1 Exercise 1

1.1 input data

## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
##   sid item resp
## 1   1    1    1
## 2   1    2    1
## 3   1    3    1
## 4   1    4    1
## 5   1    5    1
## 6   1    6    1
##      sid item resp
## 1345 150    4    1
## 1346 150    5    1
## 1347 150    6    1
## 1348 150    7    1
## 1349 150    8    1
## 1350 150    9    0

1.2 long to wide

##   Item 1 Item 2 Item 3 Item 4  Item 5 Item 6 Item 7 Item 8 Item 9
## 1      1      1      1       1      1      1      1      1      0
## 2      1      1      1       0      0      0      1      0      0
## 3      1      1      1       1      0      1      1      0      1
## 4      1      1      1       1      1      0      1      0      0
## 5      1      1      1       0      0      1      1      0      0
## 6      0      1      1       1      0      0      0      0      0

1.3 Correlated binary responses

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9
Item 1 1.0000000 0.0982946 0.0542415 0.0444554 0.1769309 0.0611080 0.1176913 0.0236666 0.0521286
Item 2 0.0982946 1.0000000 0.2069345 0.2261335 0.3180732 0.1572070 0.1561738 0.2742122 0.0353553
Item 3 0.0542415 0.2069345 1.0000000 0.2380182 0.2442222 0.2247635 0.1659775 0.1390151 0.0541944
Item 4 0.0444554 0.2261335 0.2380182 1.0000000 0.1874462 0.1357355 0.1883526 0.2601335 0.2025407
Item 5 0.1769309 0.3180732 0.2442222 0.1874462 1.0000000 0.1326535 0.1399923 0.3144546 0.0715628
Item 6 0.0611080 0.1572070 0.2247635 0.1357355 0.1326535 1.0000000 0.1993889 0.0550560 0.1515848
Item 7 0.1176913 0.1561738 0.1659775 0.1883526 0.1399923 0.1993889 1.0000000 0.0898275 0.1840525
Item 8 0.0236666 0.2742122 0.1390151 0.2601335 0.3144546 0.0550560 0.0898275 1.0000000 0.1702513
Item 9 0.0521286 0.0353553 0.0541944 0.2025407 0.0715628 0.1515848 0.1840525 0.1702513 1.0000000

1.4 Item response probabilties

## Loading required package: MASS
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
## Loading required package: msm
## Loading required package: polycor
0 1 logit
Item 1 0.0800000 0.9200000 2.4423470
Item 7 0.1800000 0.8200000 1.5163475
Item 2 0.2000000 0.8000000 1.3862944
Item 3 0.2533333 0.7466667 1.0809127
Item 4 0.2666667 0.7333333 1.0116009
Item 5 0.3066667 0.6933333 0.8157495
Item 6 0.3200000 0.6800000 0.7537718
Item 8 0.4600000 0.5400000 0.1603427
Item 9 0.6666667 0.3333333 -0.6931472

第一題答對的機率較高

1.6 Fit the Rasch model with rasch

##     Item 1     Item 2     Item 3    Item 4      Item 5     Item 6     Item 7 
## -2.8480443 -1.6661044 -1.3091179 -1.2271704 -0.9939141 -0.9196116 -1.8160398 
##     Item 8     Item 9 
## -0.1993647  0.8417333

1.8 The item-person map

各個item間的距離無等距,無法區分難易度

1.9 The Rasch model

## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.28301 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
  resp
Predictors Log-Odds std. Error CI p
item [1] 2.90 0.00 2.90 – 2.91 <0.001
item [2] 1.70 0.00 1.70 – 1.71 <0.001
item [3] 1.34 0.00 1.34 – 1.34 <0.001
item [4] 1.21 0.21 0.79 – 1.63 <0.001
item [5] 1.00 0.21 0.60 – 1.41 <0.001
item [6] 0.92 0.20 0.52 – 1.33 <0.001
item [7] 1.86 0.00 1.86 – 1.87 <0.001
item [8] 0.20 0.00 0.20 – 0.21 <0.001
item [9] -0.88 0.21 -1.28 – -0.48 <0.001
Random Effects
σ2 3.29
τ00 sid 1.16

2 Exercise 2

2.1 load and see

##   Answer       Task School
## 1    Yes -0.2642783    S01
## 2    Yes  0.5709041    S01
## 3    Yes  0.1329710    S01
## 4 Unsure -0.2642783    S01
## 5     No -1.0994610    S01
## 6    Yes  0.5302202    S01
## 'data.frame':    650 obs. of  3 variables:
##  $ Answer: chr  "Yes" "Yes" "Yes" "Unsure" ...
##  $ Task  : num  -0.264 0.571 0.133 -0.264 -1.099 ...
##  $ School: chr  "S01" "S01" "S01" "S01" ...

2.2 Numerical summary

##        Answer No Unsure Yes
## School                     
## S01            5      4  15
## S02            9      9  20
## S03           14     10  17
## S04            0      1   8
## S05            1      5  23
## S06            9     12  18
## S07           12      4  26
## S08            7      5  18
## S09            2      8  18
## S10           21     27  69
## S11           14     12  32
## S12           15     19  18
## S13           13      6  18
## S14            0      1   7
## S15           17     11  25
## S16           13     10  22

2.3 Probability summary

##        Answer         No     Unsure        Yes
## School                                        
## S01           0.20833333 0.16666667 0.62500000
## S02           0.23684211 0.23684211 0.52631579
## S03           0.34146341 0.24390244 0.41463415
## S04           0.00000000 0.11111111 0.88888889
## S05           0.03448276 0.17241379 0.79310345
## S06           0.23076923 0.30769231 0.46153846
## S07           0.28571429 0.09523810 0.61904762
## S08           0.23333333 0.16666667 0.60000000
## S09           0.07142857 0.28571429 0.64285714
## S10           0.17948718 0.23076923 0.58974359
## S11           0.24137931 0.20689655 0.55172414
## S12           0.28846154 0.36538462 0.34615385
## S13           0.35135135 0.16216216 0.48648649
## S14           0.00000000 0.12500000 0.87500000
## S15           0.32075472 0.20754717 0.47169811
## S16           0.28888889 0.22222222 0.48888889
##    School        Task
## 1     S01  0.02089652
## 2     S02 -0.11779710
## 3     S03 -0.17287423
## 4     S04  0.08085690
## 5     S05 -0.14908077
## 6     S06  0.23740790
## 7     S07 -0.13334256
## 8     S08  0.18657692
## 9     S09  0.42902949
## 10    S10  0.01057772
## 11    S11 -0.15770350
## 12    S12 -0.08074803
## 13    S13  0.13885760
## 14    S14  0.89935413
## 15    S15 -0.12168721
## 16    S16 -0.01327148

2.7 cumulative mixed proportional odds model

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: Answer ~ Task + (1 | School)
## data:    dta2
## 
##  link  threshold nobs logLik  AIC     niter    max.grad cond.H 
##  logit flexible  650  -642.14 1292.27 177(393) 1.91e-04 6.4e+01
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  School (Intercept) 0.09088  0.3015  
## Number of groups:  School 16 
## 
## Coefficients:
##      Estimate Std. Error z value Pr(>|z|)    
## Task  0.36488    0.08792    4.15 3.32e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##            Estimate Std. Error z value
## No|Unsure   -1.2659     0.1301  -9.731
## Unsure|Yes  -0.2169     0.1176  -1.844
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'

3 Exercise 3

3.1 load and see

##      ID Obs_ID Gender Month RAPI
## 1 S1001      1    Men     0    0
## 2 S1001      2    Men     6    0
## 3 S1001      3    Men    18    0
## 4 S1002      1  Women     0    3
## 5 S1002      2  Women     6    6
## 6 S1002      3  Women    12    5
## [1] 3616    6
## [1] 818
## 
##   1   2   3   4   5 
##  25  38  66 128 561
## `summarise()` regrouping output by 'Gender' (override with `.groups` argument)
##    Gender Month mean(RAPI) var(RAPI) sum(RAPI < 1)/n()
## 1     Men     0   7.700288  73.80587        0.11815562
## 2     Men     6   8.214744 106.43284        0.14423077
## 3     Men    12   8.039146 130.83060        0.18149466
## 4     Men    18   8.107914 165.65618        0.22661871
## 5     Men    24   7.294776 129.84162        0.25373134
## 6   Women     0   6.335456  49.15957        0.09766454
## 7   Women     6   5.300683  45.99614        0.19817768
## 8   Women    12   4.632319  41.38327        0.25058548
## 9   Women    18   4.990099  62.33737        0.27722772
## 10  Women    24   4.652956  79.29420        0.34961440

3.3 model

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: RAPI ~ Gender * YearC + (1 | ID)
##    Data: dta3
## 
##      AIC      BIC   logLik deviance df.resid 
##    24094    24125   -12042    24084     3611 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.7683 -1.0923 -0.3250  0.7538 15.4325 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  ID     (Intercept) 1.04     1.02    
## Number of obs: 3616, groups:  ID, 818
## 
## Fixed effects:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        1.55567    0.05691  27.337  < 2e-16 ***
## GenderWomen       -0.34717    0.07502  -4.628 3.70e-06 ***
## YearC             -0.01429    0.01338  -1.068    0.285    
## GenderWomen:YearC -0.12146    0.01910  -6.358 2.05e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GndrWm YearC 
## GenderWomen -0.755              
## YearC        0.030 -0.023       
## GndrWmn:YrC -0.021  0.035 -0.700
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: RAPI ~ Gender * YearC + (YearC | ID) + (1 | ID:Obs_ID)
##    Data: dta3
## 
##      AIC      BIC   logLik deviance df.resid 
##  19448.0  19497.5  -9716.0  19432.0     3608 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.03681 -0.53730 -0.03497  0.24218  1.29823 
## 
## Random effects:
##  Groups    Name        Variance Std.Dev. Corr
##  ID:Obs_ID (Intercept) 0.3760   0.6132       
##  ID        (Intercept) 1.1197   1.0581       
##            YearC       0.3352   0.5790   0.64
## Number of obs: 3616, groups:  ID:Obs_ID, 3616; ID, 818
## 
## Fixed effects:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        1.32445    0.06265  21.140  < 2e-16 ***
## GenderWomen       -0.39203    0.08215  -4.772 1.82e-06 ***
## YearC             -0.26335    0.04620  -5.700 1.20e-08 ***
## GenderWomen:YearC -0.19135    0.06025  -3.176  0.00149 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GndrWm YearC 
## GenderWomen -0.753              
## YearC        0.498 -0.371       
## GndrWmn:YrC -0.373  0.497 -0.739

3.4 compare nested models

## Data: dta3
## Models:
## m0a: RAPI ~ Gender * YearC + (1 | ID)
## m2a: RAPI ~ Gender * YearC + (YearC - 1 | ID) + (1 | ID) + (1 | ID:Obs_ID)
## m1a: RAPI ~ Gender * YearC + (YearC | ID) + (1 | ID:Obs_ID)
##     npar   AIC   BIC   logLik deviance   Chisq Df Pr(>Chisq)    
## m0a    5 24094 24125 -12042.0    24084                          
## m2a    7 19563 19606  -9774.3    19549 4535.51  2  < 2.2e-16 ***
## m1a    8 19448 19498  -9716.0    19432  116.54  1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.8 unit-specific rate ratios

##       (Intercept)       GenderWomen             YearC GenderWomen:YearC 
##             3.835             0.684             0.844             0.835

3.9 estimated variances

##  Groups    Name        Std.Dev.
##  ID.Obs_ID (Intercept) 0.61780 
##  ID        (Intercept) 0.99997 
##  ID.1      YearC       0.51389
##  Family: nbinom1  ( log )
## Formula:          RAPI ~ Gender * YearC + (YearC | ID) + (1 | ID:Obs_ID)
## Data: dta3
## 
##      AIC      BIC   logLik deviance df.resid 
##  19416.0  19471.8  -9699.0  19398.0     3607 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev. Corr 
##  ID        (Intercept) 0.9538   0.9766        
##            YearC       0.2497   0.4997   0.64 
##  ID:Obs_ID (Intercept) 0.1922   0.4384        
## Number of obs: 3616, groups:  ID, 818; ID:Obs_ID, 3616
## 
## Overdispersion parameter for nbinom1 family (): 1.06 
## 
## Conditional model:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        1.44252    0.06147  23.468  < 2e-16 ***
## GenderWomen       -0.37184    0.07719  -4.817 1.45e-06 ***
## YearC             -0.24691    0.04335  -5.695 1.23e-08 ***
## GenderWomen:YearC -0.17239    0.05613  -3.071  0.00213 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##  Family: nbinom2  ( log )
## Formula:          
## RAPI ~ Gender + YearC + (YearC | ID) + (1 | ID:Obs_ID) + Gender:YearC
## Data: dta3
## 
##      AIC      BIC   logLik deviance df.resid 
##  19391.5  19447.3  -9686.8  19373.5     3607 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance  Std.Dev.  Corr 
##  ID        (Intercept) 1.105e+00 1.0512343      
##            YearC       3.022e-01 0.5497099 0.67 
##  ID:Obs_ID (Intercept) 5.242e-09 0.0000724      
## Number of obs: 3616, groups:  ID, 818; ID:Obs_ID, 3616
## 
## Overdispersion parameter for nbinom2 family (): 2.52 
## 
## Conditional model:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        1.51826    0.06294  24.123  < 2e-16 ***
## GenderWomen       -0.39704    0.08224  -4.828 1.38e-06 ***
## YearC             -0.25902    0.04638  -5.585 2.34e-08 ***
## GenderWomen:YearC -0.19783    0.06015  -3.289  0.00101 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##  Family: nbinom2  ( log )
## Formula:          RAPI ~ Gender * YearC + (YearC | ID) + (1 | ID:Obs_ID)
## Zero inflation:        ~Gender + YearC
## Data: dta3
## 
##      AIC      BIC   logLik deviance df.resid 
##  19297.2  19371.5  -9636.6  19273.2     3604 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance  Std.Dev.  Corr 
##  ID        (Intercept) 1.094e+00 1.046e+00      
##            YearC       2.976e-01 5.456e-01 0.64 
##  ID:Obs_ID (Intercept) 9.484e-09 9.739e-05      
## Number of obs: 3616, groups:  ID, 818; ID:Obs_ID, 3616
## 
## Overdispersion parameter for nbinom2 family (): 3.87 
## 
## Conditional model:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        1.55715    0.06323  24.625  < 2e-16 ***
## GenderWomen       -0.38236    0.08250  -4.635 3.57e-06 ***
## YearC             -0.22259    0.04658  -4.779 1.76e-06 ***
## GenderWomen:YearC -0.19707    0.05869  -3.358 0.000786 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -3.0617     0.2430 -12.598   <2e-16 ***
## GenderWomen   0.2126     0.2901   0.733   0.4638    
## YearC         0.4406     0.1936   2.275   0.0229 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##  Family: nbinom2  ( log )
## Formula:          RAPI ~ Gender * YearC + (YearC | ID)
## Zero inflation:        ~YearC
## Dispersion:            ~YearC
## Data: dta3
## 
##      AIC      BIC   logLik deviance df.resid 
##  19291.0  19359.1  -9634.5  19269.0     3605 
## 
## Random effects:
## 
## Conditional model:
##  Groups Name        Variance Std.Dev. Corr 
##  ID     (Intercept) 1.0920   1.0450        
##         YearC       0.2881   0.5367   0.66 
## Number of obs: 3616, groups:  ID, 818
## 
## Conditional model:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        1.56590    0.06304  24.842  < 2e-16 ***
## GenderWomen       -0.39309    0.08133  -4.833 1.34e-06 ***
## YearC             -0.22937    0.04761  -4.817 1.45e-06 ***
## GenderWomen:YearC -0.19880    0.05828  -3.411 0.000647 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.9281     0.1601 -18.289  < 2e-16 ***
## YearC         0.5540     0.2024   2.738  0.00619 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Dispersion model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.39174    0.07603  18.304   <2e-16 ***
## YearC        0.24835    0.11268   2.204   0.0275 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.10 model comparisions - across different models

##        logLik  AIC     dLogLik dAIC    df
## mznb2a -9634.5 19291.0    64.5     0.0 11
## mznb2  -9636.6 19297.2    62.4     6.2 12
## mnb2   -9686.8 19391.5    12.2   100.6 9 
## mnb1   -9699.0 19416.0     0.0   125.0 9