobW9kZWwuMykNCmBgYA0KYGBge3J9DQppbnRlcnBsb3Q6OmludGVycGxvdChtb2RlbC5pbnRlcmFjdGlvbiwgdmFyMSA9ICJyYWNlLmZhYyIsIHZhcjIgPSAic2NoX2xldmVsX3NjaG9vbC5jbGltYXRlLnJhY2lhbCIpDQpgYGANCg0KDQoNCg0KDQpgYGB7cn0NCm1vZGVsLjQgPC0gbG1lcihtYXRoLnNlIH4gc2V4LmZhYyArIG1pbmRzZXQuZ3Jvd3RoLnJlY29kZSArIA0KICAgICAgICAgc2NoX2xldmVsX3NjaG9vbC5jbGltYXRlLnRlYWNoZXIgKyAocmFjZS5mYWN8U0NIX0lELmZhYyksIFJFTUwgPSBGQUxTRSwgZGF0YSA9IEVMUy5maW5hbCkNCnN1bW1hcnkobW9kZWwuNCkNCmBgYA0KYGBge3J9DQptb2RlbC41IDwtIGxtZXIobWF0aC5zZSB+IHNleC5mYWMgKyBtaW5kc2V0Lmdyb3d0aC5yZWNvZGUgKyANCiAgICAgICAgIHNjaF9sZXZlbF9zY2hvb2wuY2xpbWF0ZS50ZWFjaGVyICsgKDF8U0NIX0lELmZhYyksIFJFTUwgPSBGQUxTRSwgZGF0YSA9IEVMUy5maW5hbCkNCnN1bW1hcnkobW9kZWwuNSkNCmBgYA0KDQoNCg0KDQpgYGB7cn0NCmxpYnJhcnkobW9kZWxzdW1tYXJ5KQ0KbGlicmFyeShicm9vbS5taXhlZCkNCmxpYnJhcnkodGFibGVzKQ0KYGBgDQpgYGB7cn0NCm1vZGVscyA8LSBsaXN0KG1vZGVsLjEsIG1vZGVsLjIsIG1vZGVsLjMsIG1vZGVsLjQsIG1vZGVsLjUpDQptb2RlbHN1bW1hcnkobW9kZWxzLCBvdXRwdXQgPSAibWFya2Rvd24iKQ0KYGBgDQoNCmBgYHtyfQ0KZGVzY3JpYmUoRUxTLmZpbmFsLCBmYXN0ID0gVFJVRSkNCmBgYA0KDQpgYGB7cn0NCmRpYWdub3N0aWNzIDwtIGF1Z21lbnQobW9kZWwuNSkNCmBgYA0KDQoNCg0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IGRpYWdub3N0aWNzLCBtYXBwaW5nID0gYWVzKHggPSAucmVzaWQpKSArDQogIGdlb21faGlzdG9ncmFtKGJpbndpZHRoID0gLjI1KSArIHRoZW1lX2NsYXNzaWMoKSArIA0KICBsYWJzKHRpdGxlID0gIkhpc3RvZ3JhbSBvZiBSZXNpZHVhbHMgZm9yIEVkdWNhdGlvbiBMb25naXR1ZGluYWwgU3R1ZHkgTW9kZWwiLA0KICAgICAgICAgICAgICAgICAgICAgIHggPSAiUmVzaWR1YWwgVmFsdWUiKSArDQogIGdlb21fdmxpbmUoeGludGVyY2VwdCA9IGMoLTIuNSwgMi41KSwgbGluZXR5cGUgPSAiZG90dGVkIikNCmBgYA0KDQoNCkFzc2VzcyBOb3JtYWxpdHkgb2YgUmVzaWR1YWxzDQpWaXN1YWxseSwgd2l0aCBhIEhpc3RvZ3JhbTogQSBsaXR0bGUgc2tld2VkDQpgYGB7cn0NCnNoYXBpcm8udGVzdChkaWFnbm9zdGljcyQucmVzaWQpDQpgYGANCnRvbyBtYW55IG9ic2VydmFpdG9ucyB0byBjaGVjaw0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IGRpYWdub3N0aWNzLCBtYXBwaW5nID0gYWVzKHggPSAuZml0dGVkLCB5ID0gLnJlc2lkKSkgKw0KICBnZW9tX3BvaW50KCkgKyBsYWJzKHRpdGxlID0gIlJWRiBQbG90IGZvciBFZHVjYXRpb24gTG9uZ2l0dWRpbmFsIFN0dWR5IE1vZGVsIiwNCiAgICAgICAgICAgICAgICAgICAgICB4ID0gIlByZWRpY3RlZCBWYWx1ZSwgbWF0aCBzZWxmLWVmZmljYWN5IiwNCiAgICAgICAgICAgICAgICAgICAgICB5ID0gIlJlc2lkdWFsIFZhbHVlIikgKyB0aGVtZV9jbGFzc2ljKCkNCmBgYA0KVXNlIFJlc2lkdWFscyB2cy4gRml0dGVkIChSVkYpIFBsb3QgdG8gQXNzZXNzIEhvbW9za2VkYXN0aWNpdHkgb2YgRXJyb3JzOiBMb29rcyBsaWtlIHRoZXJlIGlzIGEgcGF0dGVybg0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IGRpYWdub3N0aWNzLCBtYXBwaW5nID0gYWVzKHggPSAuZml0dGVkLCB5ID0gLmNvb2tzZCwgbGFiZWwgPSBTQ0hfSUQuZmFjKSkgKw0KICBnZW9tX3BvaW50KCkgKyBnZW9tX3RleHQobnVkZ2VfeCA9IC4yNSkgKyB0aGVtZV9jbGFzc2ljKCkgKyANCiAgbGFicyh0aXRsZSA9ICJDb29rJ3MgRGlzdGFuY2UgUGxvdCBmb3IgU2Nob29sIEVkdWNhdGlvbiBMb25naXR1ZGluYWwgU3R1ZHkgTW9kZWwiLA0KICAgICAgICAgICAgICAgICAgICAgIHggPSAiUHJlZGljdGVkIFZhbHVlLCBtYXRoIHNlbGYtZWZmaWNhY3kiLA0KICAgICAgICAgICAgICAgICAgICAgIHkgPSAiQ29vaydzIERpc3RhbmNlIikgKyANCiAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gNC84MTYsIGxpbmV0eXBlID0gImRvdHRlZCIpDQpgYGANCmBgYHtyfQ0KcHJvZC50cmltbWVkIDwtIGRpYWdub3N0aWNzICU+JQ0KICBmaWx0ZXIoLiwgLmNvb2tzZCA8IC4zMCkNCm1vZGVsLnRyaW1tZWQgPC0gbG1lcihtYXRoLnNlIH4gc2V4LmZhYyArIG1pbmRzZXQuZ3Jvd3RoLnJlY29kZSArIA0KICAgICAgICAgc2NoX2xldmVsX3NjaG9vbC5jbGltYXRlLnRlYWNoZXIgKyAoMXxTQ0hfSUQuZmFjKSwgUkVNTCA9IEZBTFNFLCBkYXRhID0gcHJvZC50cmltbWVkKQ0Kc3VtbWFyeShtb2RlbC50cmltbWVkKQ0KYGBgDQoNCmBgYHtyfQ0KbW9kZWxzIDwtIGxpc3QobW9kZWwuMSwgbW9kZWwuMiwgbW9kZWwuMywgbW9kZWwuNCwgbW9kZWwuNSkNCm1vZGVsc3VtbWFyeShtb2RlbHMsIG91dHB1dCA9ICJodG1sIikNCmBgYA0KDQpgDQpgYGB7cn0NCm1vZGVscy4xIDwtIGxpc3QobW9kZWwuMSwgbW9kZWwuMiwgbW9kZWwuMywgbW9kZWwuNSkNCm1vZGVsc3VtbWFyeShtb2RlbHMuMSwgb3V0cHV0ID0gImh0bWwiKQ0KYGBgDQoNCg0KYGBge3J9DQptb2RlbHMuMiA8LSBsaXN0KG1vZGVsLjUsIG1vZGVsLnRyaW1tZWQpDQptb2RlbHN1bW1hcnkobW9kZWxzLjIsIG91dHB1dCA9ICJodG1sIikNCg0KYGBgDQoNCg0KDQo=