Kaihua (William) Hou
CORE2010 = read.csv("~/OneDrive/Johns Hopkins/Ali Sobhi Afshar - HCUP/Data/SIDC_MD_2010/rds/MD_SID_2010_CORE.csv");
CORE2011 = read.csv("~/OneDrive/Johns Hopkins/Ali Sobhi Afshar - HCUP/Data/SIDC_MD_2011/rds/MD_SID_2011_CORE.csv");
CORE2012 = read.csv("~/OneDrive/Johns Hopkins/Ali Sobhi Afshar - HCUP/Data/SIDC_MD_2012/rds/MD_SID_2012_CORE.csv");
CORE2013 = read.csv("~/OneDrive/Johns Hopkins/Ali Sobhi Afshar - HCUP/Data/SIDC_MD_2013/rds/MD_SID_2013_CORE.csv");
CORE2014 = read.csv("~/OneDrive/Johns Hopkins/Ali Sobhi Afshar - HCUP/Data/SIDC_MD_2014/rds/MD_SID_2014_CORE.csv");
CORE2015q4 = read.csv("~/OneDrive/Johns Hopkins/Ali Sobhi Afshar - HCUP/Data/SIDC_MD_2015/rds/MD_SID_2015q4_CORE.csv");
CORE2015q1q3 = read.csv("~/OneDrive/Johns Hopkins/Ali Sobhi Afshar - HCUP/Data/SIDC_MD_2015/rds/MD_SID_2015q1q3_CORE.csv");
colnames(CORE2015q1q3) = colnames(CORE2015q4);
CORE2015=rbind(CORE2015q1q3, CORE2015q4);
CORE2016 = read.csv("~/OneDrive/Johns Hopkins/Ali Sobhi Afshar - HCUP/Data/SIDC_MD_2016/rds/MD_SID_2016_CORE.csv");
CORE2017 = read.csv("~/OneDrive/Johns Hopkins/Ali Sobhi Afshar - HCUP/Data/SIDC_MD_2017/rds/MD_SID_2017_CORE.csv");
uniqueHospitals <- function (yearData) {
yearData$DSHOSPID = as.factor(yearData$DSHOSPID);
numHospitals = nrow(as.data.frame(levels(yearData$DSHOSPID)));
numMissingID = sum(which(yearData$DSHOSPID == ""));
numHospitals;
}
missingHospitalIDs <- function (yearData) {
numMissingID = sum(which(yearData$DSHOSPID == ""));
numMissingID;
}
totalAdmissionsPerHospital <- function (yearData) {
totalAdmissions <- as.data.frame(table(yearData$DSHOSPID));
totalAdmissions <-totalAdmissions[order(-totalAdmissions$Freq), ];
colnames(totalAdmissions) = c("DSHOSPID", "totalAdmissions");
totalAdmissions;
}
uniquePatients <- function (yearData) {
yearData$DSHOSPID = as.factor(yearData$DSHOSPID);
patients <- select(yearData, DSHOSPID, VisitLink);
colnames(patients) = cbind("DSHOSPID", "VisitLink");
numPatients = data.frame(matrix(ncol = 2, nrow = 0));
colnames(numPatients) = c("DSHOSPID", "numUnique");
numPatients[1, 1] = 21001;
numPatients[1, 2] = 1;
for (i in c(1:uniqueHospitals(yearData))){
hospitalPatients <- patients[which(patients$DSHOSPID == as.data.frame(levels(yearData$DSHOSPID))[i,1]), ]
hospitalPatients$VisitLink = as.factor(hospitalPatients$VisitLink)
numPatients = rbind(numPatients, c(as.data.frame(levels(yearData$DSHOSPID))[i,1], nrow(as.data.frame(unique(hospitalPatients$VisitLink)))))
}
numPatients = numPatients[-1, ]
}
zipFrequency <- function (yearData) {
yearData$ZIP3 <- as.factor(yearData$ZIP3);
zipFreq <- as.data.frame(table(yearData$ZIP3));
zipFreq <-zipFreq[order(-zipFreq$Freq), ];
colnames(zipFreq) = c("zip", "zipFreq");
zipFreq
}
UrbanOrRural <- function (yearData) {
UorR <- as.data.frame(table(yearData$PL_NCHS));
description = c('Central of >=1 million', 'Fringe of >=1 million',
'250,000-999,999', '50,000-249,999', 'Micropolitan', 'Rural');
UorR = UorR[1:6, ]
UorR = cbind(UorR, description);
colnames(UorR) = c("urban/rual", "Freq", "description");
UorR <-UorR[order(-UorR$Freq), ];
UorR;
}
*The chart uses 'VsitLink' variable in the HCUP data, which is first implemented in 2012
Area Zip Num Admissions
Main Baltimore 212 1534478
Annapolis 207 627743
Baltimore A-L 210 618730
Frederick 217 388135
Baltimore M-Z 211 384414
Bethesda 208 376002
Waldorf 206 238806
Silver Spring 209 225010
Salisbury 218 173328
other areas other 509140
Urban/Rural Division Number of Admissions
Fringe of >=1 million 3240855
Central of >=1 million 871432
50,000-249,999 289097
250,000-999,999 187554
Micropolitan 173899
Rural 92007
*The chart uses 'PL_NCHS' variable in the HCUP data (year 2015 of this category is corrupted, 80% of data of that year are invalid or missing)
*The chart uses 'PL_NCHS' variable in the HCUP data (year 2015 of this category is corrupted, 80% of data of that year are invalid or missing)
PL_NCHS should only have 6 categories (1~6), but in year 2015:
[1] "1" "2" "3" "4" "5" "6" "8" "32" "35" "37" "39" "40" "41" "42" "47"
Number of NAs in PL_NCHS of year 2015
[1] 472910
Percent of NAs in PL_NCHS of year 2015
[1] 75.27405