Objetivo

Resolver cuestiones de casos de probabilidad en casos mediante la identificación de variables aleatorias, funciones de probabilidad, funciones acumuladas, media, varianza y desviación estándar de distribuciones de variables discretas; visualización gráfica relacionada con variables discretas.

1. Cargar librerías

library(tidyverse)
library(ggplot2)
library(stringr)  
library(stringi)
library(gtools)
library(dplyr)
library(knitr)
library(gtools)

options(scipen = 999)

2. Ejercicios

Para cada ejercicio, se describe y define el contexo.

Se construye su tabla de probabilidad que contenga los valores de la variable aleatoria, la función de probabilidad y su función acumulada, la gráfica de barra de los valores de las variables aleatoria y la gráfica lineal de la función acumulada.

Se determina el valor esperado de cada ejercicio

Se determina la varianza y la desviación estándar de la distribución de las variables discretas.

2.1 Ejercicio 1

Se venden 5000 billetes para una rifa a 1 euro cada uno. Existe un único premio de cierta cantidad, calcular los valores de las variables aleatorias y sus probabilidades para 0 para no gana y 1 para si gana cuando un comprador adquiere tres billetes. (Hero, n.d.)

discretas <- c(0,1)   # 0 Que no gane, 1 que gane
n <- 5000 # sum(casos)
casos <- c(4950,50)
probabilidades <- casos / n

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
              casos = casos,
              f.prob.x = probabilidades,
              F.acum.x = acumulada,
              x.f.prob.x = (discretas * probabilidades))
kable(tabla, caption = "Tabla de probabilidad con la columna para valor esperado")
Tabla de probabilidad con la columna para valor esperado
x casos f.prob.x F.acum.x x.f.prob.x
0 4950 0.99 0.99 0.00
1 50 0.01 1.00 0.01
VE <- sum(tabla$x * tabla$f.prob.x)

VE
## [1] 0.01
tabla <- cbind(tabla, 'VE' = VE, 'x-VE.cuad.f.prob.x' = (tabla$x - VE)^2 * tabla$f.prob.x)

kable(tabla, caption = "Tabla de probabilidad con valor esperado y columnas para varianza")
Tabla de probabilidad con valor esperado y columnas para varianza
x casos f.prob.x F.acum.x x.f.prob.x VE x-VE.cuad.f.prob.x
0 4950 0.99 0.99 0.00 0.01 0.000099
1 50 0.01 1.00 0.01 0.01 0.009801
varianza <- sum((tabla$x - VE)^2 * tabla$f.prob.x)
varianza
## [1] 0.0099
desv.std <- sqrt(varianza)
desv.std
## [1] 0.09949874
tabla.sumatorias <- rbind(tabla, apply(tabla, 2, sum))
tabla.sumatorias[nrow(tabla), c(1,4,6)] <- '****'

kable(tabla.sumatorias, caption = "Tabla de probabilidad con sumatorias")
Tabla de probabilidad con sumatorias
x casos f.prob.x F.acum.x x.f.prob.x VE x-VE.cuad.f.prob.x
0 4950 0.99 0.99 0.00 0.01 0.000099
**** 50 0.01 **** 0.01 **** 0.009801
1 5000 1.00 1.99 0.01 0.02 0.009900
ggplot(data = tabla, aes(x = x, y=f.prob.x, fill=x)) +
  geom_bar(stat="identity") 

ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
  geom_point(colour="blue") + 
  geom_line(colour="red")

2.2 Ejercicio 2

Venta de autmóviles de Pelican Ford

Un vendedor llamado John Rasgdale vende la mayor cantidad de automóviles el sábado, así que desarrolló la siguiente distribución de probabilidades, en la cual se muestra la cantidad de automóviles que espera vender un sábado determinado.

La variable discreta venta de aumóviles: 0,1,2,3,4 el sábado. Los valores de la probabilida son : 0.1,0.2,0.3,0.3,0.1, previamente definidos.

Ya se dan las probabilidades de tal forma que la cantidad de casos no se dispone en este ejercicio.

¿De qué tipo de distribución se trata?

¿Cuántos automóviles espera vender John un sábado normal?

¿Cuál es la varianza de la distribución? (Lind et al., 2015).

discretas <- 0:4   

# casos <- c(4950,50)
# n <- sum(casos)

# probabilidades <- casos / n
casos <- rep('?', 5)
probabilidades <- c(0.1, 0.2, 0.3, 0.3, 0.1)

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
              casos = casos,
              f.prob.x = probabilidades,
              F.acum.x = acumulada,
              x.f.prob.x = (discretas * probabilidades))
kable(tabla, caption = "Tabla de probabilidad con la columna para valor esperado")
Tabla de probabilidad con la columna para valor esperado
x casos f.prob.x F.acum.x x.f.prob.x
0 ? 0.1 0.1 0.0
1 ? 0.2 0.3 0.2
2 ? 0.3 0.6 0.6
3 ? 0.3 0.9 0.9
4 ? 0.1 1.0 0.4
VE <- sum(tabla$x * tabla$f.prob.x)

VE
## [1] 2.1
tabla <- cbind(tabla, 'VE' = VE, 'x-VE.cuad.f.prob.x' = (tabla$x - VE)^2 * tabla$f.prob.x)

kable(tabla, caption = "Tabla de probabilidad con valor esperado y columnas para varianza")
Tabla de probabilidad con valor esperado y columnas para varianza
x casos f.prob.x F.acum.x x.f.prob.x VE x-VE.cuad.f.prob.x
0 ? 0.1 0.1 0.0 2.1 0.441
1 ? 0.2 0.3 0.2 2.1 0.242
2 ? 0.3 0.6 0.6 2.1 0.003
3 ? 0.3 0.9 0.9 2.1 0.243
4 ? 0.1 1.0 0.4 2.1 0.361
varianza <- sum((tabla$x - VE)^2 * tabla$f.prob.x)
varianza
## [1] 1.29
desv.std <- sqrt(varianza)
desv.std
## [1] 1.135782
#tabla.sumatorias <- rbind(tabla, apply(tabla, 2, sum))
#tabla.sumatorias[nrow(tabla), c(1,4,6)] <- '****'

#kable(tabla.sumatorias, caption = "Tabla de probabilidad con sumatorias")
ggplot(data = tabla, aes(x = x, y=f.prob.x, fill=x)) +
  geom_bar(stat="identity") 

ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
  geom_point(colour="blue") + 
  geom_line(colour="red")

2.3 Caso hombres y mujeres

Una compañía tiene cinco solicitantes para dos puestos de trabajo: dos mujeres y tres hombres. Suponga que los cinco solicitantes son igualmente calificados y que no hay preferencia para elegir su género. Sea x igual al número de mujeres elegidas para ocupar los dos puestos de trabajo. Encuentre las probabilidades para elegir 0 mujeres, 1 mujer o 2 mujeres. (???) * Haciendo las combinacones * M = Mujer * H = Hombre

personas <- c("H1", "H2", "H3", "M1", "M2")
S.espacio.muestral <- combinations(n = 5, r = 2, v=personas)
S.espacio.muestral 
##       [,1] [,2]
##  [1,] "H1" "H2"
##  [2,] "H1" "H3"
##  [3,] "H1" "M1"
##  [4,] "H1" "M2"
##  [5,] "H2" "H3"
##  [6,] "H2" "M1"
##  [7,] "H2" "M2"
##  [8,] "H3" "M1"
##  [9,] "H3" "M2"
## [10,] "M1" "M2"

Interpretación de los ejercicios del caso

Se presentaron varios ejercicios de variables aleatorias discretas en donde se determiniaron las funciones de probabilidad y la función acumulada, la media o valor esperado, la varianza y sus desviación estándard. Se generaron gráficas de barras de los valores de las variables y la gráfica lineal de las tendencias.

Ejercicio 1

El valor esperado en el ejercicio 1 del sorteo con valor de 1%, significa que es es muy muy muy …. remoto la probabilidad de ganar en el sorteo de 5000 boletos.

Ejercicio 2

Se trata de una distribución de probabilidad discreta de la variable aleatoria “número de automóviles vendidos”.

El valor esperado es del 2.1 que significa que puede vender 2 autos como esperanza.

El valor esperado se utiliza para predecir la media aritmética de la cantidad de automóviles vendidos a largo plazo. Por ejemplo, si John trabaja 50 sábados en un año, puede esperar vender (50)(2.1) o 105 automóviles solo durante los sábados. Por consiguiente, a veces la media recibe el nombre de valor esperado (Lind et al., 2015)

El valor de la varianza es de 1.29 que significa lo que puede variar con respecto al valor esperado. La desviación estándard es de 1.135782.

¿Cómo se interpreta la variación?

Por ejemplo, Si la vendedora Rita Kirsch también vendió un promedio de 2.1 automóviles los sábados pero tien tal vez una desviacón de 1.9 en comparación del 1.135782 de John, entonces de puede decir que hay mayor variabilidad en la vendedora Rita dado que (1.91≥1.35) (Lind et al., 2015).