DATA605 ASSIGNMENT 13
1 Question 1
Use integration by substitution to solve the integral below. \[\int 4e^{-7x}dx\]
Answer:
Let \(u=-7x\)
then \(du=-7dx\)
then \(\int 4e^{-7x}dx = -\frac{4}{7} \int e^{u}du= -\frac{4}{7}e^u+C=-\frac{4}{7}e^{-7x}+C \;\;\;\;where\;c\;is\;a\;constant\)
2 Question 2
Biologists are treating a pond contaminated with bacteria. The level of contamination is changing at a rate of \(\frac{dN}{dt}=-\frac{3150}{t^4}-220\;\) bacteria per cubic centimeter per day, where t is the number of days since treatment began. Find a function \(N(t)\;\)to estimate the level of contamination if the level after 1 day was 6530 bacteria per cubic centimeter.
Answer:
\(N(t)=\int (-3150t^{-4}-220)dt=\int-3150t^{-4}dt-\int220dt\)
\(=\frac{3150}{3}t^{-3}-220t+C = 1050t^{-3}-220t+C\;\;\;where\;C\;is\;a\;constant\)
\(\because N(1)=6530\)
\(\therefore 1050(1)^{-3}-220(1)+C=6530\)
\(\therefore C=6530+220-1050=5700\)
\(\therefore N(t)=1050t^{-3}-220t+5700\)
3 Question 3
Find the total area of the red rectangles in the figure below, where the 3. equation of the line is \(f(X)=2x-9\)
Answer:
\(S = \int_{4.5}^{8.5}(2x-9)dx=\int_{4.5}^{8.5}2xdx-\int_{4.5}^{8.5}9dx\)
\(=8.5^2-4.5^2-9(8.5)+9(4.5)=16\)
4 Question 4
Find the area of the region bounded by the graphs of the given equations.
\[y=x^2-2x-2,\;y=x+2\]
Enter your answer below.
Answer:
- Plot the two functions
eq1 = function(x){x^2-2*x-2}
eq2 = function(x){x+2}
curve(eq1, from=-3, to=5, n=300, xlab="X", ylab="Y", col="red",lwd=2,
main="Plot the Region Bounded By the Two Equations",)
curve(eq2, from=-3, to=5, n=300, xlab="X", ylab="Y", col="blue",lwd=2,
main="Plot the Region Bounded By the Two Equations", add = TRUE)
text(-2.5,10,"y = x^2-2x-2", pos=4, col = 'red')
text(-2.5,-1,"y = x+2", pos=4, col = 'blue')
- Solve for Intersections
Let \(x^2-2x-2=x+2\)
Then \(x^2-3x-4=0\)
Then \((x-4)(x+1)=0\)
Then \(x_{1}=-1, \;x_{2}=4\)
- Solve for Area
\(S = \int_{-1}^{4} x+2dx-\int_{-1}^{4} x^2-2x-2dx = \int_{-1}^{4} - x^2+3x+4dx\)
\(=-\frac{1}{3}(4^3-(-1)^3)+\frac{3}{2}(4^2-(-1)^2)+4(4-(-1))\)
\(=20.8333\)
5 Question 5
A beauty supply store expects to sell 110 flat irons during the next year. It costs $3.75 to store one flat iron for one year. There is a fixed cost of $8.25 for each order. Find the lot size and the number of orders per year that will minimize inventory costs.
Answer:
Let c as the inventory cost, s the lot size, n the number of orders, and assume that half of the inventory are in stock,
then \(c = 8.25n+\frac{3.75}{2}s\;while\;ns= 100\)
then \(c = 8.25n +\frac{3.75}{2}\frac{100}{n}=8.25n+206.25n^{-1}\)
To find n that minimize c, let
\({c}'= -206.25n^{-2}+8.25 = 0\)
\(n_{min} = 5\)
then $s_{min} = =22 $ and
\(c_{min}=8.25(5)+206.25(5)^{-1}=82.5\)
6 Question 6
Use integration by parts to solve the integral below.
\[\int ln(9x).x^6dx\]
Answer:
let \(u=ln(9x),\;dv=x^6dx\)
then \(du = \frac{1}{9x}(9)dx=x^{-1}dx,\;v=\frac{1}{7}x^7\)
then \(\int ln(9x).x^6dx = \int udv=uv-\int vdu\)
\(=\frac{1}{7}ln(9x)x^7-\int \frac{1}{7}x^7x^{-1}dx\)
\(=\frac{1}{7}ln(9x)x^7-\frac{1}{7}\int x^6dx\)
\(=\frac{1}{7}ln(9x)x^7-\frac{1}{49}x^7+C\)
\(=\frac{1}{7}x^7(ln(9x)-\frac{1}{7})+C\;where\;C\;is\;a\;constant.\)
7 Question 7
Determine whether f ( x ) is a probability density function on the interval \([1, \;e^6]\;\). If not, determine the value of the definite integral.
\[f(x)=\frac{1}{6x}\]
- \(\because x \in [1,\;e^6]\)
\(\therefore x > 0\)
\(\therefore f(x) >0\)
- \(\because \int f(x)dx=\frac{1}{6}\int_{1}^{e^6} x^{-1}dx=\frac{1}{6}(ln(e^6)-ln(1))=\frac{1}{6}(6)=1\)
\(\therefore\) all values of (x) sum to 1.
Therefore f(x) is a probability density function.