dtaHW3 <- read.table("C:/Users/ASUS/Desktop/data/geometryAL.txt", h=T)
dtaHW3$gender <- factor(ifelse(dtaHW3$gender==1,"Female","Male"))
dtaHW3$board <- factor(dtaHW3$board)
dtaHW3$iid <- factor(dtaHW3$iid)
dtaHW3$itype <- factor(dtaHW3$itype)
head(dtaHW3)
## score board gender age mgcse itype iid
## 1 8 3 Female 1 0.856 7 1001
## 2 8 3 Female -6 0.856 7 1001
## 3 8 3 Female 5 0.856 7 1001
## 4 10 3 Female -1 0.856 7 1001
## 5 8 3 Female -5 0.856 7 1001
## 6 10 3 Female 3 0.856 7 1001
library(ggplot2)
#
ggplot(data=dtaHW3, aes(x=score)) +
geom_histogram(binwidth=1) +
aes(y = ..density..) +
facet_grid(. ~ itype) +
labs(x="Geometry score", y="Density") +
ggtitle("Institution type")
#
ggplot(data=dtaHW3, aes(x=score)) +
geom_histogram(binwidth=1) +
aes(y = ..density..) +
facet_grid(itype ~ board) +
labs(x="Geometry score", y="Density")+
ggtitle("Institution Type by Examination Board")
ggplot(dtaHW3, aes(x=score, fill=gender)) +
geom_bar(binwidth=1, position="dodge") +
labs(x="Geometry score", y="Count")
## Warning: Ignoring unknown parameters: binwidth
Stats plot describes GCSE ~ Geometry score,
grouped by 2 variables gender & institution type Looks like gender difference exists in
institution 6:boys has averaged poorer GCSE than girls. institution 5: girls has averaged better GCSE than boys.
#
ggplot(dtaHW3, aes(x=mgcse, y=score)) +
geom_point(alpha=I(0.3), cex=0.1) +
stat_smooth(method="lm") +
facet_grid(itype ~ gender) +
labs(y="Geometry score", x="GCSE score")
## `geom_smooth()` using formula 'y ~ x'
Dependent variable is nominal/ordinal
這次作業跑GLMM系列的分析R軟體常算不出來,會再研究看看是版本還是其他問題?
The End