villes_s<-list()
for(i in 1:length(villes)) {
villes_s[[i]]<-villes[[i]][villes[[i]]$saison=="summer",]
villes_s[[i]]$temps <- ave(villes_s[[i]]$time,villes_s[[i]]$annee, FUN = seq_along)
}
names(villes_s)<-cities
table of N obs per months to check to have only summer month
for (i in 1:length(villes)){
print(table(villes_s[[i]]$mois))
}
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
## First condition for heat wave
for (i in 1:length(villes_s)){
villes_s[[i]]$heat_wave1<-NA
for (r in 3:nrow(villes_s[[i]])){
villes_s[[i]]$heat_wave1[r]<- if (villes_s[[i]]$tempmoy[r] >= trshld975[i] & villes_s[[i]]$tempmoy[r-1] >= trshld975[i] & villes_s[[i]]$tempmoy[r-2] >= trshld975[i] ) 1 else 0
}}
## Second condition for heat wave
for (i in 1:length(villes_s)){
for (r in 3:nrow(villes_s[[i]])){
villes_s[[i]]$heat_wave[r]<- if (villes_s[[i]]$heat_wave1[r] == 1 & (villes_s[[i]]$tempmoy[r] >= trshld995[i] | villes_s[[i]]$tempmoy[r-1] >= trshld995[i] | villes_s[[i]]$tempmoy[r-2] >= trshld995[i])) 1 else 0
}}
Number of Heat Wave for each city:
| Heat wave=0 | Heat wave=1 | |
|---|---|---|
| bordeaux | 1924 | 26 |
| clermont | 1926 | 24 |
| grenoble | 1914 | 36 |
| lehavre | 1927 | 23 |
| lyon | 1918 | 32 |
| marseille | 1915 | 35 |
| montpellier | 1922 | 28 |
| nancy | 1918 | 32 |
| nantes | 1926 | 24 |
| nice | 1924 | 26 |
| paris | 1923 | 27 |
| rennes | 1918 | 32 |
| rouen | 1925 | 25 |
| strasbourg | 1912 | 38 |
| toulouse | 1921 | 29 |
for (i in 1:length(villes_s)){
villes_s[[i]]<-na.omit(villes_s[[i]][, c("heat_wave","Jours","mois","hol","Vacances","annee", "o3", "no2","no2moy","nocc_tot", "cv_tot", "respi_tot","lag_tempmoy","lag2_tempmoy","lag3_tempmoy","no2Lag1","no2Lag2")])
}
mod<-list()
for (i in 1:length(villes_s)){
mod[[i]]<-gam(heat_wave ~ Jours + mois + hol + annee + ns(no2Lag1) + s(lag_tempmoy,k=4),family="binomial", data=villes_s[[i]])
}
aic<-c()
for (i in 1:length(villes_s)){
aic[[i]]<-AIC(mod[[i]])}
sum(aic)
## [1] 1642.921
# avec ns,2=1623.569
# avec s,3=1621.23
# avec no2 ns,2=1645.705 mais rouen OK
# avec no2 ns,2 and lag temp k=4, 1642.921 mais rouen OK
for (i in 1:length(villes_s)){
villes_s[[i]]$SP<-NA
villes_s[[i]]$SP[1:nrow(villes_s[[i]])]<-mod[[i]]$fitted
villes_s[[i]]$nrow<-c(1:nrow(villes_s[[i]]))
}
Summary Statistics for the propensity score (PS):
| city | Mean | Min | Max |
|---|---|---|---|
| bordeaux | 0.0135064935142883 | 2.22044604925031e-16 | 0.999123115799312 |
| clermont | 0.0123456790179604 | 2.22044604925031e-16 | 0.999841951731324 |
| grenoble | 0.0186239006725321 | 2.22044604925031e-16 | 0.991708249541654 |
| lehavre | 0.0118373648996403 | 2.22044604925031e-16 | 0.984761164902931 |
| lyon | 0.0164102564102743 | 2.22044604925031e-16 | 0.999994169656221 |
| marseille | 0.0180041152377479 | 2.22044604925031e-16 | 0.999281854946648 |
| montpellier | 0.0144628099173605 | 2.22044604925031e-16 | 0.998291701437194 |
| nancy | 0.0164271047332731 | 2.22044604925031e-16 | 0.999970098564376 |
| nantes | 0.0123076923166059 | 2.22044604925031e-16 | 0.999999999559018 |
| nice | 0.0133470225972638 | 2.22044604925031e-16 | 0.998827163061891 |
| paris | 0.0138461538461547 | 2.22044604925031e-16 | 0.999999907935474 |
| rennes | 0.0162388685263246 | 2.22044604925031e-16 | 0.999999885089499 |
| rouen | 0.0129265770485176 | 2.22044604925031e-16 | 0.999999999875206 |
| strasbourg | 0.0195172059768729 | 2.22044604925031e-16 | 0.997217495260165 |
| toulouse | 0.0148717948784295 | 2.22044604925031e-16 | 0.999534987744366 |
Test moyenne Score de Propension Test de Student pour difference moyenne entre variable Score de Propension (x) et variable pic de pollution (y):
## [1] "bordeaux"
##
## Welch Two Sample t-test
##
## data: villes_s[[i]]$SP and villes_s[[i]]$heat_wave
## t = 2.2466e-09, df = 3762.7, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.00680246 0.00680246
## sample estimates:
## mean of x mean of y
## 0.01350649 0.01350649
##
## [1] "clermont"
##
## Welch Two Sample t-test
##
## data: villes_s[[i]]$SP and villes_s[[i]]$heat_wave
## t = 1.6487e-09, df = 3859.9, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.006676794 0.006676794
## sample estimates:
## mean of x mean of y
## 0.01234568 0.01234568
##
## [1] "grenoble"
##
## Welch Two Sample t-test
##
## data: villes_s[[i]]$SP and villes_s[[i]]$heat_wave
## t = 5.9545e-13, df = 3669.1, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.007688117 0.007688117
## sample estimates:
## mean of x mean of y
## 0.0186239 0.0186239
##
## [1] "lehavre"
##
## Welch Two Sample t-test
##
## data: villes_s[[i]]$SP and villes_s[[i]]$heat_wave
## t = 1.8228e-13, df = 3764.6, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.006269447 0.006269447
## sample estimates:
## mean of x mean of y
## 0.01183736 0.01183736
##
## [1] "lyon"
##
## Welch Two Sample t-test
##
## data: villes_s[[i]]$SP and villes_s[[i]]$heat_wave
## t = 4.6525e-12, df = 3841.9, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.007536783 0.007536783
## sample estimates:
## mean of x mean of y
## 0.01641026 0.01641026
##
## [1] "marseille"
##
## Welch Two Sample t-test
##
## data: villes_s[[i]]$SP and villes_s[[i]]$heat_wave
## t = 2.9808e-09, df = 3671.2, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.007505261 0.007505261
## sample estimates:
## mean of x mean of y
## 0.01800412 0.01800412
##
## [1] "montpellier"
##
## Welch Two Sample t-test
##
## data: villes_s[[i]]$SP and villes_s[[i]]$heat_wave
## t = 1.4851e-12, df = 3633.5, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.0067172 0.0067172
## sample estimates:
## mean of x mean of y
## 0.01446281 0.01446281
##
## [1] "nancy"
##
## Welch Two Sample t-test
##
## data: villes_s[[i]]$SP and villes_s[[i]]$heat_wave
## t = 2.74e-09, df = 3824.9, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.007499319 0.007499320
## sample estimates:
## mean of x mean of y
## 0.0164271 0.0164271
##
## [1] "nantes"
##
## Welch Two Sample t-test
##
## data: villes_s[[i]]$SP and villes_s[[i]]$heat_wave
## t = 2.6897e-09, df = 3827.3, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.006497227 0.006497227
## sample estimates:
## mean of x mean of y
## 0.01230769 0.01230769
##
## [1] "nice"
##
## Welch Two Sample t-test
##
## data: villes_s[[i]]$SP and villes_s[[i]]$heat_wave
## t = 2.9976e-09, df = 3719.3, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.006537235 0.006537235
## sample estimates:
## mean of x mean of y
## 0.01334702 0.01334702
##
## [1] "paris"
##
## Welch Two Sample t-test
##
## data: villes_s[[i]]$SP and villes_s[[i]]$heat_wave
## t = 2.4804e-13, df = 3851.3, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.006965451 0.006965451
## sample estimates:
## mean of x mean of y
## 0.01384615 0.01384615
##
## [1] "rennes"
##
## Welch Two Sample t-test
##
## data: villes_s[[i]]$SP and villes_s[[i]]$heat_wave
## t = 2.3116e-09, df = 3718.7, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.007443533 0.007443533
## sample estimates:
## mean of x mean of y
## 0.01623887 0.01623887
##
## [1] "rouen"
##
## Welch Two Sample t-test
##
## data: villes_s[[i]]$SP and villes_s[[i]]$heat_wave
## t = 1.7649e-09, df = 3828.9, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.006796952 0.006796952
## sample estimates:
## mean of x mean of y
## 0.01292658 0.01292658
##
## [1] "strasbourg"
##
## Welch Two Sample t-test
##
## data: villes_s[[i]]$SP and villes_s[[i]]$heat_wave
## t = 4.6781e-09, df = 3751.3, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.007958283 0.007958283
## sample estimates:
## mean of x mean of y
## 0.01951721 0.01951721
##
## [1] "toulouse"
##
## Welch Two Sample t-test
##
## data: villes_s[[i]]$SP and villes_s[[i]]$heat_wave
## t = 1.8515e-09, df = 3787.6, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.0070257 0.0070257
## sample estimates:
## mean of x mean of y
## 0.01487179 0.01487179
La moyenne du score de propension predit par le modèle est statistiquement pas differente de la moyenne de la variable “heat wave”.
Comparaison de la moyenne du score de propension entre jours éligibles et pas éligibles avec test de Student.
## [1] "bordeaux"
##
## Welch Two Sample t-test
##
## data: SP by heat_wave
## t = -13.919, df = 25.013, p-value = 2.781e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8576384 -0.6365576
## sample estimates:
## mean in group 0 mean in group 1
## 0.003415819 0.750513837
##
## [1] "clermont"
##
## Welch Two Sample t-test
##
## data: SP by heat_wave
## t = -17.301, df = 23.01, p-value = 1.101e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.9466832 -0.7444794
## sample estimates:
## mean in group 0 mean in group 1
## 0.001906404 0.847487692
##
## [1] "grenoble"
##
## Welch Two Sample t-test
##
## data: SP by heat_wave
## t = -12.86, df = 35.047, p-value = 7.864e-15
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.7180077 -0.5222247
## sample estimates:
## mean in group 0 mean in group 1
## 0.007074918 0.627191114
##
## [1] "lehavre"
##
## Welch Two Sample t-test
##
## data: SP by heat_wave
## t = -11.43, df = 22.007, p-value = 1.003e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8454834 -0.5857865
## sample estimates:
## mean in group 0 mean in group 1
## 0.003366133 0.719001083
##
## [1] "lyon"
##
## Welch Two Sample t-test
##
## data: SP by heat_wave
## t = -16.746, df = 31.024, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8793433 -0.6884085
## sample estimates:
## mean in group 0 mean in group 1
## 0.003546652 0.787422549
##
## [1] "marseille"
##
## Welch Two Sample t-test
##
## data: SP by heat_wave
## t = -10.926, df = 34.031, p-value = 1.138e-12
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.7119295 -0.4886344
## sample estimates:
## mean in group 0 mean in group 1
## 0.00719657 0.60747852
##
## [1] "montpellier"
##
## Welch Two Sample t-test
##
## data: SP by heat_wave
## t = -9.9726, df = 27.017, p-value = 1.496e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.7152821 -0.4711783
## sample estimates:
## mean in group 0 mean in group 1
## 0.005883034 0.599113247
##
## [1] "nancy"
##
## Welch Two Sample t-test
##
## data: SP by heat_wave
## t = -13.629, df = 31.013, p-value = 1.229e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8819364 -0.6523499
## sample estimates:
## mean in group 0 mean in group 1
## 0.003825164 0.770968322
##
## [1] "nantes"
##
## Welch Two Sample t-test
##
## data: SP by heat_wave
## t = -13.368, df = 23.01, p-value = 2.473e-12
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8745122 -0.6401303
## sample estimates:
## mean in group 0 mean in group 1
## 0.002986815 0.760308096
##
## [1] "nice"
##
## Welch Two Sample t-test
##
## data: SP by heat_wave
## t = -10.523, df = 25.008, p-value = 1.131e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8031516 -0.5402276
## sample estimates:
## mean in group 0 mean in group 1
## 0.004381966 0.676071567
##
## [1] "paris"
##
## Welch Two Sample t-test
##
## data: SP by heat_wave
## t = -15.552, df = 26.009, p-value = 1.096e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.9220168 -0.7067395
## sample estimates:
## mean in group 0 mean in group 1
## 0.002570149 0.816948266
##
## [1] "rennes"
##
## Welch Two Sample t-test
##
## data: SP by heat_wave
## t = -13.186, df = 30.021, p-value = 5.048e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8265023 -0.6048288
## sample estimates:
## mean in group 0 mean in group 1
## 0.004617269 0.720282837
##
## [1] "rouen"
##
## Welch Two Sample t-test
##
## data: SP by heat_wave
## t = -14.557, df = 24.007, p-value = 2.071e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.9362975 -0.7037687
## sample estimates:
## mean in group 0 mean in group 1
## 0.002326356 0.822359460
##
## [1] "strasbourg"
##
## Welch Two Sample t-test
##
## data: SP by heat_wave
## t = -13.067, df = 37.028, p-value = 1.935e-15
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.7913846 -0.5789120
## sample estimates:
## mean in group 0 mean in group 1
## 0.006145026 0.691293322
##
## [1] "toulouse"
##
## Welch Two Sample t-test
##
## data: SP by heat_wave
## t = -11.572, df = 28.009, p-value = 3.479e-12
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8465397 -0.5919098
## sample estimates:
## mean in group 0 mean in group 1
## 0.004175632 0.723400355
Les jours heat wave ont une moyenne du SP statistiquement différente de la moyenne du SP des jours non heat wave.
Standard Deviation of PS and of Heat wave variable:
## [1] "bordeaux"
## villes_s[[i]]$heat_wave: 0
## [1] 0.03805333
## ------------------------------------------------------------
## villes_s[[i]]$heat_wave: 1
## [1] 0.2736478
## [1] "clermont"
## villes_s[[i]]$heat_wave: 0
## [1] 0.03093107
## ------------------------------------------------------------
## villes_s[[i]]$heat_wave: 1
## [1] 0.2394093
## [1] "grenoble"
## villes_s[[i]]$heat_wave: 0
## [1] 0.05425481
## ------------------------------------------------------------
## villes_s[[i]]$heat_wave: 1
## [1] 0.2892365
## [1] "lehavre"
## villes_s[[i]]$heat_wave: 0
## [1] 0.03411227
## ------------------------------------------------------------
## villes_s[[i]]$heat_wave: 1
## [1] 0.3002567
## [1] "lyon"
## villes_s[[i]]$heat_wave: 0
## [1] 0.04069674
## ------------------------------------------------------------
## villes_s[[i]]$heat_wave: 1
## [1] 0.2647473
## [1] "marseille"
## villes_s[[i]]$heat_wave: 0
## [1] 0.05121769
## ------------------------------------------------------------
## villes_s[[i]]$heat_wave: 1
## [1] 0.3249548
## [1] "montpellier"
## villes_s[[i]]$heat_wave: 0
## [1] 0.04574965
## ------------------------------------------------------------
## villes_s[[i]]$heat_wave: 1
## [1] 0.3147222
## [1] "nancy"
## villes_s[[i]]$heat_wave: 0
## [1] 0.03504794
## ------------------------------------------------------------
## villes_s[[i]]$heat_wave: 1
## [1] 0.3183669
## [1] "nantes"
## villes_s[[i]]$heat_wave: 0
## [1] 0.03721974
## ------------------------------------------------------------
## villes_s[[i]]$heat_wave: 1
## [1] 0.2775065
## [1] "nice"
## villes_s[[i]]$heat_wave: 0
## [1] 0.03453716
## ------------------------------------------------------------
## villes_s[[i]]$heat_wave: 1
## [1] 0.3254548
## [1] "paris"
## villes_s[[i]]$heat_wave: 0
## [1] 0.03026956
## ------------------------------------------------------------
## villes_s[[i]]$heat_wave: 1
## [1] 0.2720797
## [1] "rennes"
## villes_s[[i]]$heat_wave: 0
## [1] 0.04407256
## ------------------------------------------------------------
## villes_s[[i]]$heat_wave: 1
## [1] 0.3021255
## [1] "rouen"
## villes_s[[i]]$heat_wave: 0
## [1] 0.03033983
## ------------------------------------------------------------
## villes_s[[i]]$heat_wave: 1
## [1] 0.2816452
## [1] "strasbourg"
## villes_s[[i]]$heat_wave: 0
## [1] 0.04471209
## ------------------------------------------------------------
## villes_s[[i]]$heat_wave: 1
## [1] 0.3231563
## [1] "toulouse"
## villes_s[[i]]$heat_wave: 0
## [1] 0.03476396
## ------------------------------------------------------------
## villes_s[[i]]$heat_wave: 1
## [1] 0.3346826
Several types of matching were compared. Differents matches were determined by following parameters:
The matching minimazing the standardized mean difference for numerical variables included in the SP predictions was retained. The selected matching include M=3, no caliper requirement and it handles ties deterministically, that means that ties are randomly broken.
var.match<-list()
App<-list()
for (i in 1:length(villes_s)){
var.match[[i]]<-cbind(villes_s[[i]]$SP,villes_s[[i]]$annee)
App[[i]]<-Match(Tr = villes_s[[i]]$heat_wave,X=var.match[[i]], M=2, ties=FALSE)
}
control<-list()
treated<-list()
cas<-list()
villes_match<-list()
for (i in 1:length(villes_s)){
control[[i]]=data.frame(App[[i]]$index.control)
treated[[i]]=data.frame(App[[i]]$index.treated)
colnames(control[[i]]) <- c("nrow")
colnames(treated[[i]]) <- c("nrow")
cas[[i]]<-unique(treated[[i]])
cas[[i]]$PAIR<-c(1:nrow(cas[[i]]))
treated[[i]]<-merge(treated[[i]],cas[[i]],by="nrow")
control[[i]]$PAIR <- treated[[i]]$PAIR
cas[[i]]<-merge(cas[[i]],villes_s[[i]],by="nrow")
control[[i]]<- merge(control[[i]],villes_s[[i]], by ="nrow")
villes_match[[i]]<-rbind(cas[[i]],control[[i]])
villes_match[[i]]<-villes_match[[i]][order(villes_match[[i]][,"PAIR"]),]
}
Comparing SP for eligible days and not eligible days before and after matching:
Code:
# Create panel data
for (i in (1:length(villes_s))){
villes_match[[i]]$PAIR<-as.factor(as.character(villes_match[[i]]$PAIR))
villes_match[[i]]<-pdata.frame(villes_match[[i]],index="PAIR")
}
# Model
results<-matrix(NA,nrow = 15,ncol=4)
colnames(results)<-c("city","NDE","NIE","PMM")
nde<-c()
nie<-c()
pmm<-c()
for (i in (1:length(villes_s))){
# outcome model - Poisson Regression: Mortality, HW and O3
m.outcome<-pglm(nocc_tot~heat_wave+o3+Jours,data=villes_match[[i]],family=poisson(link = "log"), model="within")
# mediator model - multinomial linear regression
m.mediator<-plm(o3~heat_wave+no2moy+Jours,data=villes_match[[i]],model="within")
# save coefficients
theta1<-coef(m.outcome)[1]
theta2<-coef(m.outcome)[2]
beta1<-coef(m.mediator)[1]
# estimate CDE and NIE
nde[i] <- exp(theta1) #NDE
nie[i] <-exp(theta2*beta1) #NIE
pmm[i] <-nde[i]*(nie[i]-1)/(nde[i]*nie[i]-1) #NIE
results[i,1]<-cities[[i]]
results[i,2]<-nde [i]
results[i,3]<-nie [i]
results[i,4]<- pmm[i]
}
Results:
res<-data.frame(results)
for (i in (2:4)){
res[,i]<-as.numeric(as.character(res[,i]))
}
res[,2:4]<-round(res[,2:4],digits = 4)
kable(res)%>%kable_styling()%>%
column_spec(1, bold = T, border_right = T)
| city | NDE | NIE | PMM |
|---|---|---|---|
| bordeaux | 1.1240 | 1.0156 | 0.1238 |
| clermont | 1.7671 | 1.0076 | 0.0172 |
| grenoble | 0.9167 | 1.0707 | -3.5008 |
| lehavre | 0.9809 | 1.1013 | 1.2372 |
| lyon | 1.1016 | 1.1133 | 0.5513 |
| marseille | 1.0452 | 1.0010 | 0.0227 |
| montpellier | 1.3804 | 0.9795 | -0.0802 |
| nancy | 1.6216 | 1.1030 | 0.2118 |
| nantes | 1.2344 | 1.0457 | 0.1938 |
| nice | 1.0977 | 1.0465 | 0.3429 |
| paris | 1.6156 | 0.9833 | -0.0458 |
| rennes | 1.2679 | 1.1483 | 0.4124 |
| rouen | 1.0623 | 1.1061 | 0.6439 |
| strasbourg | 1.2391 | 1.0207 | 0.0968 |
| toulouse | 1.1004 | 0.9942 | -0.0680 |
write_xlsx(res,"C:/Users/Anna/Dropbox/Heat wave and O3/Meteo France/mortality/nonaccidental/results_PSM.xlsx")
Results:
| city | NDE | NIE | PMM |
|---|---|---|---|
| bordeaux | 1.1621 | 1.0272 | 0.1630 |
| clermont | 1.7444 | 0.9826 | -0.0424 |
| grenoble | 0.8919 | 1.2844 | 1.7435 |
| lehavre | 0.6072 | 1.3268 | -1.0203 |
| lyon | 0.9090 | 1.1580 | 2.7297 |
| marseille | 1.0007 | 1.0006 | 0.4561 |
| montpellier | 1.6645 | 1.0538 | 0.1188 |
| nancy | 5.8589 | 1.1351 | 0.1401 |
| nantes | 1.6716 | 1.3995 | 0.4986 |
| nice | 1.3175 | 1.1754 | 0.4213 |
| paris | 1.5088 | 0.9753 | -0.0792 |
| rennes | 2.2537 | 0.9587 | -0.0802 |
| rouen | 1.5809 | 1.0875 | 0.1923 |
| strasbourg | 0.9998 | 1.1385 | 1.0011 |
| toulouse | 1.1383 | 0.9939 | -0.0526 |
Results:
| city | NDE | NIE | PMM |
|---|---|---|---|
| bordeaux | 1.2609 | 1.0462 | 0.1826 |
| clermont | 4.3409 | 0.6656 | -0.7683 |
| grenoble | 1.3970 | 1.0389 | 0.1203 |
| lehavre | 1.1283 | 1.2919 | 0.7197 |
| lyon | 3.1620 | 0.9200 | -0.1325 |
| marseille | 1.0671 | 1.0044 | 0.0648 |
| montpellier | 3.5954 | 1.0916 | 0.1126 |
| nancy | 322.5242 | 0.3718 | -1.7037 |
| nantes | 0.5354 | 1.2996 | -0.5274 |
| nice | 1.4526 | 0.9585 | -0.1535 |
| paris | 1.8527 | 0.9845 | -0.0349 |
| rennes | 0.6291 | 1.1549 | -0.3564 |
| rouen | 0.3345 | 1.6989 | -0.5414 |
| strasbourg | 1.8018 | 1.3010 | 0.4035 |
| toulouse | 1.1288 | 0.9845 | -0.1573 |