Firstname Lastname
\[ \small{ \int_a^b f(x)dx \cong \sum_{k=1}^m f \left( a + h \left(k - \frac{1}{2} \right) \right)h, \,\,\, h = \frac{b-a}{m} } \]
midpt <- function (f, a, b, m = 100) {
nwidth = (b - a) / m
x = seq(a, b - nwidth,length.out = m) + nwidth / 2
y = f(x)
area = sum(y) * abs(b - a) / m
return ( area )
}
\[ \small{ \int_0^1 x^2 dx = \frac{1}{3}x^3 |_0^1 = \frac{1}{3} } \]
f <- function(x) { x^2 }
A1<-midpt(f,0,1,m = 10)
A2<-midpt(f,0,1,m = 100)
(A <- c(A1,A2))
[1] 0.332500 0.333325
(E <- abs(1/3 - A2))
[1] 8.333333e-06
\[ \small{ \begin{aligned} \int_a^b f(x)dx &\cong \sum_{k=1}^m \frac{f(c_k)+f(c_{k+1}) }{2}h \\ c_k & = a + h k, \,\,\, h = \frac{b-a}{m} \end{aligned} } \]
trap <- function (f, a, b, m = 100) {
x = seq(a, b, length.out = m + 1)
y = f(x)
p.area = sum((y[2:(m+1)] + y[1:m]))
p.area = p.area * abs(b - a) / (2 * m)
return (p.area )
}
f <- function(x) { x^2 }
A1<-trap(f,0,1,m = 10)
A2<-trap(f,0,1,m = 100)
(A <- c(A1,A2))
[1] 0.33500 0.33335
(E <- abs(1/3 - A2))
[1] 1.666667e-05
f <- function(x) { x^2 }
A1<-trap(f,0,1,m = 100)
A2<-midpt(f,0,1,m = 100)
c(A1,A2)
[1] 0.333350 0.333325
c(abs(1/3-A1),abs(1/3-A2))
[1] 1.666667e-05 8.333333e-06
\[ \small{ \begin{aligned} \int_a^b f(x)dx &\cong \left[ f(a) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \cdots \right. \\ & \hspace{4in} \left. + 4f(x_{n-1}) + f(x_n) \right] h \\ h &= \frac{b-a}{3m} \end{aligned} } \]
simp <- function (f, a, b, m = 100) {
x.ends = seq(a, b, length.out = m + 1)
y.ends = f(x.ends)
x.mids = (x.ends [2:( m + 1)] - x.ends [1:m]) / 2 + x.ends [1:m]
y.mids = f(x.mids )
p.area = sum(y.ends[2:(m+1)] + 4 * y.mids[1:m] + y.ends [1:m])
p.area = p.area * abs(b - a) / (6 * m)
return (p.area )
}
f <- function(x) { x^2 }
A1<-simp(f,0,1,m = 4)
A2<-simp(f,0,1,m = 8)
c(A1,A2)
[1] 0.3333333 0.3333333
c(abs(1/3-A1),abs(1/3-A2))
[1] 0 0
f <- function(x) { x^4 }
A1<-simp(f,0,1,m = 10)
A2<-simp(f,0,1,m = 100)
c(A1,A2)
[1] 0.2000008 0.2000000
c(abs(1/5-A1),abs(1/5-A2))
[1] 8.333333e-07 8.333334e-11