Dissertation Analyses

load(file="/Users/meganwilliams/Desktop/Dissertation/StroopMixed.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/Allvars.rdata")
library(effects)
library(interactions)

Trail Making Test Part A - Psychological Aggression

Model 1

TMTAlog1 <- glm(PsychAggress ~ TrailsA, data=Allvars,family = "binomial")
summary(TMTAlog1)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0612   0.5078   0.5190   0.5338   1.1300  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  2.117145   0.158671  13.343   <2e-16 ***
## TrailsA     -0.006682   0.002709  -2.466   0.0136 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 500.02  on 639  degrees of freedom
## AIC: 504.02
## 
## Number of Fisher Scoring iterations: 4
confint(TMTAlog1)
##                   2.5 %      97.5 %
## (Intercept)  1.81004605  2.43478018
## TrailsA     -0.01211072 -0.00112323
exp(cbind(OR = coef(TMTAlog1), confint(TMTAlog1)))
##                    OR     2.5 %     97.5 %
## (Intercept) 8.3073870 6.1107288 11.4133096
## TrailsA     0.9933406 0.9879623  0.9988774
plot(predictorEffect("TrailsA",TMTAlog1))

Model 2

TMTAlog2 <- glm(PsychAggress ~ TrailsA + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(TMTAlog2)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3328   0.4179   0.4977   0.5692   1.0358  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   2.239738   0.942059   2.377   0.0174 *
## TrailsA      -0.005442   0.002800  -1.944   0.0519 .
## Age          -0.019052   0.013150  -1.449   0.1474  
## SexMen       -0.414508   0.237194  -1.748   0.0805 .
## PovStatBelow  0.287057   0.272031   1.055   0.2913  
## WRATtotal     0.020193   0.014685   1.375   0.1691  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 491.19  on 635  degrees of freedom
## AIC: 503.19
## 
## Number of Fisher Scoring iterations: 4
confint(TMTAlog2)
##                    2.5 %       97.5 %
## (Intercept)   0.41738336 4.1183913807
## TrailsA      -0.01092206 0.0004472425
## Age          -0.04502990 0.0066403168
## SexMen       -0.88490865 0.0476851129
## PovStatBelow -0.23280077 0.8382117419
## WRATtotal    -0.00913341 0.0486223838
exp(cbind(OR = coef(TMTAlog2), confint(TMTAlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  9.3908738 1.5179843 61.460296
## TrailsA      0.9945728 0.9891374  1.000447
## Age          0.9811286 0.9559689  1.006662
## SexMen       0.6606650 0.4127519  1.048840
## PovStatBelow 1.3324997 0.7923114  2.312228
## WRATtotal    1.0203987 0.9909082  1.049824
plot(predictorEffect("TrailsA",TMTAlog2))

Model 3

TMTAlog3 <- glm(PsychAggress ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTAlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (TrailsA + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3050   0.4145   0.4876   0.5662   0.9371  
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                  2.3232837  0.9521720   2.440   0.0147 *
## TrailsA                     -0.0046246  0.0044733  -1.034   0.3012  
## SexMen                      -0.5352512  0.3757272  -1.425   0.1543  
## PovStatBelow                -0.3211181  0.9165205  -0.350   0.7261  
## Age                         -0.0211628  0.0133563  -1.584   0.1131  
## WRATtotal                    0.0213502  0.0147965   1.443   0.1490  
## TrailsA:SexMen               0.0002853  0.0061339   0.047   0.9629  
## TrailsA:PovStatBelow         0.0121948  0.0262325   0.465   0.6420  
## SexMen:PovStatBelow          1.1973680  1.0734939   1.115   0.2647  
## TrailsA:SexMen:PovStatBelow -0.0212556  0.0279137  -0.761   0.4464  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 489.18  on 631  degrees of freedom
## AIC: 509.18
## 
## Number of Fisher Scoring iterations: 5
confint(TMTAlog3)
##                                    2.5 %      97.5 %
## (Intercept)                  0.481332779 4.221863340
## TrailsA                     -0.013299827 0.005857359
## SexMen                      -1.282198611 0.200258901
## PovStatBelow                -2.259676235 1.362523862
## Age                         -0.047546389 0.004928338
## WRATtotal                   -0.008162031 0.050025754
## TrailsA:SexMen              -0.012576295 0.012711360
## TrailsA:PovStatBelow        -0.030481680 0.074099544
## SexMen:PovStatBelow         -0.795772727 3.446700474
## TrailsA:SexMen:PovStatBelow -0.085997696 0.025273803
exp(cbind(OR = coef(TMTAlog3), confint(TMTAlog3)))
##                                     OR     2.5 %    97.5 %
## (Intercept)                 10.2091427 1.6182297 68.160372
## TrailsA                      0.9953861 0.9867882  1.005875
## SexMen                       0.5855222 0.2774267  1.221719
## PovStatBelow                 0.7253376 0.1043843  3.906039
## Age                          0.9790596 0.9535662  1.004941
## WRATtotal                    1.0215797 0.9918712  1.051298
## TrailsA:SexMen               1.0002853 0.9875025  1.012792
## TrailsA:PovStatBelow         1.0122695 0.9699782  1.076914
## SexMen:PovStatBelow          3.3113900 0.4512324 31.396627
## TrailsA:SexMen:PovStatBelow  0.9789687 0.9175963  1.025596

Compare Models 1,2, & 3

anova(TMTAlog1,TMTAlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ TrailsA
## Model 2: PsychAggress ~ TrailsA + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     500.02                       
## 2       635     491.19  4   8.8277  0.06555 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(TMTAlog2,TMTAlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ TrailsA + Age + Sex + PovStat + WRATtotal
## Model 2: PsychAggress ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     491.19                     
## 2       631     489.18  4   2.0105   0.7338
anova(TMTAlog1,TMTAlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ TrailsA
## Model 2: PsychAggress ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     500.02                     
## 2       631     489.18  8   10.838    0.211

Suggested Model by predictors

anova(TMTAlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PsychAggress
## 
## Terms added sequentially (first to last)
## 
## 
##                     Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                  640     505.40           
## TrailsA              1   5.3815       639     500.02  0.02035 *
## Sex                  1   3.3913       638     496.63  0.06554 .
## PovStat              1   1.3103       637     495.32  0.25234  
## Age                  1   2.2815       636     493.04  0.13092  
## WRATtotal            1   1.8446       635     491.19  0.17441  
## TrailsA:Sex          1   0.1610       634     491.03  0.68825  
## TrailsA:PovStat      1   0.4359       633     490.60  0.50911  
## Sex:PovStat          1   0.7356       632     489.86  0.39108  
## TrailsA:Sex:PovStat  1   0.6780       631     489.18  0.41027  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TMTAlog4 <- glm(PsychAggress ~ TrailsA + Sex, data = Allvars, family = "binomial")
summary(TMTAlog4)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA + Sex, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1553   0.4598   0.4829   0.5732   1.1918  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  2.335826   0.205687  11.356   <2e-16 ***
## TrailsA     -0.006459   0.002729  -2.367   0.0179 *  
## SexMen      -0.431945   0.235930  -1.831   0.0671 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 496.63  on 638  degrees of freedom
## AIC: 502.63
## 
## Number of Fisher Scoring iterations: 4
plot(predictorEffect("TrailsA",TMTAlog3))

Trail Making Test Part A - Physical Assault

Model 1

TMTAlog1 <- glm(PhysAssault ~ TrailsA, data=Allvars,family = "binomial")
summary(TMTAlog1)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsA, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5662  -0.5393  -0.5186  -0.4840   2.2518  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.602571   0.283815  -5.647 1.64e-08 ***
## TrailsA     -0.010496   0.008213  -1.278    0.201    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 479.87  on 639  degrees of freedom
## AIC: 483.87
## 
## Number of Fisher Scoring iterations: 6
exp(cbind(OR = coef(TMTAlog1), confint(TMTAlog1)))
##                    OR    2.5 %    97.5 %
## (Intercept) 0.2013782 0.124961 0.3715058
## TrailsA     0.9895584 0.971045 1.0014763

Model 2

TMTAlog2 <- glm(PhysAssault ~ TrailsA + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(TMTAlog2)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsA + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8280  -0.5544  -0.4735  -0.3948   2.4131  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.106171   1.056618  -1.047   0.2951  
## TrailsA      -0.005757   0.006888  -0.836   0.4033  
## Age          -0.031146   0.014013  -2.223   0.0262 *
## SexMen       -0.133250   0.245234  -0.543   0.5869  
## PovStatBelow  0.497935   0.253546   1.964   0.0495 *
## WRATtotal     0.014741   0.017431   0.846   0.3977  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 468.44  on 635  degrees of freedom
## AIC: 480.44
## 
## Number of Fisher Scoring iterations: 5
confint(TMTAlog2)
##                     2.5 %       97.5 %
## (Intercept)  -3.204878260  0.950549388
## TrailsA      -0.023671777  0.004114868
## Age          -0.058973070 -0.003903141
## SexMen       -0.618366886  0.345925262
## PovStatBelow -0.004036407  0.992778921
## WRATtotal    -0.018681019  0.049876074
exp(cbind(OR = coef(TMTAlog2), confint(TMTAlog2)))
##                     OR      2.5 %    97.5 %
## (Intercept)  0.3308234 0.04056384 2.5871306
## TrailsA      0.9942597 0.97660620 1.0041233
## Age          0.9693345 0.94273216 0.9961045
## SexMen       0.8752466 0.53882368 1.4132970
## PovStatBelow 1.6453197 0.99597173 2.6987236
## WRATtotal    1.0148506 0.98149239 1.0511408

Model 3

TMTAlog3 <- glm(PhysAssault ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTAlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (TrailsA + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9896  -0.5444  -0.4687  -0.3914   2.4456  
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                 -1.363e+00  1.058e+00  -1.289   0.1973  
## TrailsA                      7.282e-05  7.277e-03   0.010   0.9920  
## SexMen                       7.630e-02  5.733e-01   0.133   0.8941  
## PovStatBelow                 1.662e+00  8.945e-01   1.858   0.0632 .
## Age                         -2.951e-02  1.412e-02  -2.090   0.0366 *
## WRATtotal                    1.521e-02  1.745e-02   0.872   0.3832  
## TrailsA:SexMen              -8.029e-03  1.526e-02  -0.526   0.5987  
## TrailsA:PovStatBelow        -4.104e-02  2.948e-02  -1.392   0.1638  
## SexMen:PovStatBelow         -1.192e+00  1.159e+00  -1.028   0.3040  
## TrailsA:SexMen:PovStatBelow  4.372e-02  3.509e-02   1.246   0.2129  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 466.00  on 631  degrees of freedom
## AIC: 486
## 
## Number of Fisher Scoring iterations: 6
confint(TMTAlog3)
##                                    2.5 %       97.5 %
## (Intercept)                 -3.466733133  0.698550735
## TrailsA                     -0.022462644  0.010741157
## SexMen                      -0.973440421  1.399852489
## PovStatBelow                 0.006201422  3.512932999
## Age                         -0.057593946 -0.002109772
## WRATtotal                   -0.018221155  0.050392858
## TrailsA:SexMen              -0.048493721  0.019944784
## TrailsA:PovStatBelow        -0.105757832  0.010049154
## SexMen:PovStatBelow         -3.556398613  1.153705945
## TrailsA:SexMen:PovStatBelow -0.024980614  0.119436934
exp(cbind(OR = coef(TMTAlog3), confint(TMTAlog3)))
##                                    OR      2.5 %     97.5 %
## (Intercept)                 0.2557689 0.03121885  2.0108364
## TrailsA                     1.0000728 0.97778776  1.0107991
## SexMen                      1.0792863 0.37778107  4.0546018
## PovStatBelow                5.2680898 1.00622069 33.5465155
## Age                         0.9709182 0.94403320  0.9978925
## WRATtotal                   1.0153311 0.98194385  1.0516842
## TrailsA:SexMen              0.9920033 0.95266332  1.0201450
## TrailsA:PovStatBelow        0.9597892 0.89964249  1.0100998
## SexMen:PovStatBelow         0.3037608 0.02854143  3.1699187
## TrailsA:SexMen:PovStatBelow 1.0446857 0.97532882  1.1268622

Compare Models 1,2, & 3

anova(TMTAlog1,TMTAlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ TrailsA
## Model 2: PhysAssault ~ TrailsA + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     479.87                       
## 2       635     468.44  4   11.427  0.02216 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(TMTAlog2,TMTAlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ TrailsA + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     468.44                     
## 2       631     466.00  4   2.4366    0.656
anova(TMTAlog1,TMTAlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ TrailsA
## Model 2: PhysAssault ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     479.87                       
## 2       631     466.00  8   13.864  0.08538 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Suggested Model by predictors

anova(TMTAlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PhysAssault
## 
## Terms added sequentially (first to last)
## 
## 
##                     Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                  640     482.53           
## TrailsA              1   2.6649       639     479.87  0.10259  
## Sex                  1   0.5758       638     479.29  0.44795  
## PovStat              1   5.0877       637     474.20  0.02410 *
## Age                  1   5.0333       636     469.17  0.02486 *
## WRATtotal            1   0.7303       635     468.44  0.39278  
## TrailsA:Sex          1   0.0169       634     468.42  0.89666  
## TrailsA:PovStat      1   0.7216       633     467.70  0.39561  
## Sex:PovStat          1   0.0962       632     467.61  0.75639  
## TrailsA:Sex:PovStat  1   1.6019       631     466.00  0.20563  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TMTAlog4 <- glm(PhysAssault ~ TrailsA + PovStat + Age, data = Allvars, family = "binomial")
summary(TMTAlog4)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsA + PovStat + Age, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7820  -0.5546  -0.4799  -0.3925   2.3219  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -0.435029   0.650356  -0.669   0.5036  
## TrailsA      -0.007343   0.007395  -0.993   0.3208  
## PovStatBelow  0.471055   0.249746   1.886   0.0593 .
## Age          -0.031701   0.014071  -2.253   0.0243 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 469.43  on 637  degrees of freedom
## AIC: 477.43
## 
## Number of Fisher Scoring iterations: 5

Trail Making Test Part B - Psychological Aggression

Model 1

TMTBlog1 <- glm(PsychAggress ~ TrailsB, data=Allvars,family = "binomial")
summary(TMTBlog1)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsB, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0179   0.5298   0.5317   0.5352   0.5784  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.9095515  0.1585263  12.046   <2e-16 ***
## TrailsB     -0.0003434  0.0008116  -0.423    0.672    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 505.23  on 639  degrees of freedom
## AIC: 509.23
## 
## Number of Fisher Scoring iterations: 4
confint(TMTBlog1)
##                    2.5 %      97.5 %
## (Intercept)  1.603528690 2.226283495
## TrailsB     -0.001843453 0.001370329
exp(cbind(OR = coef(TMTBlog1), confint(TMTBlog1)))
##                    OR     2.5 %   97.5 %
## (Intercept) 6.7500606 4.9705410 9.265367
## TrailsB     0.9996567 0.9981582 1.001371

Model 2

TMTBlog2 <- glm(PsychAggress ~ TrailsB + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(TMTBlog2)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsB + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3619   0.4150   0.5004   0.5760   0.8584  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   1.8020518  0.9778048   1.843   0.0653 .
## TrailsB       0.0006771  0.0009540   0.710   0.4778  
## Age          -0.0237146  0.0133422  -1.777   0.0755 .
## SexMen       -0.4354463  0.2367389  -1.839   0.0659 .
## PovStatBelow  0.3039214  0.2721369   1.117   0.2641  
## WRATtotal     0.0287737  0.0161637   1.780   0.0751 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 493.99  on 635  degrees of freedom
## AIC: 505.99
## 
## Number of Fisher Scoring iterations: 5
confint(TMTBlog2)
##                     2.5 %      97.5 %
## (Intercept)  -0.095930605 3.744570374
## TrailsB      -0.001082010 0.002691322
## Age          -0.050095754 0.002318790
## SexMen       -0.905052950 0.025652999
## PovStatBelow -0.215831014 0.855443932
## WRATtotal    -0.003227791 0.060312930
exp(cbind(OR = coef(TMTBlog2), confint(TMTBlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  6.0620729 0.9085271 42.290834
## TrailsB      1.0006774 0.9989186  1.002695
## Age          0.9765644 0.9511383  1.002321
## SexMen       0.6469759 0.4045205  1.025985
## PovStatBelow 1.3551625 0.8058715  2.352418
## WRATtotal    1.0291916 0.9967774  1.062169

Model 3

TMTBlog3 <- glm(PsychAggress ~ (TrailsB + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTBlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (TrailsB + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3117   0.4143   0.4919   0.5758   0.9089  
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                  1.8470931  1.0170851   1.816   0.0694 .
## TrailsB                      0.0009530  0.0016849   0.566   0.5716  
## SexMen                      -0.3776448  0.3832676  -0.985   0.3245  
## PovStatBelow                 0.1350920  0.5644040   0.239   0.8108  
## Age                         -0.0247057  0.0134045  -1.843   0.0653 .
## WRATtotal                    0.0293987  0.0166197   1.769   0.0769 .
## TrailsB:SexMen              -0.0011460  0.0019778  -0.579   0.5623  
## TrailsB:PovStatBelow        -0.0002675  0.0033941  -0.079   0.9372  
## SexMen:PovStatBelow         -0.4577984  0.8724902  -0.525   0.5998  
## TrailsB:SexMen:PovStatBelow  0.0068832  0.0064134   1.073   0.2832  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 490.68  on 631  degrees of freedom
## AIC: 510.68
## 
## Number of Fisher Scoring iterations: 6
confint(TMTBlog3)
##                                    2.5 %      97.5 %
## (Intercept)                 -0.130044657 3.866276279
## TrailsB                     -0.001972185 0.004876943
## SexMen                      -1.136178955 0.373151205
## PovStatBelow                -0.995653315 1.257161817
## Age                         -0.051214434 0.001446410
## WRATtotal                   -0.003491845 0.061838894
## TrailsB:SexMen              -0.005444410 0.002553615
## TrailsB:PovStatBelow        -0.006344026 0.008143077
## SexMen:PovStatBelow         -2.277018711 1.194936381
## TrailsB:SexMen:PovStatBelow -0.004563296 0.022491683
exp(cbind(OR = coef(TMTBlog3), confint(TMTBlog3)))
##                                    OR     2.5 %    97.5 %
## (Intercept)                 6.3413588 0.8780562 47.764194
## TrailsB                     1.0009535 0.9980298  1.004889
## SexMen                      0.6854739 0.3210434  1.452304
## PovStatBelow                1.1446421 0.3694820  3.515430
## Age                         0.9755970 0.9500749  1.001447
## WRATtotal                   1.0298351 0.9965142  1.063791
## TrailsB:SexMen              0.9988547 0.9945704  1.002557
## TrailsB:PovStatBelow        0.9997325 0.9936761  1.008176
## SexMen:PovStatBelow         0.6326750 0.1025896  3.303348
## TrailsB:SexMen:PovStatBelow 1.0069070 0.9954471  1.022747

Compare Models 1,2, & 3

anova(TMTBlog1,TMTBlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ TrailsB
## Model 2: PsychAggress ~ TrailsB + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     505.23                       
## 2       635     493.99  4   11.237  0.02403 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(TMTBlog2,TMTBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ TrailsB + Age + Sex + PovStat + WRATtotal
## Model 2: PsychAggress ~ (TrailsB + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     493.99                     
## 2       631     490.68  4   3.3076   0.5077
anova(TMTBlog1,TMTBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ TrailsB
## Model 2: PsychAggress ~ (TrailsB + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     505.23                       
## 2       631     490.68  8   14.544  0.06864 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Suggested model by predictors

anova(TMTBlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PsychAggress
## 
## Terms added sequentially (first to last)
## 
## 
##                     Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                  640     505.40           
## TrailsB              1   0.1739       639     505.23  0.67667  
## Sex                  1   3.7458       638     501.48  0.05294 .
## PovStat              1   1.3850       637     500.10  0.23926  
## Age                  1   2.9924       636     497.10  0.08366 .
## WRATtotal            1   3.1135       635     493.99  0.07765 .
## TrailsB:Sex          1   0.0370       634     493.95  0.84749  
## TrailsB:PovStat      1   1.5703       633     492.38  0.21017  
## Sex:PovStat          1   0.3217       632     492.06  0.57058  
## TrailsB:Sex:PovStat  1   1.3787       631     490.68  0.24033  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TMTBlog4 <- glm(PsychAggress ~ Sex  + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTBlog4)
## 
## Call:
## glm(formula = PsychAggress ~ Sex + Age + WRATtotal, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2850   0.4317   0.4986   0.5734   0.8093  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  2.31934    0.89316   2.597  0.00941 **
## SexMen      -0.43214    0.23609  -1.830  0.06718 . 
## Age         -0.02420    0.01290  -1.875  0.06073 . 
## WRATtotal    0.02134    0.01444   1.478  0.13953   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 495.76  on 637  degrees of freedom
## AIC: 503.76
## 
## Number of Fisher Scoring iterations: 4

Trail Making Test Part B - Physical Assault

Model 1

TMTBlog1 <- glm(PhysAssault ~ TrailsB, data=Allvars,family = "binomial")
summary(TMTBlog1)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsB, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5180  -0.5163  -0.5162  -0.5161   2.0407  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.950e+00  1.640e-01 -11.884   <2e-16 ***
## TrailsB      1.438e-05  8.734e-04   0.016    0.987    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 482.53  on 639  degrees of freedom
## AIC: 486.53
## 
## Number of Fisher Scoring iterations: 4
confint(TMTBlog1)
##                    2.5 %       97.5 %
## (Intercept) -2.277053463 -1.632336504
## TrailsB     -0.001853385  0.001610948
exp(cbind(OR = coef(TMTBlog1), confint(TMTBlog1)))
##                    OR     2.5 %    97.5 %
## (Intercept) 0.1423392 0.1025860 0.1954723
## TrailsB     1.0000144 0.9981483 1.0016122

Model 2

TMTBlog2 <- glm(PhysAssault ~ TrailsB + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(TMTBlog2)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsB + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8296  -0.5503  -0.4703  -0.3853   2.4150  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.5644451  1.0563772  -1.481   0.1386  
## TrailsB       0.0009794  0.0009424   1.039   0.2987  
## Age          -0.0361938  0.0140597  -2.574   0.0100 *
## SexMen       -0.1672179  0.2444699  -0.684   0.4940  
## PovStatBelow  0.4877010  0.2524719   1.932   0.0534 .
## WRATtotal     0.0236622  0.0180504   1.311   0.1899  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 468.42  on 635  degrees of freedom
## AIC: 480.42
## 
## Number of Fisher Scoring iterations: 5
confint(TMTBlog2)
##                     2.5 %       97.5 %
## (Intercept)  -3.672079915  0.479179128
## TrailsB      -0.001004126  0.002734023
## Age          -0.064203068 -0.008963590
## SexMen       -0.651102761  0.310192287
## PovStatBelow -0.012396682  0.980167579
## WRATtotal    -0.010869929  0.060084244
exp(cbind(OR = coef(TMTBlog2), confint(TMTBlog2)))
##                     OR      2.5 %    97.5 %
## (Intercept)  0.2092041 0.02542354 1.6147484
## TrailsB      1.0009799 0.99899638 1.0027378
## Age          0.9644534 0.93781454 0.9910765
## SexMen       0.8460153 0.52147040 1.3636873
## PovStatBelow 1.6285679 0.98767984 2.6649028
## WRATtotal    1.0239444 0.98918894 1.0619260

Model 3

TMTBlog3 <- glm(PhysAssault ~ (TrailsB + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTBlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (TrailsB + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8516  -0.5473  -0.4694  -0.3836   2.4223  
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                 -1.5047593  1.0909002  -1.379   0.1678  
## TrailsB                      0.0006869  0.0016674   0.412   0.6804  
## SexMen                      -0.2700783  0.4201321  -0.643   0.5203  
## PovStatBelow                 0.3317966  0.4541255   0.731   0.4650  
## Age                         -0.0359140  0.0140777  -2.551   0.0107 *
## WRATtotal                    0.0231490  0.0183290   1.263   0.2066  
## TrailsB:SexMen               0.0005718  0.0021795   0.262   0.7930  
## TrailsB:PovStatBelow         0.0009891  0.0024708   0.400   0.6889  
## SexMen:PovStatBelow          0.3715339  0.6866325   0.541   0.5884  
## TrailsB:SexMen:PovStatBelow -0.0022663  0.0036875  -0.615   0.5388  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 467.99  on 631  degrees of freedom
## AIC: 487.99
## 
## Number of Fisher Scoring iterations: 5
confint(TMTBlog3)
##                                    2.5 %       97.5 %
## (Intercept)                 -3.678000065  0.610271057
## TrailsB                     -0.003187691  0.003605599
## SexMen                      -1.104549024  0.551216412
## PovStatBelow                -0.569590398  1.219846578
## Age                         -0.063961083 -0.008649270
## WRATtotal                   -0.011949379  0.060101998
## TrailsB:SexMen              -0.003782969  0.005106246
## TrailsB:PovStatBelow        -0.004013430  0.006037226
## SexMen:PovStatBelow         -0.976968871  1.726534192
## TrailsB:SexMen:PovStatBelow -0.010127719  0.004822560

Compare Models 1,2, & 3

anova(TMTBlog1,TMTBlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ TrailsB
## Model 2: PhysAssault ~ TrailsB + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)   
## 1       639     482.53                        
## 2       635     468.42  4   14.116 0.006935 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(TMTBlog2,TMTBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ TrailsB + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (TrailsB + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     468.42                     
## 2       631     467.99  4  0.43161   0.9798
anova(TMTBlog1,TMTBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ TrailsB
## Model 2: PhysAssault ~ (TrailsB + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     482.53                       
## 2       631     467.99  8   14.547  0.06857 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sugested Model by predictors

anova(TMTBlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PhysAssault
## 
## Terms added sequentially (first to last)
## 
## 
##                     Df Deviance Resid. Df Resid. Dev Pr(>Chi)   
## NULL                                  640     482.53            
## TrailsB              1   0.0003       639     482.53 0.986876   
## Sex                  1   0.7837       638     481.75 0.376008   
## PovStat              1   4.8645       637     476.88 0.027415 * 
## Age                  1   6.6895       636     470.19 0.009698 **
## WRATtotal            1   1.7781       635     468.42 0.182388   
## TrailsB:Sex          1   0.0191       634     468.40 0.890110   
## TrailsB:PovStat      1   0.0005       633     468.40 0.981454   
## Sex:PovStat          1   0.0250       632     468.37 0.874300   
## TrailsB:Sex:PovStat  1   0.3870       631     467.99 0.533904   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TMTBlog4 <- glm(PhysAssault ~ Age + PovStat, data = Allvars, family = "binomial")
summary(TMTBlog4)
## 
## Call:
## glm(formula = PhysAssault ~ Age + PovStat, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7492  -0.5539  -0.4770  -0.3956   2.3402  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -0.53355    0.64202  -0.831   0.4059  
## Age          -0.03471    0.01372  -2.530   0.0114 *
## PovStatBelow  0.45113    0.24862   1.815   0.0696 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 470.90  on 638  degrees of freedom
## AIC: 476.9
## 
## Number of Fisher Scoring iterations: 5

Digit Span Forward - Psychological Aggression

Model 1

DSFlog1 <- glm(PsychAggress ~ DigitSpanFwd, data=Allvars,family = "binomial")
summary(DSFlog1)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanFwd, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2372   0.4749   0.5205   0.5697   0.6799  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   1.15245    0.39763   2.898  0.00375 **
## DigitSpanFwd  0.09729    0.05325   1.827  0.06768 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 501.93  on 639  degrees of freedom
## AIC: 505.93
## 
## Number of Fisher Scoring iterations: 4
confint(DSFlog1)
##                     2.5 %    97.5 %
## (Intercept)   0.374377408 1.9358469
## DigitSpanFwd -0.004952948 0.2041858
exp(cbind(OR = coef(DSFlog1), confint(DSFlog1)))
##                    OR     2.5 %   97.5 %
## (Intercept)  3.165935 1.4540858 6.929910
## DigitSpanFwd 1.102177 0.9950593 1.226526

Model 2

DSFlog2 <- glm(PsychAggress ~ DigitSpanFwd + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(DSFlog2)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanFwd + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3744   0.4082   0.4997   0.5858   0.8451  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   1.78187    0.95032   1.875   0.0608 .
## DigitSpanFwd  0.07980    0.06021   1.325   0.1850  
## Age          -0.02014    0.01315  -1.531   0.1257  
## SexMen       -0.44464    0.23712  -1.875   0.0608 .
## PovStatBelow  0.31763    0.27196   1.168   0.2428  
## WRATtotal     0.01382    0.01643   0.841   0.4003  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 492.71  on 635  degrees of freedom
## AIC: 504.71
## 
## Number of Fisher Scoring iterations: 5
confint(DSFlog2)
##                    2.5 %      97.5 %
## (Intercept)  -0.05975028 3.672887543
## DigitSpanFwd -0.03597106 0.200534414
## Age          -0.04613507 0.005539276
## SexMen       -0.91505007 0.017156078
## PovStatBelow -0.20190212 0.868656506
## WRATtotal    -0.01900186 0.045600639
exp(cbind(OR = coef(DSFlog2), confint(DSFlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  5.9409367 0.9419997 39.365411
## DigitSpanFwd 1.0830707 0.9646682  1.222056
## Age          0.9800581 0.9549130  1.005555
## SexMen       0.6410525 0.4004966  1.017304
## PovStatBelow 1.3738701 0.8171749  2.383706
## WRATtotal    1.0139186 0.9811775  1.046656

Model 3

DSFlog3 <- glm(PsychAggress ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSFlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (DigitSpanFwd + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2630   0.4174   0.4864   0.5671   0.8936  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                       2.05209    1.11257   1.844   0.0651 .
## DigitSpanFwd                      0.04840    0.09789   0.494   0.6210  
## SexMen                           -0.95692    0.94536  -1.012   0.3114  
## PovStatBelow                      0.19631    1.31460   0.149   0.8813  
## Age                              -0.02016    0.01320  -1.527   0.1267  
## WRATtotal                         0.01412    0.01657   0.852   0.3939  
## DigitSpanFwd:SexMen               0.05684    0.12434   0.457   0.6476  
## DigitSpanFwd:PovStatBelow        -0.01234    0.17920  -0.069   0.9451  
## SexMen:PovStatBelow               0.20818    1.84272   0.113   0.9100  
## DigitSpanFwd:SexMen:PovStatBelow  0.02781    0.25559   0.109   0.9134  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 491.88  on 631  degrees of freedom
## AIC: 511.88
## 
## Number of Fisher Scoring iterations: 5
confint(DSFlog3)
##                                        2.5 %      97.5 %
## (Intercept)                      -0.09264104 4.279188872
## DigitSpanFwd                     -0.13709894 0.248989556
## SexMen                           -2.82517597 0.891305947
## PovStatBelow                     -2.37156876 2.815163307
## Age                              -0.04624726 0.005614341
## WRATtotal                        -0.01894722 0.046169635
## DigitSpanFwd:SexMen              -0.18968591 0.299953467
## DigitSpanFwd:PovStatBelow        -0.35703285 0.351928834
## SexMen:PovStatBelow              -3.43757513 3.815705044
## DigitSpanFwd:SexMen:PovStatBelow -0.47184254 0.537277577
exp(cbind(OR = coef(DSFlog3), confint(DSFlog3)))
##                                         OR      2.5 %    97.5 %
## (Intercept)                      7.7841672 0.91152064 72.181868
## DigitSpanFwd                     1.0495926 0.87188396  1.282729
## SexMen                           0.3840725 0.05929822  2.438312
## PovStatBelow                     1.2169073 0.09333419 16.695902
## Age                              0.9800401 0.95480585  1.005630
## WRATtotal                        1.0142231 0.98123115  1.047252
## DigitSpanFwd:SexMen              1.0584906 0.82721892  1.349796
## DigitSpanFwd:PovStatBelow        0.9877360 0.69974951  1.421807
## SexMen:PovStatBelow              1.2314393 0.03214253 45.408760
## DigitSpanFwd:SexMen:PovStatBelow 1.0281966 0.62385173  1.711342

Compare Models 1,2, & 3

anova(DSFlog1,DSFlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ DigitSpanFwd
## Model 2: PsychAggress ~ DigitSpanFwd + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     501.93                       
## 2       635     492.71  4    9.215  0.05594 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(DSFlog2,DSFlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ DigitSpanFwd + Age + Sex + PovStat + WRATtotal
## Model 2: PsychAggress ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     492.71                     
## 2       631     491.88  4  0.83605   0.9336
anova(DSFlog1,DSFlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ DigitSpanFwd
## Model 2: PsychAggress ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     501.93                     
## 2       631     491.88  8   10.051   0.2615

Suggested Model by Predictors

anova(DSFlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PsychAggress
## 
## Terms added sequentially (first to last)
## 
## 
##                          Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                       640     505.40           
## DigitSpanFwd              1   3.4717       639     501.93  0.06243 .
## Sex                       1   4.2385       638     497.69  0.03952 *
## PovStat                   1   1.9145       637     495.78  0.16647  
## Age                       1   2.3652       636     493.41  0.12407  
## WRATtotal                 1   0.6969       635     492.71  0.40381  
## DigitSpanFwd:Sex          1   0.2701       634     492.44  0.60330  
## DigitSpanFwd:PovStat      1   0.0003       633     492.44  0.98737  
## Sex:PovStat               1   0.5539       632     491.89  0.45673  
## DigitSpanFwd:Sex:PovStat  1   0.0118       631     491.88  0.91332  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DSFlog4 <- glm(PsychAggress ~ DigitSpanFwd + Sex, data = Allvars, family = "binomial")
summary(DSFlog4)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanFwd + Sex, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3541   0.4389   0.5084   0.5776   0.7632  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   1.35916    0.41403   3.283  0.00103 **
## DigitSpanFwd  0.10361    0.05357   1.934  0.05310 . 
## SexMen       -0.48183    0.23569  -2.044  0.04092 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 497.69  on 638  degrees of freedom
## AIC: 503.69
## 
## Number of Fisher Scoring iterations: 4
plot(allEffects(DSFlog4))

Digit Span Forward - Physical Assault

Model 1

DSFlog1 <- glm(PhysAssault ~ DigitSpanFwd, data=Allvars,family = "binomial")
summary(DSFlog1)
## 
## Call:
## glm(formula = PhysAssault ~ DigitSpanFwd, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5494  -0.5236  -0.5136  -0.5038   2.0889  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.10336    0.40909  -5.141 2.73e-07 ***
## DigitSpanFwd  0.02063    0.05157   0.400    0.689    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 482.37  on 639  degrees of freedom
## AIC: 486.37
## 
## Number of Fisher Scoring iterations: 4
confint(DSFlog1)
##                    2.5 %     97.5 %
## (Intercept)  -2.91625120 -1.3096827
## DigitSpanFwd -0.08208486  0.1205407
exp(cbind(OR = coef(DSFlog1), confint(DSFlog1)))
##                     OR      2.5 %    97.5 %
## (Intercept)  0.1220461 0.05413625 0.2699057
## DigitSpanFwd 1.0208459 0.92119379 1.1281067

Model 2

DSFlog2 <- glm(PhysAssault ~ DigitSpanFwd + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(DSFlog2)
## 
## Call:
## glm(formula = PhysAssault ~ DigitSpanFwd + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8265  -0.5482  -0.4738  -0.3940   2.3908  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.298525   1.038992  -1.250   0.2114  
## DigitSpanFwd -0.003763   0.059056  -0.064   0.9492  
## Age          -0.033411   0.013806  -2.420   0.0155 *
## SexMen       -0.154818   0.244320  -0.634   0.5263  
## PovStatBelow  0.486848   0.253372   1.921   0.0547 .
## WRATtotal     0.018102   0.018832   0.961   0.3364  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 469.42  on 635  degrees of freedom
## AIC: 481.42
## 
## Number of Fisher Scoring iterations: 5
confint(DSFlog2)
##                    2.5 %      97.5 %
## (Intercept)  -3.37067738  0.71074063
## DigitSpanFwd -0.12148521  0.11053782
## Age          -0.06090493 -0.00666178
## SexMen       -0.63831369  0.32239763
## PovStatBelow -0.01492452  0.98116664
## WRATtotal    -0.01785196  0.05611976
exp(cbind(OR = coef(DSFlog2), confint(DSFlog2)))
##                     OR      2.5 %    97.5 %
## (Intercept)  0.2729341 0.03436635 2.0354983
## DigitSpanFwd 0.9962436 0.88560415 1.1168786
## Age          0.9671408 0.94091269 0.9933604
## SexMen       0.8565711 0.52818235 1.3804336
## PovStatBelow 1.6271794 0.98518630 2.6675665
## WRATtotal    1.0182669 0.98230645 1.0577243

Model 3

DSFlog3 <- glm(PhysAssault ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSFlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (DigitSpanFwd + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8189  -0.5530  -0.4756  -0.3929   2.4095  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                      -1.19141    1.18123  -1.009   0.3132  
## DigitSpanFwd                     -0.01788    0.09490  -0.188   0.8505  
## SexMen                           -0.47145    1.09257  -0.432   0.6661  
## PovStatBelow                      0.30840    1.14433   0.270   0.7875  
## Age                              -0.03343    0.01381  -2.421   0.0155 *
## WRATtotal                         0.01844    0.01896   0.973   0.3306  
## DigitSpanFwd:SexMen               0.03636    0.13301   0.273   0.7846  
## DigitSpanFwd:PovStatBelow         0.01956    0.14872   0.131   0.8954  
## SexMen:PovStatBelow               0.55778    1.74829   0.319   0.7497  
## DigitSpanFwd:SexMen:PovStatBelow -0.06336    0.22405  -0.283   0.7773  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 469.30  on 631  degrees of freedom
## AIC: 489.3
## 
## Number of Fisher Scoring iterations: 5
confint(DSFlog3)
##                                        2.5 %       97.5 %
## (Intercept)                      -3.55771445  1.082542539
## DigitSpanFwd                     -0.21071775  0.163745918
## SexMen                           -2.63659095  1.663594559
## PovStatBelow                     -1.95436295  2.551997385
## Age                              -0.06093180 -0.006678362
## WRATtotal                        -0.01776098  0.056701218
## DigitSpanFwd:SexMen              -0.22512922  0.298520850
## DigitSpanFwd:PovStatBelow        -0.27523533  0.311318253
## SexMen:PovStatBelow              -2.87426110  3.999016174
## DigitSpanFwd:SexMen:PovStatBelow -0.50694634  0.374844062

Compare Models 1,2, & 3

anova(DSFlog1,DSFlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ DigitSpanFwd
## Model 2: PhysAssault ~ DigitSpanFwd + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     482.37                       
## 2       635     469.42  4   12.952  0.01151 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(DSFlog2,DSFlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ DigitSpanFwd + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     469.42                     
## 2       631     469.30  4  0.12619   0.9981
anova(DSFlog1,DSFlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ DigitSpanFwd
## Model 2: PhysAssault ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     482.37                     
## 2       631     469.30  8   13.078   0.1092

Suggested Model by predictors

anova(DSFlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PhysAssault
## 
## Terms added sequentially (first to last)
## 
## 
##                          Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                       640     482.53           
## DigitSpanFwd              1   0.1591       639     482.37  0.68999  
## Sex                       1   0.8210       638     481.55  0.36490  
## PovStat                   1   5.1322       637     476.42  0.02349 *
## Age                       1   6.0493       636     470.37  0.01391 *
## WRATtotal                 1   0.9494       635     469.42  0.32988  
## DigitSpanFwd:Sex          1   0.0134       634     469.41  0.90769  
## DigitSpanFwd:PovStat      1   0.0047       633     469.40  0.94509  
## Sex:PovStat               1   0.0279       632     469.38  0.86732  
## DigitSpanFwd:Sex:PovStat  1   0.0801       631     469.30  0.77717  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DSFlog4 <- glm(PhysAssault ~Sex + Age, data = Allvars, family = "binomial")
summary(DSFlog4)
## 
## Call:
## glm(formula = PhysAssault ~ Sex + Age, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6976  -0.5635  -0.4814  -0.4062   2.3320  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -0.14711    0.61516  -0.239  0.81100   
## SexMen      -0.16634    0.24267  -0.685  0.49306   
## Age         -0.03795    0.01357  -2.797  0.00516 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 473.65  on 638  degrees of freedom
## AIC: 479.65
## 
## Number of Fisher Scoring iterations: 5

Digit Span Backward - Psychological Aggression

Model 1

DSBlog1 <- glm(PsychAggress ~ DigitSpanBck, data=Allvars,family = "binomial")
summary(DSBlog1)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanBck, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1240   0.5008   0.5328   0.5666   0.6395  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   1.48331    0.32547   4.557 5.18e-06 ***
## DigitSpanBck  0.06618    0.05387   1.228    0.219    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 503.85  on 639  degrees of freedom
## AIC: 507.85
## 
## Number of Fisher Scoring iterations: 4
confint(DSBlog1)
##                    2.5 %    97.5 %
## (Intercept)   0.84949262 2.1271670
## DigitSpanBck -0.03708871 0.1744529
exp(cbind(OR = coef(DSBlog1), confint(DSBlog1)))
##                    OR     2.5 %   97.5 %
## (Intercept)  4.407523 2.3384601 8.391061
## DigitSpanBck 1.068418 0.9635906 1.190595

Model 2

DSBlog2 <- glm(PsychAggress ~ DigitSpanBck + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(DSBlog2)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanBck + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3545   0.4188   0.4988   0.5806   0.8067  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   2.00097    0.93371   2.143   0.0321 *
## DigitSpanBck  0.03633    0.06183   0.588   0.5569  
## Age          -0.02133    0.01313  -1.625   0.1042  
## SexMen       -0.43391    0.23663  -1.834   0.0667 .
## PovStatBelow  0.30340    0.27136   1.118   0.2635  
## WRATtotal     0.01871    0.01690   1.107   0.2681  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 494.17  on 635  degrees of freedom
## AIC: 506.17
## 
## Number of Fisher Scoring iterations: 4
confint(DSBlog2)
##                    2.5 %      97.5 %
## (Intercept)   0.19390855 3.861708942
## DigitSpanBck -0.08303013 0.159844631
## Age          -0.04727809 0.004313792
## SexMen       -0.90331488 0.027038043
## PovStatBelow -0.21507588 0.853305067
## WRATtotal    -0.01488368 0.051545135
exp(cbind(OR = coef(DSBlog2), confint(DSBlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  7.3961984 1.2139853 47.546536
## DigitSpanBck 1.0369930 0.9203234  1.173329
## Age          0.9788925 0.9538221  1.004323
## SexMen       0.6479681 0.4052242  1.027407
## PovStatBelow 1.3544571 0.8064802  2.347392
## WRATtotal    1.0188890 0.9852265  1.052897

Model 3

DSBlog3 <- glm(PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSBlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3576   0.3941   0.4862   0.5675   0.9101  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                       1.86140    1.04549   1.780   0.0750 .
## DigitSpanBck                      0.09323    0.11541   0.808   0.4192  
## SexMen                           -0.62912    0.78860  -0.798   0.4250  
## PovStatBelow                      1.65113    1.19085   1.387   0.1656  
## Age                              -0.02285    0.01323  -1.728   0.0841 .
## WRATtotal                         0.01775    0.01714   1.036   0.3003  
## DigitSpanBck:SexMen               0.01376    0.13382   0.103   0.9181  
## DigitSpanBck:PovStatBelow        -0.27451    0.19329  -1.420   0.1555  
## SexMen:PovStatBelow               0.18041    1.54837   0.117   0.9072  
## DigitSpanBck:SexMen:PovStatBelow  0.03102    0.24940   0.124   0.9010  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 489.29  on 631  degrees of freedom
## AIC: 509.29
## 
## Number of Fisher Scoring iterations: 5
confint(DSBlog3)
##                                        2.5 %     97.5 %
## (Intercept)                      -0.15637002 3.95271949
## DigitSpanBck                     -0.12406374 0.32908387
## SexMen                           -2.18681354 0.91147349
## PovStatBelow                     -0.63382657 4.07184741
## Age                              -0.04900142 0.00297188
## WRATtotal                        -0.01629415 0.05105948
## DigitSpanBck:SexMen              -0.25325179 0.27307703
## DigitSpanBck:PovStatBelow        -0.65478254 0.10995568
## SexMen:PovStatBelow              -2.88490444 3.21551659
## DigitSpanBck:SexMen:PovStatBelow -0.45930083 0.52358557
exp(cbind(OR = coef(DSBlog3), confint(DSBlog3)))
##                                         OR      2.5 %    97.5 %
## (Intercept)                      6.4327376 0.85524267 52.076797
## DigitSpanBck                     1.0977113 0.88332354  1.389694
## SexMen                           0.5330596 0.11227394  2.487986
## PovStatBelow                     5.2128734 0.53055769 58.665242
## Age                              0.9774056 0.95217978  1.002976
## WRATtotal                        1.0179052 0.98383788  1.052385
## DigitSpanBck:SexMen              1.0138573 0.77627240  1.314001
## DigitSpanBck:PovStatBelow        0.7599464 0.51955503  1.116229
## SexMen:PovStatBelow              1.1977140 0.05586013 24.916160
## DigitSpanBck:SexMen:PovStatBelow 1.0315050 0.63172517  1.688070

Compare Models 1,2, & 3

anova(DSBlog1,DSBlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ DigitSpanBck
## Model 2: PsychAggress ~ DigitSpanBck + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     503.85                       
## 2       635     494.17  4   9.6769  0.04624 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(DSBlog2,DSBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ DigitSpanBck + Age + Sex + PovStat + WRATtotal
## Model 2: PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     494.17                     
## 2       631     489.29  4   4.8844   0.2994
anova(DSBlog1,DSBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ DigitSpanBck
## Model 2: PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     503.85                       
## 2       631     489.29  8   14.561  0.06826 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Suggested Model by Predictors

anova(DSBlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PsychAggress
## 
## Terms added sequentially (first to last)
## 
## 
##                          Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                       640     505.40           
## DigitSpanBck              1   1.5535       639     503.85  0.21263  
## Sex                       1   4.0437       638     499.80  0.04434 *
## PovStat                   1   1.7275       637     498.08  0.18874  
## Age                       1   2.6974       636     495.38  0.10051  
## WRATtotal                 1   1.2083       635     494.17  0.27168  
## DigitSpanBck:Sex          1   0.1052       634     494.07  0.74568  
## DigitSpanBck:PovStat      1   4.3122       633     489.75  0.03784 *
## Sex:PovStat               1   0.4516       632     489.30  0.50158  
## DigitSpanBck:Sex:PovStat  1   0.0155       631     489.29  0.90101  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DSBlog4 <- glm(PsychAggress ~ (DigitSpanBck + PovStat)^2 + Sex, data = Allvars, family = "binomial")
summary(DSBlog4)
## 
## Call:
## glm(formula = PsychAggress ~ (DigitSpanBck + PovStat)^2 + Sex, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3307   0.4135   0.4907   0.5743   0.7848  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                1.21783    0.39486   3.084  0.00204 **
## DigitSpanBck               0.13974    0.06319   2.211  0.02701 * 
## PovStatBelow               1.77644    0.75525   2.352  0.01867 * 
## SexMen                    -0.47738    0.23636  -2.020  0.04342 * 
## DigitSpanBck:PovStatBelow -0.25530    0.12136  -2.104  0.03540 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.4  on 640  degrees of freedom
## Residual deviance: 493.8  on 636  degrees of freedom
## AIC: 503.8
## 
## Number of Fisher Scoring iterations: 4
sim_slopes(DSBlog4 , pred = DigitSpanBck, modx = PovStat, centered = "all",jnplot = TRUE)
## Warning: Johnson-Neyman intervals are not available for factor moderators.
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of DigitSpanBck when PovStat = Below: 
## 
##    Est.   S.E.   z val.      p
## ------- ------ -------- ------
##   -0.12   0.10    -1.12   0.26
## 
## Slope of DigitSpanBck when PovStat = Above: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   0.14   0.06     2.21   0.03
interact_plot(model = DSBlog4 , pred = DigitSpanBck, modx = PovStat)

Digit Span Backward - Physical Assault

Model 1

DSBlog1 <- glm(PhysAssault ~ DigitSpanBck, data=Allvars,family = "binomial")
summary(DSBlog1)
## 
## Call:
## glm(formula = PhysAssault ~ DigitSpanBck, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6461  -0.5332  -0.4995  -0.4834   2.2166  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.36700    0.33815  -7.000 2.56e-12 ***
## DigitSpanBck  0.06971    0.05143   1.355    0.175    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 480.73  on 639  degrees of freedom
## AIC: 484.73
## 
## Number of Fisher Scoring iterations: 4
confint(DSBlog1)
##                    2.5 %     97.5 %
## (Intercept)  -3.04161374 -1.7138403
## DigitSpanBck -0.03277605  0.1693352
exp(cbind(OR = coef(DSBlog1), confint(DSBlog1)))
##                      OR      2.5 %    97.5 %
## (Intercept)  0.09376143 0.04775776 0.1801725
## DigitSpanBck 1.07220115 0.96775526 1.1845171
plot(allEffects(DSBlog1))

Model 2

DSBlog2 <- glm(PhysAssault ~ DigitSpanBck + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(DSBlog2)
## 
## Call:
## glm(formula = PhysAssault ~ DigitSpanBck + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8505  -0.5507  -0.4663  -0.3877   2.4000  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.345694   1.024586  -1.313   0.1890  
## DigitSpanBck  0.059014   0.060632   0.973   0.3304  
## Age          -0.031851   0.013777  -2.312   0.0208 *
## SexMen       -0.170212   0.244791  -0.695   0.4868  
## PovStatBelow  0.502315   0.253971   1.978   0.0479 *
## WRATtotal     0.008856   0.019220   0.461   0.6450  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 468.49  on 635  degrees of freedom
## AIC: 480.49
## 
## Number of Fisher Scoring iterations: 5
confint(DSBlog2)
##                     2.5 %       97.5 %
## (Intercept)  -3.391665037  0.633726337
## DigitSpanBck -0.061320692  0.176938898
## Age          -0.059299715 -0.005165805
## SexMen       -0.654805236  0.307756720
## PovStatBelow -0.000432283  0.998046083
## WRATtotal    -0.027993557  0.047521446
exp(cbind(OR = coef(DSBlog2), confint(DSBlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  0.2603591 0.0336526 1.8846202
## DigitSpanBck 1.0607902 0.9405216 1.1935582
## Age          0.9686509 0.9424243 0.9948475
## SexMen       0.8434860 0.5195432 1.3603700
## PovStatBelow 1.6525430 0.9995678 2.7129757
## WRATtotal    1.0088955 0.9723946 1.0486687

Model 3

DSBlog3 <- glm(PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSBlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8330  -0.5503  -0.4685  -0.3884   2.4253  
## 
## Coefficients:
##                                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                      -1.255613   1.120611  -1.120   0.2625  
## DigitSpanBck                      0.044520   0.107315   0.415   0.6782  
## SexMen                           -0.455390   0.908308  -0.501   0.6161  
## PovStatBelow                      0.408942   1.027509   0.398   0.6906  
## Age                              -0.031862   0.013778  -2.313   0.0207 *
## WRATtotal                         0.009189   0.019285   0.476   0.6337  
## DigitSpanBck:SexMen               0.038519   0.133091   0.289   0.7723  
## DigitSpanBck:PovStatBelow         0.008996   0.165178   0.054   0.9566  
## SexMen:PovStatBelow               0.440727   1.437951   0.306   0.7592  
## DigitSpanBck:SexMen:PovStatBelow -0.056578   0.225189  -0.251   0.8016  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 468.32  on 631  degrees of freedom
## AIC: 488.32
## 
## Number of Fisher Scoring iterations: 5
confint(DSBlog3)
##                                        2.5 %       97.5 %
## (Intercept)                      -3.50061722  0.901710583
## DigitSpanBck                     -0.17306222  0.249958353
## SexMen                           -2.25539642  1.319990640
## PovStatBelow                     -1.63003035  2.417495430
## Age                              -0.05931304 -0.005176632
## WRATtotal                        -0.02780734  0.047973668
## DigitSpanBck:SexMen              -0.22130482  0.302664130
## DigitSpanBck:PovStatBelow        -0.31741438  0.334113806
## SexMen:PovStatBelow              -2.38215259  3.271157548
## DigitSpanBck:SexMen:PovStatBelow -0.50186032  0.384406408
exp(cbind(OR = coef(DSBlog3), confint(DSBlog3)))
##                                         OR      2.5 %     97.5 %
## (Intercept)                      0.2849011 0.03017875  2.4638141
## DigitSpanBck                     1.0455263 0.84108528  1.2839719
## SexMen                           0.6342003 0.10483198  3.7433863
## PovStatBelow                     1.5052248 0.19592363 11.2177285
## Age                              0.9686402 0.94241171  0.9948367
## WRATtotal                        1.0092314 0.97257573  1.0491430
## DigitSpanBck:SexMen              1.0392708 0.80147234  1.3534598
## DigitSpanBck:PovStatBelow        1.0090362 0.72802901  1.3967021
## SexMen:PovStatBelow              1.5538360 0.09235157 26.3418136
## DigitSpanBck:SexMen:PovStatBelow 0.9449929 0.60540337  1.4687422

Compare Models 1,2, & 3

anova(DSBlog1,DSBlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ DigitSpanBck
## Model 2: PhysAssault ~ DigitSpanBck + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     480.73                       
## 2       635     468.49  4   12.246  0.01561 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(DSBlog2,DSBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ DigitSpanBck + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     468.49                     
## 2       631     468.32  4  0.16486   0.9968
anova(DSBlog1,DSBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ DigitSpanBck
## Model 2: PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     480.73                     
## 2       631     468.32  8   12.411   0.1338

Suggested Model by Predictors

anova(DSBlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PhysAssault
## 
## Terms added sequentially (first to last)
## 
## 
##                          Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                       640     482.53           
## DigitSpanBck              1   1.7978       639     480.73  0.17998  
## Sex                       1   0.9489       638     479.79  0.33001  
## PovStat                   1   5.5965       637     474.19  0.01800 *
## Age                       1   5.4858       636     468.70  0.01917 *
## WRATtotal                 1   0.2147       635     468.49  0.64310  
## DigitSpanBck:Sex          1   0.0270       634     468.46  0.86958  
## DigitSpanBck:PovStat      1   0.0336       633     468.43  0.85458  
## Sex:PovStat               1   0.0411       632     468.39  0.83932  
## DigitSpanBck:Sex:PovStat  1   0.0632       631     468.32  0.80152  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DSBlog4 <- glm(PhysAssault ~ PovStat + Age, data = Allvars, family = "binomial")
summary(DSBlog4)
## 
## Call:
## glm(formula = PhysAssault ~ PovStat + Age, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7492  -0.5539  -0.4770  -0.3956   2.3402  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -0.53355    0.64202  -0.831   0.4059  
## PovStatBelow  0.45113    0.24862   1.815   0.0696 .
## Age          -0.03471    0.01372  -2.530   0.0114 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 470.90  on 638  degrees of freedom
## AIC: 476.9
## 
## Number of Fisher Scoring iterations: 5

Animal Naming Test - Psychological Aggression

Model 1

ANlog1 <- glm(PsychAggress ~ FluencyWord, data=Allvars,family = "binomial")
summary(ANlog1)
## 
## Call:
## glm(formula = PsychAggress ~ FluencyWord, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1217   0.4953   0.5325   0.5587   0.6215  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  1.36584    0.42838   3.188  0.00143 **
## FluencyWord  0.02579    0.02163   1.192  0.23321   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 503.95  on 639  degrees of freedom
## AIC: 507.95
## 
## Number of Fisher Scoring iterations: 4
confint(ANlog1)
##                  2.5 %     97.5 %
## (Intercept)  0.5308810 2.21242735
## FluencyWord -0.0159852 0.06893414
exp(cbind(OR = coef(ANlog1), confint(ANlog1)))
##                   OR     2.5 %   97.5 %
## (Intercept) 3.919008 1.7004297 9.137870
## FluencyWord 1.026123 0.9841419 1.071366

Model 2

ANlog2 <- glm(PsychAggress ~ FluencyWord + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(ANlog2)
## 
## Call:
## glm(formula = PsychAggress ~ FluencyWord + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3876   0.4129   0.4958   0.5797   0.8605  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   1.76445    0.96978   1.819   0.0688 .
## FluencyWord   0.02273    0.02416   0.941   0.3468  
## Age          -0.02055    0.01318  -1.559   0.1189  
## SexMen       -0.46955    0.24092  -1.949   0.0513 .
## PovStatBelow  0.30851    0.27181   1.135   0.2564  
## WRATtotal     0.01839    0.01566   1.175   0.2400  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 493.62  on 635  degrees of freedom
## AIC: 505.62
## 
## Number of Fisher Scoring iterations: 5
confint(ANlog2)
##                    2.5 %        97.5 %
## (Intercept)  -0.11687212  3.6921775664
## FluencyWord  -0.02410873  0.0707277787
## Age          -0.04657233  0.0051886613
## SexMen       -0.94753111 -0.0005008865
## PovStatBelow -0.21071033  0.8592819822
## WRATtotal    -0.01283072  0.0487244784
exp(cbind(OR = coef(ANlog2), confint(ANlog2)))
##                     OR     2.5 %     97.5 %
## (Intercept)  5.8383698 0.8896990 40.1321423
## FluencyWord  1.0229911 0.9761796  1.0732890
## Age          0.9796646 0.9544955  1.0052021
## SexMen       0.6252811 0.3876970  0.9994992
## PovStatBelow 1.3613906 0.8100087  2.3614645
## WRATtotal    1.0185651 0.9872512  1.0499310

Model 3

ANlog3 <- glm(PsychAggress ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(ANlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (FluencyWord + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3284   0.4143   0.4835   0.5639   1.0062  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                      2.008377   1.153266   1.741   0.0816 .
## FluencyWord                      0.011820   0.038971   0.303   0.7617  
## SexMen                          -1.424781   1.027353  -1.387   0.1655  
## PovStatBelow                    -0.019326   1.426951  -0.014   0.9892  
## Age                             -0.020953   0.013261  -1.580   0.1141  
## WRATtotal                        0.019146   0.015830   1.209   0.2265  
## FluencyWord:SexMen               0.043940   0.052092   0.844   0.3989  
## FluencyWord:PovStatBelow         0.007169   0.077334   0.093   0.9261  
## SexMen:PovStatBelow              2.731876   2.084764   1.310   0.1901  
## FluencyWord:SexMen:PovStatBelow -0.119742   0.105978  -1.130   0.2585  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 490.61  on 631  degrees of freedom
## AIC: 510.61
## 
## Number of Fisher Scoring iterations: 5
confint(ANlog3)
##                                       2.5 %     97.5 %
## (Intercept)                     -0.23228008 4.29821884
## FluencyWord                     -0.06215661 0.09117398
## SexMen                          -3.44849510 0.58663361
## PovStatBelow                    -2.81316385 2.80853892
## Age                             -0.04715221 0.00494707
## WRATtotal                       -0.01238725 0.04984477
## FluencyWord:SexMen              -0.05919918 0.14563277
## FluencyWord:PovStatBelow        -0.14070102 0.16460308
## SexMen:PovStatBelow             -1.31542020 6.89273664
## FluencyWord:SexMen:PovStatBelow -0.33129450 0.08587307
exp(cbind(OR = coef(ANlog3), confint(ANlog3)))
##                                         OR      2.5 %     97.5 %
## (Intercept)                      7.4512169 0.79272407  73.568640
## FluencyWord                      1.0118901 0.93973570   1.095460
## SexMen                           0.2405612 0.03179345   1.797926
## PovStatBelow                     0.9808595 0.06001481  16.585667
## Age                              0.9792650 0.95394219   1.004959
## WRATtotal                        1.0193306 0.98768916   1.051108
## FluencyWord:SexMen               1.0449201 0.94251902   1.156771
## FluencyWord:PovStatBelow         1.0071944 0.86874901   1.178925
## SexMen:PovStatBelow             15.3616755 0.26836153 985.093576
## FluencyWord:SexMen:PovStatBelow  0.8871492 0.71799369   1.089668

Compare Models 1,2, & 3

anova(ANlog1,ANlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ FluencyWord
## Model 2: PsychAggress ~ FluencyWord + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     503.95                       
## 2       635     493.62  4   10.329  0.03524 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ANlog2,ANlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ FluencyWord + Age + Sex + PovStat + WRATtotal
## Model 2: PsychAggress ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     493.62                     
## 2       631     490.61  4   3.0114   0.5559
anova(ANlog1,ANlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ FluencyWord
## Model 2: PsychAggress ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     503.95                     
## 2       631     490.61  8    13.34   0.1007

Suggested Model by Predictors

anova(ANlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PsychAggress
## 
## Terms added sequentially (first to last)
## 
## 
##                         Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                      640     505.40           
## FluencyWord              1   1.4483       639     503.95  0.22880  
## Sex                      1   4.7909       638     499.16  0.02861 *
## PovStat                  1   1.7025       637     497.46  0.19196  
## Age                      1   2.4815       636     494.98  0.11519  
## WRATtotal                1   1.3539       635     493.62  0.24461  
## FluencyWord:Sex          1   0.0965       634     493.53  0.75604  
## FluencyWord:PovStat      1   0.9028       633     492.63  0.34204  
## Sex:PovStat              1   0.7176       632     491.91  0.39692  
## FluencyWord:Sex:PovStat  1   1.2944       631     490.61  0.25523  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ANlog4 <- glm(PsychAggress ~ Sex, data = Allvars, family = "binomial")
summary(ANlog4)
## 
## Call:
## glm(formula = PsychAggress ~ Sex, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1065   0.4799   0.4799   0.5931   0.5931  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   2.1035     0.1765  11.915   <2e-16 ***
## SexMen       -0.4548     0.2345  -1.939   0.0525 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 501.59  on 639  degrees of freedom
## AIC: 505.59
## 
## Number of Fisher Scoring iterations: 4

Animal Naming Test - Physical Assault

Model 1

ANlog1 <- glm(PhysAssault ~ FluencyWord, data=Allvars,family = "binomial")
summary(ANlog1)
## 
## Call:
## glm(formula = PhysAssault ~ FluencyWord, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5534  -0.5265  -0.5149  -0.4979   2.1386  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.71589    0.44187  -3.883 0.000103 ***
## FluencyWord -0.01189    0.02198  -0.541 0.588385    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 482.24  on 639  degrees of freedom
## AIC: 486.24
## 
## Number of Fisher Scoring iterations: 4
confint(ANlog1)
##                   2.5 %      97.5 %
## (Intercept) -2.59122387 -0.85664979
## FluencyWord -0.05568067  0.03060649
exp(cbind(OR = coef(ANlog1), confint(ANlog1)))
##                    OR      2.5 %    97.5 %
## (Intercept) 0.1798035 0.07492828 0.4245821
## FluencyWord 0.9881767 0.94584113 1.0310797

Model 2

ANlog2 <- glm(PhysAssault ~ FluencyWord + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(ANlog2)
## 
## Call:
## glm(formula = PhysAssault ~ FluencyWord + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8546  -0.5507  -0.4755  -0.3870   2.4488  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.04609    1.06198  -0.985   0.3246  
## FluencyWord  -0.02460    0.02437  -1.009   0.3129  
## Age          -0.03521    0.01391  -2.531   0.0114 *
## SexMen       -0.11481    0.24751  -0.464   0.6427  
## PovStatBelow  0.47095    0.25358   1.857   0.0633 .
## WRATtotal     0.02420    0.01833   1.320   0.1868  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 468.39  on 635  degrees of freedom
## AIC: 480.39
## 
## Number of Fisher Scoring iterations: 5
confint(ANlog2)
##                    2.5 %       97.5 %
## (Intercept)  -3.16048185  1.011381105
## FluencyWord  -0.07308124  0.022627659
## Age          -0.06293818 -0.008280836
## SexMen       -0.60420415  0.368987112
## PovStatBelow -0.03137323  0.965505520
## WRATtotal    -0.01073217  0.061288899
exp(cbind(OR = coef(ANlog2), confint(ANlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  0.3513075 0.0424053 2.7493956
## FluencyWord  0.9757021 0.9295253 1.0228856
## Age          0.9654027 0.9390015 0.9917534
## SexMen       0.8915333 0.5465092 1.4462690
## PovStatBelow 1.6015097 0.9691138 2.6261149
## WRATtotal    1.0244978 0.9893252 1.0632060

Model 3

ANlog3 <- glm(PhysAssault ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(ANlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (FluencyWord + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8525  -0.5493  -0.4681  -0.3801   2.5158  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                     -1.600446   1.212631  -1.320   0.1869  
## FluencyWord                      0.003624   0.036624   0.099   0.9212  
## SexMen                           0.975863   1.161915   0.840   0.4010  
## PovStatBelow                     1.495936   1.229964   1.216   0.2239  
## Age                             -0.034897   0.013937  -2.504   0.0123 *
## WRATtotal                        0.024426   0.018371   1.330   0.1837  
## FluencyWord:SexMen              -0.056565   0.056061  -1.009   0.3130  
## FluencyWord:PovStatBelow        -0.057081   0.064744  -0.882   0.3780  
## SexMen:PovStatBelow             -1.816965   1.938739  -0.937   0.3487  
## FluencyWord:SexMen:PovStatBelow  0.098700   0.097335   1.014   0.3106  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 466.97  on 631  degrees of freedom
## AIC: 486.97
## 
## Number of Fisher Scoring iterations: 5
confint(ANlog3)
##                                       2.5 %       97.5 %
## (Intercept)                     -4.01506723  0.747960669
## FluencyWord                     -0.06998106  0.074381636
## SexMen                          -1.31267722  3.255391216
## PovStatBelow                    -0.90815521  3.931751771
## Age                             -0.06267745 -0.007917641
## WRATtotal                       -0.01061634  0.061555509
## FluencyWord:SexMen              -0.16772931  0.052793528
## FluencyWord:PovStatBelow        -0.18772678  0.067587070
## SexMen:PovStatBelow             -5.66030108  1.961694248
## FluencyWord:SexMen:PovStatBelow -0.09128825  0.291518237
exp(cbind(OR = coef(ANlog3), confint(ANlog3)))
##                                        OR       2.5 %     97.5 %
## (Intercept)                     0.2018065 0.018041742  2.1126872
## FluencyWord                     1.0036301 0.932411483  1.0772178
## SexMen                          2.6534555 0.269098655 25.9297567
## PovStatBelow                    4.4635102 0.403267482 50.9962332
## Age                             0.9657049 0.939246381  0.9921136
## WRATtotal                       1.0247266 0.989439812  1.0634895
## FluencyWord:SexMen              0.9450048 0.845582691  1.0542120
## FluencyWord:PovStatBelow        0.9445178 0.828841128  1.0699234
## SexMen:PovStatBelow             0.1625182 0.003481469  7.1113653
## FluencyWord:SexMen:PovStatBelow 1.1037354 0.912754575  1.3384580

Compare Models 1,2, & 3

anova(ANlog1,ANlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ FluencyWord
## Model 2: PhysAssault ~ FluencyWord + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)   
## 1       639     482.24                        
## 2       635     468.39  4   13.843 0.007812 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ANlog2,ANlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ FluencyWord + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     468.39                     
## 2       631     466.97  4   1.4275   0.8394
anova(ANlog1,ANlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ FluencyWord
## Model 2: PhysAssault ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     482.24                       
## 2       631     466.97  8   15.271  0.05409 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Suggested Model by Predictors

anova(ANlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PhysAssault
## 
## Terms added sequentially (first to last)
## 
## 
##                         Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                      640     482.53           
## FluencyWord              1   0.2952       639     482.24  0.58688  
## Sex                      1   0.6488       638     481.59  0.42053  
## PovStat                  1   4.7487       637     476.84  0.02932 *
## Age                      1   6.6326       636     470.21  0.01001 *
## WRATtotal                1   1.8132       635     468.39  0.17812  
## FluencyWord:Sex          1   0.2920       634     468.10  0.58895  
## FluencyWord:PovStat      1   0.0765       633     468.03  0.78207  
## Sex:PovStat              1   0.0245       632     468.00  0.87570  
## FluencyWord:Sex:PovStat  1   1.0345       631     466.97  0.30910  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ANlog4 <- glm(PsychAggress ~ PovStat + Age, data = Allvars, family = "binomial")
summary(ANlog4)
## 
## Call:
## glm(formula = PsychAggress ~ PovStat + Age, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2470   0.4626   0.5111   0.5704   0.6795  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   2.93498    0.64793   4.530  5.9e-06 ***
## PovStatBelow  0.24765    0.26716   0.927   0.3539    
## Age          -0.02408    0.01292  -1.864   0.0623 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.4  on 640  degrees of freedom
## Residual deviance: 500.3  on 638  degrees of freedom
## AIC: 506.3
## 
## Number of Fisher Scoring iterations: 4

Stroop Color-Word Test - Psychological Aggression

Model 1

SCWTlog1 <- glm(PsychAggress ~ StroopMixed, data=StroopMixed,family = "binomial")
summary(SCWTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ StroopMixed, family = "binomial", 
##     data = StroopMixed)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3248   0.4332   0.5120   0.5923   0.8944  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.55268    0.38541   1.434  0.15157   
## StroopMixed  0.03925    0.01221   3.213  0.00131 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 452.04  on 547  degrees of freedom
## Residual deviance: 441.36  on 546  degrees of freedom
## AIC: 445.36
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTlog1)
##                   2.5 %     97.5 %
## (Intercept) -0.19647466 1.31824277
## StroopMixed  0.01558201 0.06356161
exp(cbind(OR = coef(SCWTlog1), confint(SCWTlog1)))
##                   OR     2.5 %   97.5 %
## (Intercept) 1.737909 0.8216221 3.736849
## StroopMixed 1.040030 1.0157040 1.065625
plot(predictorEffect("StroopMixed",SCWTlog1))

Model 2

SCWTlog2 <- glm(PsychAggress ~ StroopMixed + Age + Sex + PovStat + WRATtotal, data = StroopMixed, family = "binomial")
summary(SCWTlog2)
## 
## Call:
## glm(formula = PsychAggress ~ StroopMixed + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = StroopMixed)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3956   0.4030   0.5069   0.5948   0.9438  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   0.99698    1.12674   0.885   0.3762  
## StroopMixed   0.02973    0.01419   2.095   0.0361 *
## Age          -0.01789    0.01502  -1.191   0.2338  
## SexMen       -0.32165    0.24818  -1.296   0.1950  
## PovStatBelow  0.28470    0.28846   0.987   0.3237  
## WRATtotal     0.01800    0.01818   0.990   0.3222  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 452.04  on 547  degrees of freedom
## Residual deviance: 435.89  on 542  degrees of freedom
## AIC: 447.89
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog2)
##                     2.5 %     97.5 %
## (Intercept)  -1.202319724 3.22403985
## StroopMixed   0.002045792 0.05778365
## Age          -0.047571215 0.01146232
## SexMen       -0.811751656 0.16397948
## PovStatBelow -0.267438077 0.86796109
## WRATtotal    -0.018211855 0.05328156
exp(cbind(OR = coef(SCWTlog2), confint(SCWTlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  2.7100891 0.3004963 25.129435
## StroopMixed  1.0301771 1.0020479  1.059486
## Age          0.9822704 0.9535426  1.011528
## SexMen       0.7249506 0.4440795  1.178190
## PovStatBelow 1.3293567 0.7653377  2.382049
## WRATtotal    1.0181610 0.9819530  1.054727
plot(allEffects(SCWTlog2))

Model 3

SCWTlog3 <- glm(PsychAggress ~ (StroopMixed + Sex + PovStat)^3 + Age + WRATtotal, data = StroopMixed, family = "binomial")
summary(SCWTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (StroopMixed + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = StroopMixed)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3828   0.3929   0.5067   0.6024   0.9833  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                      0.51878    1.25468   0.413   0.6793  
## StroopMixed                      0.04568    0.02265   2.016   0.0438 *
## SexMen                           0.36679    0.92214   0.398   0.6908  
## PovStatBelow                     0.47415    1.32994   0.357   0.7215  
## Age                             -0.01746    0.01506  -1.159   0.2463  
## WRATtotal                        0.01894    0.01836   1.032   0.3022  
## StroopMixed:SexMen              -0.02635    0.02888  -0.912   0.3615  
## StroopMixed:PovStatBelow        -0.01309    0.04323  -0.303   0.7621  
## SexMen:PovStatBelow             -0.12800    1.76637  -0.072   0.9422  
## StroopMixed:SexMen:PovStatBelow  0.01670    0.05833   0.286   0.7747  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 452.04  on 547  degrees of freedom
## Residual deviance: 434.45  on 538  degrees of freedom
## AIC: 454.45
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog3)
##                                        2.5 %     97.5 %
## (Intercept)                     -1.933308023 2.99882242
## StroopMixed                      0.002187172 0.09153845
## SexMen                          -1.446357087 2.18326044
## PovStatBelow                    -2.110003807 3.15042319
## Age                             -0.047217545 0.01196513
## WRATtotal                       -0.017581384 0.05460431
## StroopMixed:SexMen              -0.083643507 0.02999360
## StroopMixed:PovStatBelow        -0.096984597 0.07394836
## SexMen:PovStatBelow             -3.603769499 3.36101186
## StroopMixed:SexMen:PovStatBelow -0.098817961 0.13091968
exp(cbind(OR = coef(SCWTlog3), confint(SCWTlog3)))
##                                        OR      2.5 %    97.5 %
## (Intercept)                     1.6799779 0.14466884 20.061899
## StroopMixed                     1.0467372 1.00218957  1.095859
## SexMen                          1.4430962 0.23542637  8.875196
## PovStatBelow                    1.6066418 0.12123750 23.345942
## Age                             0.9826880 0.95387986  1.012037
## WRATtotal                       1.0191218 0.98257227  1.056123
## StroopMixed:SexMen              0.9739945 0.91975909  1.030448
## StroopMixed:PovStatBelow        0.9869981 0.90756999  1.076751
## SexMen:PovStatBelow             0.8798572 0.02722092 28.818336
## StroopMixed:SexMen:PovStatBelow 1.0168376 0.90590760  1.139876
plot(predictorEffect("StroopMixed",SCWTlog3))

Compare Models 1,2, & 3

anova(SCWTlog1,SCWTlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ StroopMixed
## Model 2: PsychAggress ~ StroopMixed + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       546     441.36                     
## 2       542     435.89  4   5.4703   0.2424
anova(SCWTlog2,SCWTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ StroopMixed + Age + Sex + PovStat + WRATtotal
## Model 2: PsychAggress ~ (StroopMixed + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       542     435.89                     
## 2       538     434.45  4   1.4343   0.8382
anova(SCWTlog1,SCWTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ StroopMixed
## Model 2: PsychAggress ~ (StroopMixed + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       546     441.36                     
## 2       538     434.45  8   6.9046    0.547

Suggested Model by Predictors

anova(SCWTlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PsychAggress
## 
## Terms added sequentially (first to last)
## 
## 
##                         Df Deviance Resid. Df Resid. Dev Pr(>Chi)   
## NULL                                      547     452.04            
## StroopMixed              1  10.6840       546     441.36 0.001081 **
## Sex                      1   1.8894       545     439.47 0.169269   
## PovStat                  1   1.3364       544     438.13 0.247664   
## Age                      1   1.2788       543     436.85 0.258129   
## WRATtotal                1   0.9657       542     435.89 0.325757   
## StroopMixed:Sex          1   0.9346       541     434.95 0.333666   
## StroopMixed:PovStat      1   0.0253       540     434.93 0.873703   
## Sex:PovStat              1   0.3926       539     434.53 0.530935   
## StroopMixed:Sex:PovStat  1   0.0818       538     434.45 0.774897   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
SCWTlog4 <- glm(PsychAggress ~ StroopMixed, data = StroopMixed, family = "binomial")
summary(SCWTlog4)
## 
## Call:
## glm(formula = PsychAggress ~ StroopMixed, family = "binomial", 
##     data = StroopMixed)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3248   0.4332   0.5120   0.5923   0.8944  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.55268    0.38541   1.434  0.15157   
## StroopMixed  0.03925    0.01221   3.213  0.00131 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 452.04  on 547  degrees of freedom
## Residual deviance: 441.36  on 546  degrees of freedom
## AIC: 445.36
## 
## Number of Fisher Scoring iterations: 4
plot(allEffects(SCWTlog4))

Stroop Color-Word Test - Physical Assault

Model 1

SCWTlog1 <- glm(PhysAssault ~ StroopMixed, data=StroopMixed,family = "binomial")
summary(SCWTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ StroopMixed, family = "binomial", 
##     data = StroopMixed)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5817  -0.5063  -0.4888  -0.4695   2.1974  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -2.39524    0.45602  -5.252  1.5e-07 ***
## StroopMixed  0.01067    0.01296   0.823     0.41    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 391.02  on 547  degrees of freedom
## Residual deviance: 390.34  on 546  degrees of freedom
## AIC: 394.34
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTlog1)
##                   2.5 %      97.5 %
## (Intercept) -3.31626204 -1.52583659
## StroopMixed -0.01475071  0.03614618
exp(cbind(OR = coef(SCWTlog1), confint(SCWTlog1)))
##                     OR      2.5 %    97.5 %
## (Intercept) 0.09115035 0.03628822 0.2174391
## StroopMixed 1.01072943 0.98535755 1.0368074

Model 2

SCWTlog2 <- glm(PhysAssault ~ StroopMixed + Age + Sex + PovStat + WRATtotal, data = StroopMixed, family = "binomial")
summary(SCWTlog2)
## 
## Call:
## glm(formula = PhysAssault ~ StroopMixed + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = StroopMixed)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8575  -0.5252  -0.4387  -0.3595   2.4818  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.923475   1.308109  -1.470   0.1414  
## StroopMixed  -0.002239   0.015751  -0.142   0.8870  
## Age          -0.030718   0.016570  -1.854   0.0638 .
## SexMen       -0.340829   0.279464  -1.220   0.2226  
## PovStatBelow  0.670720   0.289539   2.317   0.0205 *
## WRATtotal     0.028233   0.022555   1.252   0.2107  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 391.02  on 547  degrees of freedom
## Residual deviance: 376.77  on 542  degrees of freedom
## AIC: 388.77
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog2)
##                    2.5 %      97.5 %
## (Intercept)  -4.52828769 0.613429348
## StroopMixed  -0.03313450 0.028730582
## Age          -0.06373628 0.001399406
## SexMen       -0.89963957 0.200617507
## PovStatBelow  0.09865659 1.237696041
## WRATtotal    -0.01471822 0.073934791
exp(cbind(OR = coef(SCWTlog2), confint(SCWTlog2)))
##                     OR      2.5 %   97.5 %
## (Intercept)  0.1460984 0.01079915 1.846754
## StroopMixed  0.9977633 0.96740843 1.029147
## Age          0.9697488 0.93825241 1.001400
## SexMen       0.7111802 0.40671622 1.222157
## PovStatBelow 1.9556456 1.10368721 3.447661
## WRATtotal    1.0286353 0.98538956 1.076737

Model 3

SCWTlog3 <- glm(PhysAssault ~ (StroopMixed + Sex + PovStat)^3 + Age + WRATtotal, data = StroopMixed, family = "binomial")
summary(SCWTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (StroopMixed + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = StroopMixed)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8174  -0.5564  -0.4236  -0.3232   2.5111  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                     -2.78652    1.43745  -1.939   0.0526 .
## StroopMixed                      0.02099    0.02257   0.930   0.3524  
## SexMen                           1.84015    1.24297   1.480   0.1388  
## PovStatBelow                     1.24604    1.35126   0.922   0.3565  
## Age                             -0.02924    0.01667  -1.754   0.0794 .
## WRATtotal                        0.02940    0.02237   1.314   0.1888  
## StroopMixed:SexMen              -0.07248    0.03617  -2.004   0.0451 *
## StroopMixed:PovStatBelow        -0.02215    0.03823  -0.579   0.5623  
## SexMen:PovStatBelow             -2.03683    1.95253  -1.043   0.2969  
## StroopMixed:SexMen:PovStatBelow  0.07915    0.05825   1.359   0.1742  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 391.02  on 547  degrees of freedom
## Residual deviance: 371.47  on 538  degrees of freedom
## AIC: 391.47
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog3)
##                                       2.5 %       97.5 %
## (Intercept)                     -5.66663487 -0.016991478
## StroopMixed                     -0.02299517  0.065885642
## SexMen                          -0.63428162  4.271705151
## PovStatBelow                    -1.46094828  3.874539036
## Age                             -0.06242361  0.003099514
## WRATtotal                       -0.01319397  0.074756970
## StroopMixed:SexMen              -0.14463657 -0.002266140
## StroopMixed:PovStatBelow        -0.09735843  0.053418320
## SexMen:PovStatBelow             -5.89405066  1.798465502
## StroopMixed:SexMen:PovStatBelow -0.03451700  0.194549935
exp(cbind(OR = coef(SCWTlog3), confint(SCWTlog3)))
##                                         OR       2.5 %     97.5 %
## (Intercept)                     0.06163505 0.003459487  0.9831521
## StroopMixed                     1.02121051 0.977267205  1.0681046
## SexMen                          6.29748378 0.530316321 71.6436948
## PovStatBelow                    3.47654803 0.232016154 48.1604929
## Age                             0.97118439 0.939484830  1.0031043
## WRATtotal                       1.02983659 0.986892686  1.0776222
## StroopMixed:SexMen              0.93008782 0.865336727  0.9977364
## StroopMixed:PovStatBelow        0.97809470 0.907230769  1.0548708
## SexMen:PovStatBelow             0.13044162 0.002755791  6.0403714
## StroopMixed:SexMen:PovStatBelow 1.08236894 0.966071912  1.2147641
interact_plot(model = SCWTlog3, pred = StroopMixed, modx = Sex)

Compare Models 1,2, & 3

anova(SCWTlog1,SCWTlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ StroopMixed
## Model 2: PhysAssault ~ StroopMixed + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)   
## 1       546     390.34                        
## 2       542     376.77  4   13.566 0.008816 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(SCWTlog2,SCWTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ StroopMixed + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (StroopMixed + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       542     376.77                     
## 2       538     371.47  4   5.3085   0.2571
anova(SCWTlog1,SCWTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ StroopMixed
## Model 2: PhysAssault ~ (StroopMixed + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       546     390.34                       
## 2       538     371.47  8   18.875  0.01554 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Suggested Model by Predictors

anova(SCWTlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PhysAssault
## 
## Terms added sequentially (first to last)
## 
## 
##                         Df Deviance Resid. Df Resid. Dev Pr(>Chi)   
## NULL                                      547     391.02            
## StroopMixed              1   0.6780       546     390.34 0.410267   
## Sex                      1   1.9635       545     388.38 0.161145   
## PovStat                  1   6.8160       544     381.56 0.009034 **
## Age                      1   3.1583       543     378.40 0.075543 . 
## WRATtotal                1   1.6286       542     376.77 0.201893   
## StroopMixed:Sex          1   2.6238       541     374.15 0.105273   
## StroopMixed:PovStat      1   0.0702       540     374.08 0.791079   
## Sex:PovStat              1   0.7544       539     373.33 0.385085   
## StroopMixed:Sex:PovStat  1   1.8601       538     371.47 0.172609   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
SCWTlog4 <- glm(PhysAssault ~ PovStat + Age, data = StroopMixed, family = "binomial")
summary(SCWTlog4)
## 
## Call:
## glm(formula = PhysAssault ~ PovStat + Age, family = "binomial", 
##     data = StroopMixed)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7410  -0.5281  -0.4482  -0.3757   2.3858  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -0.75584    0.72639  -1.041   0.2981  
## PovStatBelow  0.59571    0.27780   2.144   0.0320 *
## Age          -0.03296    0.01544  -2.134   0.0328 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 391.02  on 547  degrees of freedom
## Residual deviance: 379.98  on 545  degrees of freedom
## AIC: 385.98
## 
## Number of Fisher Scoring iterations: 5

California Verbal Learning Test (Total Correct Trial A) - Psychological Aggression

Model 1

CVLTlog1 <- glm(PsychAggress ~ CVLtca, data=Allvars,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ CVLtca, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2397   0.4639   0.5139   0.5604   0.7019  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.27530    0.28686   4.446 8.76e-06 ***
## CVLtca       0.03103    0.01435   2.162   0.0306 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 500.73  on 639  degrees of freedom
## AIC: 504.73
## 
## Number of Fisher Scoring iterations: 4
confint(CVLTlog1)
##                   2.5 %     97.5 %
## (Intercept) 0.726387845 1.85354798
## CVLtca      0.002905058 0.05927112
exp(cbind(OR = coef(CVLTlog1), confint(CVLTlog1)))
##                   OR    2.5 %   97.5 %
## (Intercept) 3.579779 2.067599 6.382424
## CVLtca      1.031512 1.002909 1.061063
plot(allEffects(CVLTlog1))

Model 2

CVLTlog2 <- glm(PsychAggress ~ CVLtca + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog2)
## 
## Call:
## glm(formula = PsychAggress ~ CVLtca + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4013   0.4156   0.4938   0.5810   0.8756  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   1.69988    0.96538   1.761   0.0783 .
## CVLtca        0.01946    0.01611   1.208   0.2269  
## Age          -0.01842    0.01339  -1.375   0.1690  
## SexMen       -0.37455    0.24039  -1.558   0.1192  
## PovStatBelow  0.33199    0.27315   1.215   0.2242  
## WRATtotal     0.01787    0.01537   1.162   0.2450  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 493.07  on 635  degrees of freedom
## AIC: 505.07
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog2)
##                    2.5 %      97.5 %
## (Intercept)  -0.17016237 3.622026457
## CVLtca       -0.01231726 0.050931166
## Age          -0.04485800 0.007752946
## SexMen       -0.85096655 0.094038699
## PovStatBelow -0.18985492 0.885330955
## WRATtotal    -0.01277707 0.047655994
exp(cbind(OR = coef(CVLTlog2), confint(CVLTlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  5.4732962 0.8435278 37.413308
## CVLtca       1.0196525 0.9877583  1.052250
## Age          0.9817498 0.9561332  1.007783
## SexMen       0.6875991 0.4270020  1.098602
## PovStatBelow 1.3937334 0.8270791  2.423786
## WRATtotal    1.0180281 0.9873042  1.048810

Model 3

CVLTlog3 <- glm(PsychAggress ~ (CVLtca + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (CVLtca + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3337   0.4129   0.4814   0.5690   0.9980  
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)
## (Intercept)                 1.507921   1.041509   1.448    0.148
## CVLtca                      0.032917   0.027323   1.205    0.228
## SexMen                     -0.490835   0.717735  -0.684    0.494
## PovStatBelow                1.064531   1.054751   1.009    0.313
## Age                        -0.018731   0.013525  -1.385    0.166
## WRATtotal                   0.017976   0.015501   1.160    0.246
## CVLtca:SexMen               0.002083   0.035676   0.058    0.953
## CVLtca:PovStatBelow        -0.047366   0.048002  -0.987    0.324
## SexMen:PovStatBelow         0.365349   1.389997   0.263    0.793
## CVLtca:SexMen:PovStatBelow -0.009220   0.068861  -0.134    0.893
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 490.18  on 631  degrees of freedom
## AIC: 510.18
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog3)
##                                  2.5 %      97.5 %
## (Intercept)                -0.49988121 3.595142572
## CVLtca                     -0.02103625 0.086641647
## SexMen                     -1.93022742 0.897900681
## PovStatBelow               -0.91709632 3.263924014
## Age                        -0.04543934 0.007698432
## WRATtotal                  -0.01291089 0.048037702
## CVLtca:SexMen              -0.06781452 0.072447800
## CVLtca:PovStatBelow        -0.14316689 0.046005026
## SexMen:PovStatBelow        -2.39711923 3.102579238
## CVLtca:SexMen:PovStatBelow -0.14502772 0.125832049
exp(cbind(OR = coef(CVLTlog3), confint(CVLTlog3)))
##                                   OR      2.5 %    97.5 %
## (Intercept)                4.5173308 0.60660271 36.420892
## CVLtca                     1.0334647 0.97918347  1.090506
## SexMen                     0.6121152 0.14511519  2.454445
## PovStatBelow               2.8994777 0.39967789 26.151957
## Age                        0.9814433 0.95557757  1.007728
## WRATtotal                  1.0181383 0.98717210  1.049210
## CVLtca:SexMen              1.0020853 0.93443378  1.075137
## CVLtca:PovStatBelow        0.9537384 0.86660943  1.047080
## SexMen:PovStatBelow        1.4410172 0.09097967 22.255279
## CVLtca:SexMen:PovStatBelow 0.9908219 0.86499831  1.134092

Compare Models 1,2, & 3

anova(CVLTlog1,CVLTlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ CVLtca
## Model 2: PsychAggress ~ CVLtca + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     500.73                     
## 2       635     493.07  4   7.6562    0.105
anova(CVLTlog2,CVLTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ CVLtca + Age + Sex + PovStat + WRATtotal
## Model 2: PsychAggress ~ (CVLtca + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     493.07                     
## 2       631     490.18  4   2.8937   0.5758
anova(CVLTlog1,CVLTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ CVLtca
## Model 2: PsychAggress ~ (CVLtca + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     500.73                     
## 2       631     490.18  8    10.55   0.2285

Suggested Model by Predictors

anova(CVLTlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PsychAggress
## 
## Terms added sequentially (first to last)
## 
## 
##                    Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                 640     505.40           
## CVLtca              1   4.6747       639     500.73  0.03061 *
## Sex                 1   2.5316       638     498.20  0.11159  
## PovStat             1   1.9644       637     496.23  0.16104  
## Age                 1   1.8340       636     494.40  0.17566  
## WRATtotal           1   1.3262       635     493.07  0.24947  
## CVLtca:Sex          1   0.0025       634     493.07  0.95979  
## CVLtca:PovStat      1   2.7495       633     490.32  0.09729 .
## Sex:PovStat         1   0.1237       632     490.19  0.72503  
## CVLtca:Sex:PovStat  1   0.0179       631     490.18  0.89346  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
CVLTlog4 <- glm(PsychAggress ~ (CVLtca + PovStat)^2, data = Allvars, family = "binomial")
summary(CVLTlog4)
## 
## Call:
## glm(formula = PsychAggress ~ (CVLtca + PovStat)^2, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2600   0.4611   0.4842   0.5633   0.8407  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)   
## (Intercept)          0.85831    0.34111   2.516   0.0119 * 
## CVLtca               0.04749    0.01718   2.765   0.0057 **
## PovStatBelow         1.30441    0.66183   1.971   0.0487 * 
## CVLtca:PovStatBelow -0.05105    0.03263  -1.564   0.1178   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 496.05  on 637  degrees of freedom
## AIC: 504.05
## 
## Number of Fisher Scoring iterations: 4
plot(predictorEffect("CVLtca",CVLTlog4))

California Verbal Learning Test (Total Correct Trial A) - Physical Assault

Model 1

CVLTlog1 <- glm(PhysAssault ~ CVLtca, data=Allvars,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ CVLtca, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6067  -0.5309  -0.5087  -0.4873   2.1695  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -2.25338    0.33030  -6.822 8.97e-12 ***
## CVLtca       0.01521    0.01505   1.011    0.312    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 481.50  on 639  degrees of freedom
## AIC: 485.5
## 
## Number of Fisher Scoring iterations: 4
confint(CVLTlog1)
##                   2.5 %      97.5 %
## (Intercept) -2.92543925 -1.62855334
## CVLtca      -0.01407327  0.04501825
exp(cbind(OR = coef(CVLTlog1), confint(CVLTlog1)))
##                    OR      2.5 %    97.5 %
## (Intercept) 0.1050432 0.05364113 0.1962132
## CVLtca      1.0153312 0.98602529 1.0460469
plot(allEffects(CVLTlog1))

Model 2

CVLTlog2 <- glm(PhysAssault ~ CVLtca + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog2)
## 
## Call:
## glm(formula = PhysAssault ~ CVLtca + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8203  -0.5516  -0.4716  -0.3932   2.3909  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.369388   1.063372  -1.288   0.1978  
## CVLtca        0.003692   0.016615   0.222   0.8241  
## Age          -0.032616   0.014098  -2.313   0.0207 *
## SexMen       -0.143840   0.249702  -0.576   0.5646  
## PovStatBelow  0.494611   0.254675   1.942   0.0521 .
## WRATtotal     0.016375   0.017888   0.915   0.3600  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 469.38  on 635  degrees of freedom
## AIC: 481.38
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog2)
##                     2.5 %       97.5 %
## (Intercept)  -3.491971077  0.685248919
## CVLtca       -0.028593810  0.036641979
## Age          -0.060680847 -0.005287059
## SexMen       -0.637616292  0.344169067
## PovStatBelow -0.009561475  0.991649370
## WRATtotal    -0.017785200  0.052499542
exp(cbind(OR = coef(CVLTlog2), confint(CVLTlog2)))
##                     OR      2.5 %    97.5 %
## (Intercept)  0.2542626 0.03044081 1.9842657
## CVLtca       1.0036992 0.97181112 1.0373216
## Age          0.9679098 0.94112355 0.9947269
## SexMen       0.8660259 0.52855083 1.4108171
## PovStatBelow 1.6398605 0.99048409 2.6956770
## WRATtotal    1.0165096 0.98237202 1.0539021

Model 3

CVLTlog3 <- glm(PhysAssault ~ (CVLtca + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (CVLtca + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8807  -0.5521  -0.4699  -0.3868   2.3692  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                -1.56944    1.17685  -1.334   0.1823  
## CVLtca                      0.01507    0.02827   0.533   0.5939  
## SexMen                      0.31859    0.90423   0.352   0.7246  
## PovStatBelow                1.19628    0.93802   1.275   0.2022  
## Age                        -0.03285    0.01415  -2.321   0.0203 *
## WRATtotal                   0.01566    0.01802   0.869   0.3847  
## CVLtca:SexMen              -0.02338    0.04019  -0.582   0.5608  
## CVLtca:PovStatBelow        -0.03456    0.04091  -0.845   0.3982  
## SexMen:PovStatBelow        -1.59191    1.38680  -1.148   0.2510  
## CVLtca:SexMen:PovStatBelow  0.08675    0.06569   1.321   0.1867  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 467.48  on 631  degrees of freedom
## AIC: 487.48
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog3)
##                                  2.5 %       97.5 %
## (Intercept)                -3.94186703  0.682851594
## CVLtca                     -0.03911156  0.072130045
## SexMen                     -1.45623021  2.114702092
## PovStatBelow               -0.64898891  3.058400756
## Age                        -0.06103090 -0.005420145
## WRATtotal                  -0.01877807  0.052007524
## CVLtca:SexMen              -0.10277124  0.055227806
## CVLtca:PovStatBelow        -0.11546733  0.045572506
## SexMen:PovStatBelow        -4.37034666  1.095833308
## CVLtca:SexMen:PovStatBelow -0.04073430  0.217556779
exp(cbind(OR = coef(CVLTlog3), confint(CVLTlog3)))
##                                   OR      2.5 %     97.5 %
## (Intercept)                0.2081609 0.01941194  1.9795145
## CVLtca                     1.0151877 0.96164343  1.0747951
## SexMen                     1.3751903 0.23311341  8.2871166
## PovStatBelow               3.3077874 0.52257388 21.2934765
## Age                        0.9676869 0.94079417  0.9945945
## WRATtotal                  1.0157839 0.98139714  1.0533837
## CVLtca:SexMen              0.9768927 0.90233337  1.0567813
## CVLtca:PovStatBelow        0.9660316 0.89094968  1.0466269
## SexMen:PovStatBelow        0.2035359 0.01264686  2.9916746
## CVLtca:SexMen:PovStatBelow 1.0906242 0.96008419  1.2430360

Compare Models 1,2, & 3

anova(CVLTlog1,CVLTlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ CVLtca
## Model 2: PhysAssault ~ CVLtca + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     481.50                       
## 2       635     469.38  4   12.126  0.01644 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(CVLTlog2,CVLTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ CVLtca + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (CVLtca + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     469.38                     
## 2       631     467.48  4   1.8915   0.7557
anova(CVLTlog1,CVLTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ CVLtca
## Model 2: PhysAssault ~ (CVLtca + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     481.50                       
## 2       631     467.48  8   14.018  0.08131 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Suggested Model by Predictors

anova(CVLTlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PhysAssault
## 
## Terms added sequentially (first to last)
## 
## 
##                    Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                 640     482.53           
## CVLtca              1   1.0302       639     481.50  0.31011  
## Sex                 1   0.4987       638     481.00  0.48006  
## PovStat             1   5.3563       637     475.65  0.02065 *
## Age                 1   5.4114       636     470.24  0.02001 *
## WRATtotal           1   0.8598       635     469.38  0.35379  
## CVLtca:Sex          1   0.0796       634     469.30  0.77790  
## CVLtca:PovStat      1   0.0033       633     469.29  0.95451  
## Sex:PovStat         1   0.0390       632     469.25  0.84345  
## CVLtca:Sex:PovStat  1   1.7697       631     467.48  0.18342  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
CVLTlog4 <- glm(PsychAggress ~ PovStat + Age, data = Allvars, family = "binomial")
summary(CVLTlog4)
## 
## Call:
## glm(formula = PsychAggress ~ PovStat + Age, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2470   0.4626   0.5111   0.5704   0.6795  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   2.93498    0.64793   4.530  5.9e-06 ***
## PovStatBelow  0.24765    0.26716   0.927   0.3539    
## Age          -0.02408    0.01292  -1.864   0.0623 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.4  on 640  degrees of freedom
## Residual deviance: 500.3  on 638  degrees of freedom
## AIC: 506.3
## 
## Number of Fisher Scoring iterations: 4

California Verbal Learning Test (Long Delayed Free Recall) - Psychological Aggression

Model 1

CVLTlog1 <- glm(PsychAggress ~ CVLfrl, data=Allvars,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ CVLfrl, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4382   0.4088   0.5132   0.5737   0.7125  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.24154    0.20846   5.956 2.59e-09 ***
## CVLfrl       0.11988    0.03651   3.284  0.00102 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 494.01  on 639  degrees of freedom
## AIC: 498.01
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog1)
##                  2.5 %    97.5 %
## (Intercept) 0.84167993 1.6603766
## CVLfrl      0.04955222 0.1929286
exp(cbind(OR = coef(CVLTlog1), confint(CVLTlog1)))
##                   OR    2.5 %   97.5 %
## (Intercept) 3.460942 2.320262 5.261292
## CVLfrl      1.127367 1.050800 1.212796
plot(allEffects(CVLTlog1))

Model 2

CVLTlog2 <- glm(PsychAggress ~ CVLfrl + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog2)
## 
## Call:
## glm(formula = PsychAggress ~ CVLfrl + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4604   0.3885   0.4867   0.5876   0.8772  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   1.48555    0.95470   1.556   0.1197  
## CVLfrl        0.09764    0.03976   2.456   0.0141 *
## Age          -0.01359    0.01351  -1.006   0.3143  
## SexMen       -0.32575    0.24041  -1.355   0.1754  
## PovStatBelow  0.34545    0.27276   1.266   0.2053  
## WRATtotal     0.01367    0.01512   0.904   0.3662  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 488.38  on 635  degrees of freedom
## AIC: 500.38
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog2)
##                    2.5 %     97.5 %
## (Intercept)  -0.36542427 3.38494073
## CVLfrl        0.02029872 0.17648432
## Age          -0.04025046 0.01282705
## SexMen       -0.80195754 0.14310289
## PovStatBelow -0.17561150 0.89805025
## WRATtotal    -0.01652091 0.04294846
exp(cbind(OR = coef(CVLTlog2), confint(CVLTlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  4.4174118 0.6939022 29.516243
## CVLfrl       1.1025658 1.0205061  1.193016
## Age          0.9864970 0.9605488  1.012910
## SexMen       0.7219892 0.4484502  1.153849
## PovStatBelow 1.4126221 0.8389438  2.454812
## WRATtotal    1.0137609 0.9836148  1.043884
plot(predictorEffect("CVLfrl",CVLTlog2))

Model 3

CVLTlog3 <- glm(PsychAggress ~ (CVLfrl + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (CVLfrl + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4092   0.3891   0.4796   0.5819   0.9066  
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)
## (Intercept)                 1.594364   0.995644   1.601    0.109
## CVLfrl                      0.081954   0.064865   1.263    0.206
## SexMen                     -0.539601   0.519371  -1.039    0.299
## PovStatBelow                0.034576   0.728639   0.047    0.962
## Age                        -0.013555   0.013553  -1.000    0.317
## WRATtotal                   0.014485   0.015217   0.952    0.341
## CVLfrl:SexMen               0.020872   0.087237   0.239    0.811
## CVLfrl:PovStatBelow         0.019247   0.118391   0.163    0.871
## SexMen:PovStatBelow         0.403466   0.951778   0.424    0.672
## CVLfrl:SexMen:PovStatBelow  0.007243   0.175255   0.041    0.967
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.4  on 640  degrees of freedom
## Residual deviance: 487.7  on 631  degrees of freedom
## AIC: 507.7
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog3)
##                                  2.5 %     97.5 %
## (Intercept)                -0.33012860 3.58191681
## CVLfrl                     -0.04333937 0.21245834
## SexMen                     -1.58108983 0.46411696
## PovStatBelow               -1.35788726 1.53077967
## Age                        -0.04029900 0.01294495
## WRATtotal                  -0.01586669 0.04396449
## CVLfrl:SexMen              -0.15057415 0.19264865
## CVLfrl:PovStatBelow        -0.21063952 0.25722477
## SexMen:PovStatBelow        -1.48466750 2.27285707
## CVLfrl:SexMen:PovStatBelow -0.33464295 0.35634530
exp(cbind(OR = coef(CVLTlog3), confint(CVLTlog3)))
##                                   OR     2.5 %    97.5 %
## (Intercept)                4.9251943 0.7188313 35.942369
## CVLfrl                     1.0854060 0.9575864  1.236715
## SexMen                     0.5829807 0.2057507  1.590609
## PovStatBelow               1.0351811 0.2572036  4.621779
## Age                        0.9865361 0.9605022  1.013029
## WRATtotal                  1.0145904 0.9842585  1.044945
## CVLfrl:SexMen              1.0210918 0.8602139  1.212457
## CVLfrl:PovStatBelow        1.0194336 0.8100660  1.293336
## SexMen:PovStatBelow        1.4970042 0.2265777  9.707095
## CVLfrl:SexMen:PovStatBelow 1.0072689 0.7155935  1.428101

Compare Models 1,2, & 3

anova(CVLTlog1,CVLTlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ CVLfrl
## Model 2: PsychAggress ~ CVLfrl + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     494.01                     
## 2       635     488.38  4   5.6292   0.2286
anova(CVLTlog2,CVLTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ CVLfrl + Age + Sex + PovStat + WRATtotal
## Model 2: PsychAggress ~ (CVLfrl + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     488.38                     
## 2       631     487.70  4  0.68133   0.9536
anova(CVLTlog1,CVLTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ CVLfrl
## Model 2: PsychAggress ~ (CVLfrl + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     494.01                     
## 2       631     487.70  8   6.3105   0.6125

Suggested Model by Predictors

anova(CVLTlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PsychAggress
## 
## Terms added sequentially (first to last)
## 
## 
##                    Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
## NULL                                 640     505.40              
## CVLfrl              1  11.3915       639     494.01 0.0007378 ***
## Sex                 1   1.9347       638     492.08 0.1642450    
## PovStat             1   1.9131       637     490.16 0.1666241    
## Age                 1   0.9772       636     489.18 0.3228861    
## WRATtotal           1   0.8042       635     488.38 0.3698439    
## CVLfrl:Sex          1   0.0535       634     488.33 0.8170136    
## CVLfrl:PovStat      1   0.0071       633     488.32 0.9330413    
## Sex:PovStat         1   0.6190       632     487.70 0.4314100    
## CVLfrl:Sex:PovStat  1   0.0017       631     487.70 0.9670288    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
CVLTlog4 <- glm(PsychAggress ~ CVLfrl, data = Allvars, family = "binomial")
summary(CVLTlog4)
## 
## Call:
## glm(formula = PsychAggress ~ CVLfrl, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4382   0.4088   0.5132   0.5737   0.7125  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.24154    0.20846   5.956 2.59e-09 ***
## CVLfrl       0.11988    0.03651   3.284  0.00102 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 494.01  on 639  degrees of freedom
## AIC: 498.01
## 
## Number of Fisher Scoring iterations: 5
plot(allEffects(CVLTlog3))

California Verbal Learning Test (Long Delayed Free Recall) - Physical Assault

Model 1

CVLTlog1 <- glm(PhysAssault ~ CVLfrl, data=Allvars,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ CVLfrl, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6037  -0.5267  -0.5088  -0.4830   2.1318  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -2.16353    0.24189  -8.944   <2e-16 ***
## CVLfrl       0.03691    0.03500   1.055    0.292    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 481.42  on 639  degrees of freedom
## AIC: 485.42
## 
## Number of Fisher Scoring iterations: 4
confint(CVLTlog1)
##                   2.5 %     97.5 %
## (Intercept) -2.65528125 -1.7053017
## CVLfrl      -0.03197077  0.1055069
exp(cbind(OR = coef(CVLTlog1), confint(CVLTlog1)))
##                    OR      2.5 %    97.5 %
## (Intercept) 0.1149186 0.07027907 0.1817175
## CVLfrl      1.0375994 0.96853490 1.1112738

Model 2

CVLTlog2 <- glm(PhysAssault ~ CVLfrl + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog2)
## 
## Call:
## glm(formula = PhysAssault ~ CVLfrl + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8222  -0.5505  -0.4723  -0.3947   2.3860  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.326022   1.048693  -1.264   0.2061  
## CVLfrl        0.003212   0.038750   0.083   0.9339  
## Age          -0.033009   0.014255  -2.316   0.0206 *
## SexMen       -0.151689   0.248636  -0.610   0.5418  
## PovStatBelow  0.489547   0.253616   1.930   0.0536 .
## WRATtotal     0.017181   0.017742   0.968   0.3329  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 469.42  on 635  degrees of freedom
## AIC: 481.42
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog2)
##                    2.5 %       97.5 %
## (Intercept)  -3.41939734  0.700297485
## CVLfrl       -0.07270854  0.079504533
## Age          -0.06136406 -0.005354469
## SexMen       -0.64344728  0.334149873
## PovStatBelow -0.01264032  0.984415506
## WRATtotal    -0.01669413  0.053017533
exp(cbind(OR = coef(CVLTlog2), confint(CVLTlog2)))
##                     OR      2.5 %    97.5 %
## (Intercept)  0.2655314 0.03273216 2.0143519
## CVLfrl       1.0032176 0.92987181 1.0827505
## Age          0.9675298 0.94048079 0.9946598
## SexMen       0.8592554 0.52547783 1.3967525
## PovStatBelow 1.6315765 0.98743923 2.6762472
## WRATtotal    1.0173294 0.98344444 1.0544481

Model 3

CVLTlog3 <- glm(PhysAssault ~ (CVLfrl + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (CVLfrl + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9608  -0.5456  -0.4611  -0.3756   2.3880  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                -1.54116    1.11091  -1.387   0.1654  
## CVLfrl                      0.05847    0.06311   0.926   0.3542  
## SexMen                      0.16453    0.66352   0.248   0.8042  
## PovStatBelow                1.74987    0.69446   2.520   0.0117 *
## Age                        -0.03334    0.01429  -2.333   0.0196 *
## WRATtotal                   0.01402    0.01794   0.782   0.4345  
## CVLfrl:SexMen              -0.04768    0.09093  -0.524   0.6000  
## CVLfrl:PovStatBelow        -0.21185    0.10025  -2.113   0.0346 *
## SexMen:PovStatBelow        -1.68383    1.02211  -1.647   0.0995 .
## CVLfrl:SexMen:PovStatBelow  0.30140    0.15435   1.953   0.0509 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 463.48  on 631  degrees of freedom
## AIC: 483.48
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog3)
##                                   2.5 %       97.5 %
## (Intercept)                -3.768138754  0.596098027
## CVLfrl                     -0.063914094  0.184956139
## SexMen                     -1.134460897  1.487606633
## PovStatBelow                0.394379812  3.136825838
## Age                        -0.061778689 -0.005627172
## WRATtotal                  -0.020308030  0.050188403
## CVLfrl:SexMen              -0.228410112  0.129351707
## CVLfrl:PovStatBelow        -0.412916523 -0.018096870
## SexMen:PovStatBelow        -3.734693589  0.293286423
## CVLfrl:SexMen:PovStatBelow  0.001638781  0.608694441
exp(cbind(OR = coef(CVLTlog2), confint(CVLTlog3)))
## Warning in cbind(OR = coef(CVLTlog2), confint(CVLTlog3)): number of rows of
## result is not a multiple of vector length (arg 1)
##                                   OR      2.5 %     97.5 %
## (Intercept)                0.2655314 0.02309501  1.8150228
## CVLfrl                     1.0032176 0.93808558  1.2031657
## SexMen                     0.9675298 0.32159545  4.4264886
## PovStatBelow               0.8592554 1.48346388 23.0306477
## Age                        1.6315765 0.94009092  0.9943886
## WRATtotal                  1.0173294 0.97989679  1.0514692
## CVLfrl:SexMen              0.2655314 0.79579783  1.1380903
## CVLfrl:PovStatBelow        1.0032176 0.66171752  0.9820659
## SexMen:PovStatBelow        0.9675298 0.02388049  1.3408268
## CVLfrl:SexMen:PovStatBelow 0.8592554 1.00164012  1.8380302
interact_plot(model = CVLTlog3, pred = CVLfrl, modx = PovStat)

sim_slopes(CVLTlog3, pred = CVLfrl, modx = PovStat, centered = "all",jnplot = TRUE)
## Warning: Johnson-Neyman intervals are not available for factor moderators.
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of CVLfrl when PovStat = Below: 
## 
##    Est.   S.E.   z val.      p
## ------- ------ -------- ------
##   -0.03   0.06    -0.48   0.63
## 
## Slope of CVLfrl when PovStat = Above: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   0.04   0.05     0.74   0.46

Compare Models 1,2, & 3

anova(CVLTlog1,CVLTlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ CVLfrl
## Model 2: PhysAssault ~ CVLfrl + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     481.42                       
## 2       635     469.42  4   12.005  0.01731 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(CVLTlog2,CVLTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ CVLfrl + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (CVLfrl + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     469.42                     
## 2       631     463.48  4   5.9392   0.2037
anova(CVLTlog1,CVLTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ CVLfrl
## Model 2: PhysAssault ~ (CVLfrl + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     481.42                       
## 2       631     463.48  8   17.945  0.02165 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Suggested Model by Predictors

anova(CVLTlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PhysAssault
## 
## Terms added sequentially (first to last)
## 
## 
##                    Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                 640     482.53           
## CVLfrl              1   1.1084       639     481.42  0.29243  
## Sex                 1   0.4968       638     480.93  0.48093  
## PovStat             1   5.1657       637     475.76  0.02304 *
## Age                 1   5.3792       636     470.38  0.02038 *
## WRATtotal           1   0.9638       635     469.42  0.32624  
## CVLfrl:Sex          1   0.7056       634     468.71  0.40092  
## CVLfrl:PovStat      1   1.3469       633     467.37  0.24582  
## Sex:PovStat         1   0.0029       632     467.36  0.95673  
## CVLfrl:Sex:PovStat  1   3.8838       631     463.48  0.04875 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
CVLTlog4 <- glm(PhysAssault ~ (CVLfrl + Sex + PovStat)^3 + Age, data = Allvars, family = "binomial")
summary(CVLTlog4)
## 
## Call:
## glm(formula = PhysAssault ~ (CVLfrl + Sex + PovStat)^3 + Age, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9864  -0.5483  -0.4612  -0.3796   2.3782  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                -0.99969    0.86316  -1.158   0.2468  
## CVLfrl                      0.06886    0.06197   1.111   0.2665  
## SexMen                      0.19959    0.66423   0.300   0.7638  
## PovStatBelow                1.76865    0.69517   2.544   0.0110 *
## Age                        -0.03318    0.01431  -2.319   0.0204 *
## CVLfrl:SexMen              -0.04885    0.09132  -0.535   0.5927  
## CVLfrl:PovStatBelow        -0.21716    0.10022  -2.167   0.0302 *
## SexMen:PovStatBelow        -1.76553    1.02113  -1.729   0.0838 .
## CVLfrl:SexMen:PovStatBelow  0.31076    0.15463   2.010   0.0445 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 464.10  on 632  degrees of freedom
## AIC: 482.1
## 
## Number of Fisher Scoring iterations: 5
sim_slopes(CVLTlog4, pred = CVLfrl, modx = Sex,mod2 = PovStat,centered = "all",jnplot = TRUE)
## Warning: Johnson-Neyman intervals are not available for factor moderators.
## █████████████████████ While PovStat (2nd moderator) = Above ████████████████████ 
## 
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of CVLfrl when Sex = Women: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   0.07   0.06     1.11   0.27
## 
## Slope of CVLfrl when Sex = Men: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   0.02   0.07     0.29   0.77
## 
## █████████████████████ While PovStat (2nd moderator) = Below ████████████████████ 
## 
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of CVLfrl when Sex = Women: 
## 
##    Est.   S.E.   z val.      p
## ------- ------ -------- ------
##   -0.15   0.08    -1.85   0.06
## 
## Slope of CVLfrl when Sex = Men: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   0.11   0.10     1.17   0.24
## 
## NULL

California Verbal Learning Test (Short Delayed Free Recall) - Psychological Aggression

Model 1

CVLTlog1 <- glm(PsychAggress ~ CVLfrs, data=Allvars,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ CVLfrs, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3304   0.4406   0.5232   0.5693   0.6717  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.37418    0.21530   6.383 1.74e-10 ***
## CVLfrs       0.09092    0.03595   2.529   0.0114 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 498.81  on 639  degrees of freedom
## AIC: 502.81
## 
## Number of Fisher Scoring iterations: 4
confint(CVLTlog1)
##                  2.5 %    97.5 %
## (Intercept) 0.96232301 1.8079210
## CVLfrs      0.02130092 0.1624842
exp(cbind(OR = coef(CVLTlog1), confint(CVLTlog1)))
##                   OR    2.5 %   97.5 %
## (Intercept) 3.951827 2.617771 6.097757
## CVLfrs      1.095180 1.021529 1.176430
plot(allEffects(CVLTlog1))

Model 2

CVLTlog2 <- glm(PsychAggress ~ CVLfrs + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog2)
## 
## Call:
## glm(formula = PsychAggress ~ CVLfrs + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4022   0.4033   0.4940   0.5796   0.8528  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   1.68965    0.95005   1.778   0.0753 .
## CVLfrs        0.06416    0.03919   1.637   0.1016  
## Age          -0.01655    0.01349  -1.227   0.2198  
## SexMen       -0.37563    0.23872  -1.574   0.1156  
## PovStatBelow  0.32174    0.27222   1.182   0.2372  
## WRATtotal     0.01668    0.01517   1.100   0.2715  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 491.82  on 635  degrees of freedom
## AIC: 503.82
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog2)
##                    2.5 %      97.5 %
## (Intercept)  -0.15074295 3.581577715
## CVLfrs       -0.01239184 0.141526010
## Age          -0.04317355 0.009825015
## SexMen       -0.84877074 0.089687004
## PovStatBelow -0.19825756 0.873317859
## WRATtotal    -0.01356017 0.046079222
exp(cbind(OR = coef(CVLTlog2), confint(CVLTlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  5.4175632 0.8600688 35.930184
## CVLfrs       1.0662659 0.9876846  1.152030
## Age          0.9835833 0.9577452  1.009873
## SexMen       0.6868532 0.4279407  1.093832
## PovStatBelow 1.3795323 0.8201586  2.394843
## WRATtotal    1.0168195 0.9865314  1.047157

Model 3

CVLTlog3 <- glm(PsychAggress ~ (CVLfrs + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (CVLfrs + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4191   0.4137   0.4819   0.5750   0.8827  
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                 1.746423   0.985751   1.772   0.0764 .
## CVLfrs                      0.061861   0.064502   0.959   0.3375  
## SexMen                     -0.521850   0.526470  -0.991   0.3216  
## PovStatBelow                0.451159   0.777362   0.580   0.5617  
## Age                        -0.016645   0.013563  -1.227   0.2197  
## WRATtotal                   0.017110   0.015252   1.122   0.2619  
## CVLfrs:SexMen               0.009237   0.085199   0.108   0.9137  
## CVLfrs:PovStatBelow        -0.058364   0.117321  -0.497   0.6189  
## SexMen:PovStatBelow        -0.178900   1.012604  -0.177   0.8598  
## CVLfrs:SexMen:PovStatBelow  0.114186   0.174686   0.654   0.5133  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 490.65  on 631  degrees of freedom
## AIC: 510.65
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog3)
##                                  2.5 %      97.5 %
## (Intercept)                -0.15644107 3.717405147
## CVLfrs                     -0.06328045 0.191168570
## SexMen                     -1.57745880 0.496345881
## PovStatBelow               -1.01346251 2.072883547
## Age                        -0.04341788 0.009867831
## WRATtotal                  -0.01327224 0.046698314
## CVLfrs:SexMen              -0.15853628 0.176616872
## CVLfrs:PovStatBelow        -0.29008092 0.173430402
## SexMen:PovStatBelow        -2.20399826 1.799787040
## CVLfrs:SexMen:PovStatBelow -0.22596721 0.462209001
exp(cbind(OR = coef(CVLTlog3), confint(CVLTlog3)))
##                                   OR     2.5 %    97.5 %
## (Intercept)                5.7340536 0.8551819 41.157458
## CVLfrs                     1.0638144 0.9386802  1.210664
## SexMen                     0.5934216 0.2064992  1.642708
## PovStatBelow               1.5701307 0.3629600  7.947708
## Age                        0.9834927 0.9575112  1.009917
## WRATtotal                  1.0172574 0.9868154  1.047806
## CVLfrs:SexMen              1.0092796 0.8533920  1.193174
## CVLfrs:PovStatBelow        0.9433069 0.7482030  1.189378
## SexMen:PovStatBelow        0.8361892 0.1103610  6.048359
## CVLfrs:SexMen:PovStatBelow 1.1209605 0.7977443  1.587577

Compare Models 1,2, & 3

anova(CVLTlog1,CVLTlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ CVLfrs
## Model 2: PsychAggress ~ CVLfrs + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     498.81                     
## 2       635     491.82  4   6.9886   0.1365
anova(CVLTlog2,CVLTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ CVLfrs + Age + Sex + PovStat + WRATtotal
## Model 2: PsychAggress ~ (CVLfrs + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     491.82                     
## 2       631     490.65  4   1.1715   0.8828
anova(CVLTlog1,CVLTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ CVLfrs
## Model 2: PsychAggress ~ (CVLfrs + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       639     498.81                     
## 2       631     490.65  8     8.16    0.418

Suggested Model by Predictors

anova(CVLTlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PsychAggress
## 
## Terms added sequentially (first to last)
## 
## 
##                    Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                 640     505.40           
## CVLfrs              1   6.5902       639     498.81  0.01025 *
## Sex                 1   2.6495       638     496.16  0.10358  
## PovStat             1   1.7011       637     494.46  0.19214  
## Age                 1   1.4498       636     493.01  0.22856  
## WRATtotal           1   1.1882       635     491.82  0.27569  
## CVLfrs:Sex          1   0.2197       634     491.60  0.63924  
## CVLfrs:PovStat      1   0.0451       633     491.56  0.83176  
## Sex:PovStat         1   0.4765       632     491.08  0.49000  
## CVLfrs:Sex:PovStat  1   0.4301       631     490.65  0.51196  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
CVLTlog4 <- glm(PsychAggress ~ CVLfrs, data = Allvars, family = "binomial")
summary(CVLTlog4)
## 
## Call:
## glm(formula = PsychAggress ~ CVLfrs, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3304   0.4406   0.5232   0.5693   0.6717  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.37418    0.21530   6.383 1.74e-10 ***
## CVLfrs       0.09092    0.03595   2.529   0.0114 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 498.81  on 639  degrees of freedom
## AIC: 502.81
## 
## Number of Fisher Scoring iterations: 4
plot(allEffects(CVLTlog4))

California Verbal Learning Test (Short Delayed Free Recall) - Physical Assault

Model 1

CVLTlog1 <- glm(PhysAssault ~ CVLfrs, data=Allvars,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ CVLfrs, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5613  -0.5279  -0.5118  -0.4962   2.0950  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -2.07647    0.24361  -8.524   <2e-16 ***
## CVLfrs       0.02201    0.03571   0.616    0.538    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 482.15  on 639  degrees of freedom
## AIC: 486.15
## 
## Number of Fisher Scoring iterations: 4
confint(CVLTlog1)
##                   2.5 %      97.5 %
## (Intercept) -2.57185249 -1.61505512
## CVLfrs      -0.04822674  0.09204515
exp(cbind(OR = coef(CVLTlog1), confint(CVLTlog1)))
##                    OR     2.5 %    97.5 %
## (Intercept) 0.1253721 0.0763939 0.1988797
## CVLfrs      1.0222498 0.9529177 1.0964143
plot(predictorEffect("CVLfrs",CVLTlog1))

Model 2

CVLTlog2 <- glm(PhysAssault ~ CVLfrs + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog2)
## 
## Call:
## glm(formula = PhysAssault ~ CVLfrs + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8204  -0.5499  -0.4749  -0.3933   2.3918  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.24393    1.04408  -1.191   0.2335  
## CVLfrs       -0.01332    0.03923  -0.339   0.7342  
## Age          -0.03454    0.01421  -2.431   0.0150 *
## SexMen       -0.16754    0.24647  -0.680   0.4967  
## PovStatBelow  0.48208    0.25340   1.902   0.0571 .
## WRATtotal     0.01933    0.01779   1.086   0.2773  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 469.31  on 635  degrees of freedom
## AIC: 481.31
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog2)
##                    2.5 %       97.5 %
## (Intercept)  -3.32802792  0.773449568
## CVLfrs       -0.09020012  0.063887421
## Age          -0.06282922 -0.007012407
## SexMen       -0.65525937  0.313848030
## PovStatBelow -0.01980692  0.976408787
## WRATtotal    -0.01464108  0.055273015
exp(cbind(OR = coef(CVLTlog2), confint(CVLTlog2)))
##                     OR      2.5 %    97.5 %
## (Intercept)  0.2882480 0.03586376 2.1672294
## CVLfrs       0.9867715 0.91374831 1.0659724
## Age          0.9660500 0.93910384 0.9930121
## SexMen       0.8457455 0.51930735 1.3686817
## PovStatBelow 1.6194445 0.98038795 2.6549048
## WRATtotal    1.0195179 0.98546558 1.0568291

Model 3

CVLTlog3 <- glm(PhysAssault ~ (CVLfrs + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (CVLfrs + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0298  -0.5418  -0.4576  -0.3739   2.5096  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                -1.75276    1.12368  -1.560  0.11880   
## CVLfrs                      0.07310    0.06396   1.143  0.25305   
## SexMen                      0.42285    0.67236   0.629  0.52942   
## PovStatBelow                2.04485    0.69990   2.922  0.00348 **
## Age                        -0.03437    0.01427  -2.408  0.01602 * 
## WRATtotal                   0.01754    0.01814   0.967  0.33363   
## CVLfrs:SexMen              -0.09053    0.09203  -0.984  0.32529   
## CVLfrs:PovStatBelow        -0.26603    0.10348  -2.571  0.01014 * 
## SexMen:PovStatBelow        -1.90367    1.03608  -1.837  0.06615 . 
## CVLfrs:SexMen:PovStatBelow  0.33770    0.15904   2.123  0.03372 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 461.85  on 631  degrees of freedom
## AIC: 481.85
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog3)
##                                  2.5 %      97.5 %
## (Intercept)                -4.00877842  0.40460004
## CVLfrs                     -0.05036067  0.20195206
## SexMen                     -0.89138897  1.76734247
## PovStatBelow                0.68639107  3.45020200
## Age                        -0.06278525 -0.00671841
## WRATtotal                  -0.01713924  0.05412889
## CVLfrs:SexMen              -0.27352409  0.08858167
## CVLfrs:PovStatBelow        -0.47447559 -0.06691616
## SexMen:PovStatBelow        -3.98657186  0.09702919
## CVLfrs:SexMen:PovStatBelow  0.02909837  0.65460576
exp(cbind(OR = coef(CVLTlog3), confint(CVLTlog3)))
##                                   OR      2.5 %     97.5 %
## (Intercept)                0.1732950 0.01815556  1.4987030
## CVLfrs                     1.0758389 0.95088640  1.2237893
## SexMen                     1.5262979 0.41008576  5.8552721
## PovStatBelow               7.7279951 1.98653331 31.5067561
## Age                        0.9662183 0.93914513  0.9933041
## WRATtotal                  1.0176916 0.98300680  1.0556207
## CVLfrs:SexMen              0.9134514 0.76069401  1.0926235
## CVLfrs:PovStatBelow        0.7664193 0.62221126  0.9352736
## SexMen:PovStatBelow        0.1490209 0.01856324  1.1018925
## CVLfrs:SexMen:PovStatBelow 1.4017152 1.02952586  1.9243837
interact_plot(model = CVLTlog3, pred = CVLfrs, modx = Sex,mod2 = PovStat)

sim_slopes(CVLTlog3, pred = CVLfrs, modx = Sex, mod2 = PovStat, centered = "all",jnplot = TRUE)
## Warning: Johnson-Neyman intervals are not available for factor moderators.
## █████████████████████ While PovStat (2nd moderator) = Above ████████████████████ 
## 
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of CVLfrs when Sex = Women: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   0.07   0.06     1.14   0.25
## 
## Slope of CVLfrs when Sex = Men: 
## 
##    Est.   S.E.   z val.      p
## ------- ------ -------- ------
##   -0.02   0.07    -0.25   0.80
## 
## █████████████████████ While PovStat (2nd moderator) = Below ████████████████████ 
## 
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of CVLfrs when Sex = Women: 
## 
##    Est.   S.E.   z val.      p
## ------- ------ -------- ------
##   -0.19   0.08    -2.30   0.02
## 
## Slope of CVLfrs when Sex = Men: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   0.05   0.10     0.53   0.59
## 
## NULL

Compare Models 1,2, & 3

anova(CVLTlog1,CVLTlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ CVLfrs
## Model 2: PhysAssault ~ CVLfrs + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       639     482.15                       
## 2       635     469.31  4   12.843  0.01207 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(CVLTlog2,CVLTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ CVLfrs + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (CVLfrs + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       635     469.31                     
## 2       631     461.85  4   7.4579   0.1136
anova(CVLTlog1,CVLTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ CVLfrs
## Model 2: PhysAssault ~ (CVLfrs + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)   
## 1       639     482.15                        
## 2       631     461.85  8   20.301 0.009256 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Suggested Model by Predictors

anova(CVLTlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PhysAssault
## 
## Terms added sequentially (first to last)
## 
## 
##                    Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                 640     482.53           
## CVLfrs              1   0.3793       639     482.15  0.53800  
## Sex                 1   0.6493       638     481.50  0.42035  
## PovStat             1   5.0214       637     476.48  0.02504 *
## Age                 1   5.9552       636     470.53  0.01467 *
## WRATtotal           1   1.2169       635     469.31  0.26998  
## CVLfrs:Sex          1   0.1598       634     469.15  0.68934  
## CVLfrs:PovStat      1   2.6917       633     466.46  0.10087  
## Sex:PovStat         1   0.0008       632     466.46  0.97769  
## CVLfrs:Sex:PovStat  1   4.6056       631     461.85  0.03187 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
CVLTlog4 <- glm(PhysAssault ~ (CVLfrs + Sex + PovStat)^3 + Age, data = Allvars, family = "binomial")
summary(CVLTlog4)
## 
## Call:
## glm(formula = PhysAssault ~ (CVLfrs + Sex + PovStat)^3 + Age, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0423  -0.5394  -0.4560  -0.3780   2.4097  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                -1.06510    0.86278  -1.235  0.21701   
## CVLfrs                      0.08561    0.06278   1.364  0.17266   
## SexMen                      0.46806    0.67280   0.696  0.48663   
## PovStatBelow                2.04632    0.69952   2.925  0.00344 **
## Age                        -0.03426    0.01429  -2.398  0.01647 * 
## CVLfrs:SexMen              -0.09293    0.09244  -1.005  0.31475   
## CVLfrs:PovStatBelow        -0.26936    0.10345  -2.604  0.00922 **
## SexMen:PovStatBelow        -1.99570    1.03499  -1.928  0.05383 . 
## CVLfrs:SexMen:PovStatBelow  0.34794    0.15931   2.184  0.02896 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 462.81  on 632  degrees of freedom
## AIC: 480.81
## 
## Number of Fisher Scoring iterations: 5
sim_slopes(CVLTlog4, pred = CVLfrs, modx = Sex, mod2 = PovStat, centered = "all",jnplot = TRUE)
## Warning: Johnson-Neyman intervals are not available for factor moderators.
## █████████████████████ While PovStat (2nd moderator) = Above ████████████████████ 
## 
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of CVLfrs when Sex = Women: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   0.09   0.06     1.36   0.17
## 
## Slope of CVLfrs when Sex = Men: 
## 
##    Est.   S.E.   z val.      p
## ------- ------ -------- ------
##   -0.01   0.07    -0.11   0.92
## 
## █████████████████████ While PovStat (2nd moderator) = Below ████████████████████ 
## 
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of CVLfrs when Sex = Women: 
## 
##    Est.   S.E.   z val.      p
## ------- ------ -------- ------
##   -0.18   0.08    -2.20   0.03
## 
## Slope of CVLfrs when Sex = Men: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   0.07   0.10     0.71   0.48
## 
## NULL
interact_plot(model = CVLTlog4, pred = CVLfrs, modx = Sex,mod2 = PovStat)