Question 1
(i) Derive a two-sided 90% confidence interval for the mean difference in the patientsβ blood pressure before and after participating in an exercise programme.
bp_before <- c(155, 152, 146, 153, 146, 160, 139, 148)
bp_after <- c(145, 147, 123, 137, 141, 142, 140, 138)
bp_diff <- bp_before - bp_after
bp_diff_size <- length(bp_diff)
bp_diff_mean <- mean(bp_diff)
bp_diff_stdv <- sd(bp_diff)
degree_of_freedom <- bp_diff_size - 1
t_score <- qt(0.95, degree_of_freedom)
confidence_interval <- c(bp_diff_mean - t_score*bp_diff_stdv/sqrt(bp_diff_size), bp_diff_mean + t_score*bp_diff_stdv/sqrt(bp_diff_size))
confidence_interval
## [1] 5.46661 16.03339
Conclusion: The two-sided 95% confidence interval for the mean difference in weights is [5.46661, 16.03339].
Question 2
(i)(a) Implement M = 1000 Monte Carlo repetitions of a credibility analysis to estimate the distribution of the posterior mean of parameter π using the credibility factor Z = 1/(π½ + 1), in the case where the number of past claims π₯ is known only for the last one year.
set.seed(508)
simulation = 1000
alpha = 100
beta = 1
Z = 1/(beta + 1)
posterior_mean <- rep(0, simulation)
X <- rep(0, simulation)
for(i in 1:simulation){
lamda = rgamma(1, shape = alpha, rate = beta)
x = rpois(1, lamda)
X[i]= x
posterior_mean[i] = Z*x + (1-Z)*beta*alpha
}
posterior_mean
## [1] 87.5 97.0 102.0 109.5 97.0 108.0 101.0 105.5 101.0 103.0 98.0 99.0
## [13] 109.5 101.0 99.5 89.0 107.5 104.0 102.0 95.0 104.0 92.5 95.5 102.5
## [25] 104.5 110.5 102.5 100.0 106.0 100.0 93.0 101.5 107.0 110.0 97.5 100.5
## [37] 92.5 100.0 105.5 103.0 106.0 109.5 95.5 95.5 104.0 107.0 102.0 121.0
## [49] 98.5 102.0 100.5 95.0 93.0 92.0 95.5 100.0 106.5 94.5 105.0 87.0
## [61] 98.0 103.5 91.0 102.0 95.5 100.5 106.0 106.0 97.5 96.0 99.5 100.5
## [73] 95.5 84.0 100.5 119.5 109.5 91.0 107.0 104.5 95.0 102.0 96.0 102.5
## [85] 108.0 105.0 91.5 106.0 87.5 87.0 105.5 104.5 103.5 99.0 98.5 107.0
## [97] 101.0 105.5 102.0 102.5 94.0 115.5 100.5 110.0 105.0 89.5 105.0 111.0
## [109] 100.0 108.0 111.5 91.5 100.0 111.5 99.0 95.0 97.5 108.5 101.5 103.5
## [121] 95.5 106.5 97.5 96.5 104.0 96.0 92.0 103.5 102.5 86.0 102.0 103.0
## [133] 101.5 93.5 111.5 93.0 101.5 102.0 95.0 100.5 101.5 107.5 89.5 100.5
## [145] 98.5 92.0 104.0 103.5 101.0 105.5 91.0 90.5 92.5 108.5 100.0 104.5
## [157] 104.0 106.0 100.5 102.0 115.5 108.5 111.0 97.0 99.0 96.0 97.0 102.5
## [169] 93.0 103.5 119.5 89.5 97.5 105.5 102.0 100.0 102.0 111.5 110.0 96.0
## [181] 93.0 99.5 95.5 86.5 102.5 103.5 94.0 94.5 93.0 91.0 93.5 102.5
## [193] 110.0 111.5 96.5 84.0 103.0 87.5 92.0 95.0 99.0 92.0 93.5 106.0
## [205] 103.5 104.5 98.0 104.0 100.0 93.0 98.5 89.0 100.5 98.5 98.5 96.5
## [217] 112.0 96.5 105.0 109.0 101.5 107.5 93.5 84.0 94.5 108.0 84.0 102.0
## [229] 107.0 98.5 99.5 109.0 97.5 114.0 97.0 99.0 97.0 100.0 113.0 105.5
## [241] 112.0 101.0 91.5 106.0 105.0 98.0 100.5 84.5 98.0 93.0 101.5 95.5
## [253] 106.0 100.5 97.0 104.5 86.0 94.5 100.5 92.5 92.5 94.0 98.0 104.5
## [265] 97.5 85.5 107.0 104.5 100.5 111.5 97.5 94.5 101.5 99.0 94.5 98.0
## [277] 95.0 98.0 89.0 105.0 102.0 100.5 95.5 117.0 113.0 99.5 103.5 100.5
## [289] 112.0 98.5 111.0 100.0 102.5 100.0 96.5 99.0 103.0 92.0 99.0 99.0
## [301] 104.0 85.0 100.5 100.5 97.5 102.0 95.0 99.0 96.0 100.5 94.0 108.0
## [313] 98.5 100.5 103.5 107.5 113.0 106.5 109.5 100.5 99.0 106.0 112.0 95.5
## [325] 93.0 101.0 98.0 99.0 99.5 111.0 124.5 98.5 92.5 104.0 95.0 106.5
## [337] 95.5 105.5 102.5 100.0 96.0 97.0 95.5 95.5 99.0 99.5 97.0 102.5
## [349] 94.0 108.0 90.5 98.5 100.0 94.5 88.5 91.0 109.0 101.0 89.0 99.5
## [361] 102.0 107.5 94.0 101.0 108.0 97.0 99.0 91.5 115.0 98.5 99.5 90.0
## [373] 93.5 96.5 101.5 102.0 101.0 98.5 94.5 91.0 86.5 89.5 93.5 97.5
## [385] 94.0 98.5 87.5 97.5 100.5 111.5 97.5 101.5 93.5 110.0 103.0 86.0
## [397] 101.0 97.5 94.5 89.5 96.0 99.0 91.5 106.0 87.0 91.0 102.0 90.5
## [409] 104.5 100.0 110.0 89.0 105.5 98.0 112.5 98.5 113.0 96.5 98.0 90.5
## [421] 102.0 95.5 94.5 99.5 106.0 102.5 106.5 94.5 104.5 100.0 98.5 92.0
## [433] 103.0 96.0 98.5 101.5 99.0 96.5 103.0 107.5 94.0 94.0 88.5 100.5
## [445] 97.5 106.5 107.5 98.0 92.0 103.0 99.0 92.5 101.0 110.0 92.0 98.5
## [457] 106.0 101.5 92.5 96.5 98.0 94.0 99.5 99.5 100.0 95.5 96.0 111.5
## [469] 102.0 101.5 101.0 99.0 116.5 104.0 104.5 89.0 105.0 103.0 94.0 97.0
## [481] 100.0 98.5 101.0 88.0 98.0 89.5 107.5 93.5 94.0 91.0 96.0 92.0
## [493] 107.0 101.5 96.5 101.0 104.0 106.0 98.0 104.0 94.0 94.5 99.0 92.0
## [505] 95.5 110.5 102.5 90.5 91.5 101.0 113.5 94.5 112.5 89.0 96.5 106.5
## [517] 100.5 108.5 89.5 107.5 101.0 98.5 94.0 101.5 111.5 100.5 98.0 100.5
## [529] 95.0 107.0 99.5 104.5 99.5 94.5 102.0 114.0 104.0 100.0 91.5 101.5
## [541] 89.0 110.0 95.0 99.5 90.5 91.5 113.5 104.0 98.0 92.5 96.5 101.0
## [553] 95.0 102.5 109.0 113.5 107.0 100.5 88.5 104.5 106.5 106.5 95.0 94.0
## [565] 104.5 109.0 103.5 87.0 102.5 99.0 101.5 89.0 95.5 104.5 98.5 90.5
## [577] 93.5 100.5 99.0 106.0 107.5 103.0 96.0 108.5 95.5 103.0 99.5 105.5
## [589] 100.0 89.5 98.5 101.0 108.0 96.5 100.5 90.0 93.5 105.0 103.5 107.0
## [601] 106.0 83.5 97.5 103.5 106.5 101.0 102.5 103.5 100.5 97.0 106.5 86.5
## [613] 102.5 88.0 93.5 102.5 110.5 98.5 97.5 101.5 108.5 101.0 97.0 102.0
## [625] 99.5 111.0 106.5 112.5 101.5 100.5 103.5 107.5 105.5 93.5 102.5 102.5
## [637] 100.0 97.0 90.5 101.5 100.0 103.5 111.0 106.5 94.0 104.0 100.5 79.5
## [649] 93.0 104.0 107.5 88.5 94.0 112.5 100.5 103.5 89.0 102.5 104.5 109.0
## [661] 103.0 97.0 106.5 86.5 104.0 91.5 90.0 113.5 101.5 92.0 100.5 108.0
## [673] 107.0 105.5 95.0 97.0 101.0 110.5 96.0 95.0 108.0 106.5 93.0 86.5
## [685] 102.5 99.5 97.5 86.5 92.0 103.0 101.5 95.0 94.0 93.5 97.0 112.5
## [697] 94.5 108.0 103.5 91.0 101.5 102.0 94.0 102.5 95.5 110.5 100.5 98.0
## [709] 115.5 98.0 94.5 87.5 103.0 106.5 81.5 110.0 90.5 103.0 94.0 104.5
## [721] 95.0 88.0 96.0 101.5 94.5 106.0 95.5 100.5 102.5 88.5 103.0 89.5
## [733] 95.5 94.5 90.5 98.5 80.5 95.0 102.5 94.5 91.5 86.5 108.0 104.5
## [745] 101.0 105.5 91.5 103.0 100.0 94.0 94.0 109.0 102.0 113.5 102.5 102.5
## [757] 105.0 102.5 103.0 95.5 92.0 96.0 97.0 85.0 104.5 85.5 94.5 99.0
## [769] 98.0 116.0 91.0 102.0 104.5 97.5 104.5 103.5 105.0 110.0 103.0 106.5
## [781] 102.0 89.5 97.5 115.0 116.5 100.0 103.0 101.0 96.0 89.0 92.5 86.0
## [793] 102.0 99.0 97.0 103.0 95.0 98.5 97.0 103.0 109.0 112.5 95.0 97.0
## [805] 107.0 97.0 102.5 104.0 96.5 99.0 95.0 95.5 105.5 102.5 110.0 100.0
## [817] 114.5 100.5 93.0 102.0 101.0 105.5 105.0 105.0 104.5 93.5 110.0 87.0
## [829] 99.0 86.5 110.0 103.5 88.0 93.0 102.0 112.5 111.5 100.0 105.0 108.0
## [841] 100.5 101.0 106.0 90.5 110.5 103.0 110.0 89.5 101.0 97.0 105.5 105.5
## [853] 93.0 108.0 106.0 95.5 99.5 104.0 96.0 92.5 105.0 88.5 105.5 104.5
## [865] 105.5 108.0 91.0 122.5 113.5 100.5 99.0 105.5 94.5 93.0 99.0 93.0
## [877] 93.0 93.5 100.5 101.5 99.5 101.5 110.5 100.5 100.0 107.0 110.0 102.0
## [889] 101.5 102.0 100.5 94.5 97.5 84.0 95.0 96.0 88.5 99.5 108.5 98.5
## [901] 95.5 98.0 103.0 96.0 95.5 104.0 92.0 112.0 106.5 90.5 108.5 99.5
## [913] 103.5 112.5 90.0 101.0 112.0 108.0 108.0 87.0 91.5 106.5 102.0 91.0
## [925] 87.5 94.5 99.0 101.0 98.5 107.5 97.0 98.0 99.5 104.0 102.5 110.5
## [937] 109.5 116.0 109.5 101.5 109.0 101.0 100.0 93.5 100.0 102.0 88.5 102.0
## [949] 92.0 105.0 99.5 95.0 94.5 94.0 98.5 95.5 98.5 101.5 94.5 106.0
## [961] 96.0 100.0 99.0 105.0 104.5 91.5 99.0 108.5 105.0 106.5 99.0 115.0
## [973] 95.5 105.0 87.5 93.5 99.5 94.5 101.0 94.0 103.0 95.0 109.5 115.0
## [985] 102.0 92.0 101.0 102.5 94.5 96.5 100.0 98.5 93.0 99.0 95.5 98.0
## [997] 93.5 100.5 99.0 98.5
(i)(b) Provide the histogram of the 1000 Monte Carlo posterior mean estimates calculated in part (i)(a).
hist(posterior_mean, main = "Histogram of Posterior Mean", xlab = "Estimated posterior mean", ylab = "frequency")

(ii)(a)Calculate the mean and variance of the Monte Carlo posterior mean estimates from part (i).
mean1 <- mean(posterior_mean)
mean1
## [1] 99.951
var1 <- var(posterior_mean)
var1
## [1] 46.20981
(ii)(b) Compare the Monte Carlo mean and variance obtained in part (ii)(a) with those obtained from samples of size 1000 drawn from a Gamma(πΌ+π₯, π½+1) distribution. Round your results to three decimal places.
set.seed(508)
Gamma_mean <- rep(0,simulation)
for(i in 1:simulation){
lamda_2 = rgamma(1, shape = alpha, rate = beta)
x = rpois(1, lamda_2)
y = rgamma(1000, shape = alpha + x, rate = beta + 1)
Gamma_mean[i] = mean(y)
}
Gamma_mean
## [1] 87.44616 94.09157 85.72460 97.85816 106.26727 108.54678 102.77412
## [8] 88.00897 82.48867 96.12308 96.25689 96.63907 98.34087 93.62327
## [15] 111.00561 89.94649 99.16369 92.63186 101.40587 100.67896 101.34644
## [22] 96.70605 91.00182 97.99534 105.36139 97.03906 99.00485 101.36582
## [29] 94.11833 107.89870 96.71023 90.47764 106.81600 109.07858 89.56825
## [36] 106.41340 110.56892 101.60491 99.99152 108.49164 95.40981 104.33371
## [43] 111.53132 103.11583 91.67074 94.95488 106.12957 99.91089 96.13810
## [50] 106.47255 90.64209 95.22531 93.23244 98.05992 102.78078 96.12602
## [57] 108.53701 103.26429 107.30659 97.83310 106.88247 102.90077 95.09109
## [64] 98.07250 91.60490 103.42467 96.20448 83.86903 101.51668 109.89602
## [71] 94.02304 98.68766 96.17537 97.92481 88.20746 94.06660 109.50077
## [78] 99.63221 97.78322 97.31124 107.90703 106.10030 102.70141 94.60826
## [85] 94.66463 94.02434 99.76632 100.50942 95.80981 97.72138 113.80622
## [92] 87.43322 86.76662 104.25398 91.20564 100.91093 93.30252 109.19926
## [99] 103.81104 96.41373 102.97263 103.37098 109.83017 96.06345 97.06004
## [106] 104.97312 97.04730 106.61357 91.55757 112.08850 99.83845 101.20049
## [113] 96.94024 96.83808 89.90985 114.04112 94.79241 89.94812 97.25440
## [120] 105.54951 102.50800 108.33600 99.83026 106.90319 97.96451 100.59141
## [127] 99.28247 98.83492 107.70755 107.55030 93.03827 91.01591 100.29393
## [134] 110.36471 100.42004 89.20323 102.72593 100.54160 92.09632 122.55762
## [141] 94.56344 103.04441 98.57758 90.34179 90.40432 97.25036 110.16087
## [148] 105.02314 106.58125 93.64644 94.90313 111.42166 98.79965 97.34388
## [155] 101.50509 105.44850 100.04356 100.23349 92.67123 104.41229 99.17965
## [162] 107.53292 101.82195 90.39792 84.05222 100.62570 98.21983 99.91959
## [169] 90.19528 102.70981 98.32731 88.70233 90.74972 103.09004 88.28568
## [176] 100.00051 103.88994 98.33723 106.16105 97.89534 98.49527 96.82221
## [183] 97.78067 105.89948 99.42482 94.65552 93.36433 91.85416 92.16566
## [190] 101.56286 121.75815 106.20370 100.62354 94.88206 93.71321 100.98945
## [197] 95.69225 95.56637 101.50160 101.61649 92.39928 103.84804 107.10350
## [204] 111.58744 98.99698 92.63066 105.93797 85.77849 96.75560 90.62887
## [211] 100.65695 100.86954 96.94739 100.16276 102.10422 88.36398 96.45862
## [218] 97.81552 89.34163 95.09918 90.11584 100.83208 101.16330 111.19539
## [225] 101.17195 115.23920 101.47430 92.39896 101.01695 97.37216 108.49199
## [232] 110.83271 101.00490 99.00640 86.72355 99.31187 102.97198 97.66921
## [239] 107.10434 90.49001 102.61181 102.96857 103.01603 96.98987 88.43593
## [246] 108.25383 94.56386 110.13111 112.13521 120.99265 100.50827 93.10325
## [253] 112.44777 99.56319 98.22586 100.96484 112.96439 106.49221 102.09588
## [260] 98.33470 102.69656 112.13980 101.64608 118.17814 103.13196 103.40540
## [267] 99.39902 104.63635 98.46794 99.65787 93.08912 112.46158 98.32512
## [274] 100.38694 99.38593 113.59222 96.25652 100.22600 101.15545 98.83821
## [281] 103.96050 95.91277 110.35377 102.16971 83.04522 101.85201 104.83075
## [288] 101.38901 103.74546 96.34709 108.40582 96.45871 100.77706 96.97167
## [295] 102.10795 101.70023 108.09681 102.63587 97.65625 101.68092 99.28198
## [302] 106.47276 104.03385 96.62634 101.83960 102.07004 101.73340 100.68486
## [309] 96.26018 101.00391 89.83788 103.84014 92.01661 87.08430 101.12794
## [316] 111.41198 95.98232 109.46326 99.33349 106.28514 102.54755 97.26418
## [323] 90.69373 104.67262 91.67944 94.58466 100.89164 100.40316 99.18438
## [330] 91.87316 108.86994 90.92165 91.43146 96.41397 82.48818 88.29153
## [337] 107.50197 98.29373 99.44884 92.76681 102.49813 101.38737 101.93530
## [344] 94.65647 107.98878 111.88269 100.42859 97.10136 113.39228 99.64481
## [351] 88.03860 107.64982 92.82185 86.38416 105.99346 95.12570 92.24631
## [358] 106.52606 102.32226 104.74807 93.60906 100.69022 97.20504 88.77994
## [365] 107.90737 110.95431 107.97712 101.82913 98.77872 106.97517 86.54408
## [372] 104.33553 109.12532 99.61971 98.63604 92.78762 89.04545 104.66290
## [379] 103.73670 122.48188 104.56091 100.66509 104.88490 97.45248 89.74873
## [386] 100.97469 95.51671 98.75483 107.00890 103.83926 116.43124 107.14330
## [393] 92.36263 97.07104 98.63307 110.42854 97.08777 105.40266 103.58993
## [400] 109.00032 111.74173 101.43560 96.74646 97.68013 110.90027 106.00200
## [407] 94.72524 92.70860 110.90794 101.79501 107.08208 95.73410 103.50232
## [414] 100.72377 100.83302 112.58904 97.11632 109.56297 108.92593 110.92980
## [421] 102.85547 88.07015 107.02940 91.46797 90.90276 100.97484 99.78054
## [428] 95.70747 108.45965 101.95553 84.42322 91.56156 108.56026 102.90360
## [435] 95.91684 103.63731 95.69100 99.16172 98.01022 84.35218 101.80935
## [442] 101.42450 105.28045 92.93507 106.40277 99.90608 109.30721 104.13838
## [449] 101.24073 109.73983 114.49177 96.83795 88.94327 103.75058 110.07257
## [456] 96.00466 100.91219 99.04004 106.64532 99.49275 94.27640 94.99293
## [463] 97.31057 104.46321 90.83892 96.23999 92.57241 104.18238 89.78462
## [470] 96.20905 104.66742 101.84355 102.13341 92.90728 104.26410 86.51517
## [477] 111.21199 102.06889 108.11536 111.71046 90.73616 96.98806 94.73414
## [484] 85.68390 106.97716 99.40113 90.31427 90.10186 94.99933 103.86845
## [491] 90.52632 87.20375 78.43389 133.77980 106.61622 100.94964 105.36220
## [498] 118.87780 103.81300 105.15170 90.96704 98.24581 98.27145 92.95346
## [505] 99.10117 113.16065 100.42873 103.75855 90.17507 91.73830 93.55819
## [512] 88.82999 95.17483 99.37052 100.73906 106.43899 109.40346 108.59328
## [519] 87.55636 90.39187 108.05849 94.36629 109.51180 111.50090 94.13969
## [526] 101.34821 91.16230 86.61341 90.92794 94.15869 88.68012 92.50711
## [533] 98.26326 88.07729 96.31024 102.34229 103.19372 95.00675 107.99455
## [540] 100.90313 106.30413 116.60951 102.18899 92.91114 110.36208 97.54739
## [547] 100.07777 99.21793 101.10966 101.95566 113.67941 96.58718 96.78500
## [554] 113.97514 97.80593 107.41107 89.62241 106.92618 97.60506 107.49522
## [561] 113.38834 108.48806 108.27687 99.71753 109.83479 96.98818 105.57525
## [568] 98.08588 110.66906 99.75421 94.19423 104.45455 105.36141 115.51086
## [575] 94.41164 98.46013 108.48499 96.29530 103.23271 100.89120 87.30696
## [582] 99.21887 98.80086 98.56372 96.14122 101.96920 102.51118 95.06496
## [589] 95.38967 100.32601 94.65548 94.56099 101.85894 92.94141 93.93796
## [596] 96.73081 114.47261 120.28136 85.38826 104.21116 112.18931 95.60098
## [603] 101.48253 111.93263 90.30425 95.47443 97.42523 96.72229 101.19225
## [610] 93.86689 100.37476 99.40089 102.49396 93.34206 101.08623 99.34340
## [617] 100.53092 104.64393 96.55221 98.55754 94.33624 95.41766 96.45007
## [624] 100.97140 102.05925 98.34855 96.95396 97.39041 102.81622 108.01099
## [631] 96.76089 97.52009 101.16945 102.70544 99.05115 101.26496 96.09579
## [638] 102.98429 100.91562 109.95788 102.92963 107.95557 90.19991 103.14442
## [645] 94.59586 93.01039 113.07606 102.98218 111.36092 88.89660 102.06650
## [652] 101.95314 89.00400 94.06921 94.00870 103.61869 98.20835 100.38653
## [659] 91.31076 107.86976 88.45546 96.30892 104.66421 109.65591 97.73709
## [666] 87.76384 87.55889 91.53958 99.76902 105.43556 102.86810 104.21399
## [673] 104.37972 119.50351 100.88147 101.88751 103.30862 98.74279 102.17412
## [680] 92.71833 99.94207 114.92651 90.70160 107.23152 104.67736 104.50080
## [687] 96.56993 106.65094 102.24396 97.60543 109.72805 85.84588 110.55600
## [694] 93.06968 90.00112 94.64601 104.37362 99.21842 101.85735 97.18406
## [701] 111.87924 104.44849 110.97496 104.86912 95.75309 95.93884 103.04620
## [708] 99.33497 96.59530 99.73511 107.46138 100.61708 97.88273 95.50523
## [715] 87.77159 104.13410 99.63154 106.38232 109.63639 110.71812 94.75407
## [722] 99.86386 106.05882 96.87083 100.49929 91.02235 108.06704 103.24560
## [729] 100.41973 117.55787 103.96393 102.55973 109.40553 92.65406 90.60400
## [736] 111.77905 96.41004 105.89494 96.64554 97.96821 95.62798 99.97740
## [743] 93.25463 106.11694 106.20888 99.94326 108.88524 94.83751 98.46617
## [750] 98.86928 93.15523 96.80631 96.99994 104.92613 88.06606 100.69113
## [757] 103.67759 107.04164 109.28416 96.67825 104.11273 96.51885 102.14856
## [764] 92.41350 102.40101 105.21326 94.04193 99.51141 99.63524 89.93903
## [771] 106.53168 104.20317 96.01643 105.47308 87.05425 101.24503 97.99663
## [778] 116.11448 99.21353 103.56187 91.39448 90.82117 106.27575 102.44303
## [785] 98.55597 104.03033 103.58680 112.47971 95.46912 100.63739 109.78517
## [792] 98.06233 106.63450 96.91841 101.64978 94.43952 99.54850 112.25846
## [799] 116.36145 105.68101 90.97939 97.04789 103.58571 106.84938 92.32598
## [806] 114.12723 88.42927 103.07770 94.35318 98.60106 104.12290 97.45895
## [813] 102.35901 107.55078 91.22495 97.04382 103.89320 99.58226 96.19264
## [820] 100.68243 104.00591 97.13521 112.55557 106.75806 96.40293 99.41698
## [827] 98.01018 94.74184 98.76394 101.90416 112.03634 96.84842 104.71694
## [834] 105.84669 91.90252 101.39648 99.30915 98.91371 106.44678 104.35390
## [841] 91.23609 100.18974 86.78126 108.14106 102.45552 92.80435 95.12587
## [848] 93.10227 114.85561 97.94076 111.25381 93.99849 94.28991 97.56167
## [855] 97.75604 105.77706 104.95348 98.28365 92.72630 98.18982 110.95426
## [862] 96.99250 114.40404 93.40090 102.40760 92.50450 90.00737 98.47570
## [869] 101.86578 94.21597 103.29703 98.53546 109.22440 101.85882 93.06324
## [876] 107.03880 94.15219 89.72064 97.31188 101.87961 98.86753 88.25822
## [883] 110.72760 89.06658 91.19482 104.47034 103.63310 103.39327 99.96103
## [890] 117.70096 103.17621 107.75024 92.47837 82.59295 96.15691 104.58926
## [897] 89.52102 94.95797 95.72622 103.53877 88.42763 105.78718 92.50102
## [904] 101.59008 109.80696 100.06104 96.03987 118.42744 102.62448 92.80573
## [911] 109.85262 97.84872 96.42030 101.06734 92.63287 95.13725 103.43845
## [918] 102.40939 86.71611 103.18285 97.32117 89.00621 99.92361 84.75884
## [925] 109.42252 95.38031 97.83011 94.87282 101.19582 101.64716 107.41373
## [932] 102.67419 96.95695 114.85442 99.24418 98.60267 98.57387 105.30228
## [939] 109.58348 96.96969 85.76928 102.15183 92.20098 91.72992 99.58971
## [946] 102.95779 98.16898 103.21473 104.31208 109.67143 101.08423 92.71915
## [953] 109.11797 96.86271 85.46902 86.37256 90.74637 102.61629 109.49660
## [960] 100.08103 83.87615 102.71285 99.43053 100.59307 97.92809 93.07519
## [967] 94.80546 92.72045 96.05231 90.03669 102.99090 86.50909 92.75490
## [974] 95.81167 106.72515 86.96840 108.12330 109.75482 103.15841 116.57593
## [981] 113.71882 89.78510 98.04023 98.10058 107.01660 96.33334 103.96807
## [988] 101.18980 101.82327 111.66546 105.59277 109.07567 105.75462 95.43854
## [995] 100.81567 109.70459 106.14627 103.23544 107.06951 106.11316
mean2 <- mean(Gamma_mean)
mean2
## [1] 100.1183
var2 <- var(Gamma_mean)
var2
## [1] 51.2466
mean_diff = mean2 - mean1
round(mean_diff, 3)
## [1] 0.167
var_diff = var2 - var1
round(var_diff, 3)
## [1] 5.037
As the difference of the mean and variance from part(ii)(b) and part(ii)(a) are POSITIVE, which are 0.167 and 5.037 respectively, hence it can be concluded that both the mean and variance from part(ii)(b) are higher compared to part(ii)(a).
Question 3
(i) Explain what error structure could be used in this GLM, including in your answer the R code used to justify your choice.
library(readxl)
datatrain <- read.csv("C:/Users/User/Documents/BAS/SEM 7 (AUG 2020)/MAT 3024 Regression Analysis/CBT/IFOA 2019 (CSB1)/CS1B_datatrain.csv", header = T)
head(datatrain)
## ID Age Car.Group Area NCD Gender Claim.number
## 1 1 89 7 London 1 Female 0
## 2 2 22 6 South East 1 Female 0
## 3 3 52 3 South West 2 Male 0
## 4 4 90 11 North East 2 Female 0
## 5 5 89 5 Yorkshire and the Humber 3 Female 0
## 6 6 57 11 London 2 Female 0
tail(datatrain)
## ID Age Car.Group Area NCD Gender Claim.number
## 7995 7995 89 20 South West 0 Male 1
## 7996 7996 36 2 NI 5 Female 0
## 7997 7997 96 19 East 5 Male 0
## 7998 7998 58 7 East Midlands 4 Male 0
## 7999 7999 42 11 East Midlands 4 Male 0
## 8000 8000 52 4 East 0 Female 1
str(datatrain)
## 'data.frame': 8000 obs. of 7 variables:
## $ ID : int 1 2 3 4 5 6 7 8 9 10 ...
## $ Age : int 89 22 52 90 89 57 98 58 82 40 ...
## $ Car.Group : int 7 6 3 11 5 11 10 17 20 8 ...
## $ Area : chr "London" "South East" "South West" "North East" ...
## $ NCD : int 1 1 2 2 3 2 2 5 0 3 ...
## $ Gender : chr "Female" "Female" "Male" "Female" ...
## $ Claim.number: int 0 0 0 0 0 0 0 0 0 0 ...
summary(datatrain)
## ID Age Car.Group Area
## Min. : 1 Min. : 18.00 Min. : 1.00 Length:8000
## 1st Qu.:2001 1st Qu.: 39.00 1st Qu.: 6.00 Class :character
## Median :4000 Median : 59.00 Median :11.00 Mode :character
## Mean :4000 Mean : 59.15 Mean :10.57
## 3rd Qu.:6000 3rd Qu.: 80.00 3rd Qu.:16.00
## Max. :8000 Max. :100.00 Max. :20.00
## NCD Gender Claim.number
## Min. :0.000 Length:8000 Min. :0.0000
## 1st Qu.:1.000 Class :character 1st Qu.:0.0000
## Median :3.000 Mode :character Median :0.0000
## Mean :2.543 Mean :0.1459
## 3rd Qu.:4.000 3rd Qu.:0.0000
## Max. :5.000 Max. :3.0000
All values are positive integer with some values more than 1, so use Poisson distribution as error structure.
(ii) Fit a GLM that treats Age as linear factor and all other four factors as categorical variables. Your answer should show the coefficient, standard error, and p-value of each parameter estimate in the model.
# datatrain$car_group <- as.factor(datatrain$Car.Group)
# str(datatrain)
model1 <- glm(Claim.number ~ Age + factor(Car.Group) + factor(Area) + factor(NCD) + factor(Gender), data = datatrain, family = poisson())
summary(model1)
##
## Call:
## glm(formula = Claim.number ~ Age + factor(Car.Group) + factor(Area) +
## factor(NCD) + factor(Gender), family = poisson(), data = datatrain)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3203 -0.5624 -0.4445 -0.3185 3.4254
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.895413 0.245584 -7.718 1.18e-14 ***
## Age -0.008371 0.001231 -6.802 1.03e-11 ***
## factor(Car.Group)2 0.283162 0.285122 0.993 0.320648
## factor(Car.Group)3 0.311122 0.282852 1.100 0.271356
## factor(Car.Group)4 0.116037 0.292479 0.397 0.691563
## factor(Car.Group)5 0.578672 0.265600 2.179 0.029352 *
## factor(Car.Group)6 0.912683 0.251178 3.634 0.000279 ***
## factor(Car.Group)7 0.260364 0.287397 0.906 0.364968
## factor(Car.Group)8 0.914236 0.253831 3.602 0.000316 ***
## factor(Car.Group)9 0.877120 0.252408 3.475 0.000511 ***
## factor(Car.Group)10 0.914426 0.250011 3.658 0.000255 ***
## factor(Car.Group)11 0.799044 0.250434 3.191 0.001420 **
## factor(Car.Group)12 1.025303 0.245168 4.182 2.89e-05 ***
## factor(Car.Group)13 1.011678 0.248305 4.074 4.61e-05 ***
## factor(Car.Group)14 1.118560 0.242695 4.609 4.05e-06 ***
## factor(Car.Group)15 1.103179 0.244711 4.508 6.54e-06 ***
## factor(Car.Group)16 0.996932 0.247455 4.029 5.61e-05 ***
## factor(Car.Group)17 1.128584 0.242389 4.656 3.22e-06 ***
## factor(Car.Group)18 1.198728 0.239721 5.001 5.72e-07 ***
## factor(Car.Group)19 1.422781 0.238307 5.970 2.37e-09 ***
## factor(Car.Group)20 1.317913 0.238579 5.524 3.31e-08 ***
## factor(Area)East Midlands 0.146664 0.132611 1.106 0.268739
## factor(Area)London 0.318305 0.126773 2.511 0.012045 *
## factor(Area)NI 0.393303 0.125065 3.145 0.001662 **
## factor(Area)North East -0.060812 0.138426 -0.439 0.660439
## factor(Area)North West -0.193799 0.143745 -1.348 0.177590
## factor(Area)South East -0.323157 0.151830 -2.128 0.033303 *
## factor(Area)South West -0.097663 0.142546 -0.685 0.493256
## factor(Area)Wales -0.309704 0.148283 -2.089 0.036744 *
## factor(Area)West Midlands -0.068206 0.141474 -0.482 0.629730
## factor(Area)Yorkshire and the Humber 0.100272 0.132276 0.758 0.448421
## factor(NCD)1 -0.456078 0.086523 -5.271 1.36e-07 ***
## factor(NCD)2 -0.679426 0.091303 -7.441 9.96e-14 ***
## factor(NCD)3 -0.885118 0.096849 -9.139 < 2e-16 ***
## factor(NCD)4 -0.963244 0.101502 -9.490 < 2e-16 ***
## factor(NCD)5 -1.097532 0.104299 -10.523 < 2e-16 ***
## factor(Gender)Male 0.259982 0.064879 4.007 6.14e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4569.9 on 7999 degrees of freedom
## Residual deviance: 4085.6 on 7963 degrees of freedom
## AIC: 6455.7
##
## Number of Fisher Scoring iterations: 6
(iii) Describe the association between gender and the number of reported claims based on your output from part (ii). Your answer should include a numerical comparison of this association between male and female policyholders.
Beta <- coef(model1)["factor(Gender)Male"]
Beta
## factor(Gender)Male
## 0.2599823
The coefficient for male is 0.2599823 while the coefficient for female is 0. This means that an increment of 1 unit in the regressor for male will cause an expected increase of 1 unit in the systematic component of the generalised linear model.
On the other hand, the zero coefficient for female indicates that the category of female is used as the baseline to obtain the significant positive results for the factor(sex)1 which is the category of male.
exp(Beta) - exp(0)
## factor(Gender)Male
## 0.2969072
Male policyholders have higher mean of reported claaims of (29.69%) than female policyholders. The difference is significant at 5% significance level as the p-value = 6.14e-5 < 0.05 = alpha.
(v)(a) Add a variable representing the power of age squared to the data.
datatrain$Age_square= datatrain$Age^2
(v)(b) Fit an appropriate model including age squared as an explanatory variable in addition to the variables used in part (ii).
model2 <- glm(Claim.number ~ Age + Age_square + factor(Car.Group) + factor(Area) + factor(NCD) + factor(Gender), data = datatrain, family = poisson())
summary(model2)
##
## Call:
## glm(formula = Claim.number ~ Age + Age_square + factor(Car.Group) +
## factor(Area) + factor(NCD) + factor(Gender), family = poisson(),
## data = datatrain)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.2760 -0.5532 -0.4261 -0.3063 3.2856
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.118e-01 2.816e-01 -1.462 0.143613
## Age -7.268e-02 6.329e-03 -11.484 < 2e-16 ***
## Age_square 5.603e-04 5.405e-05 10.366 < 2e-16 ***
## factor(Car.Group)2 2.913e-01 2.852e-01 1.022 0.307011
## factor(Car.Group)3 2.854e-01 2.829e-01 1.009 0.313049
## factor(Car.Group)4 1.361e-01 2.925e-01 0.465 0.641617
## factor(Car.Group)5 5.608e-01 2.656e-01 2.111 0.034750 *
## factor(Car.Group)6 8.935e-01 2.512e-01 3.557 0.000376 ***
## factor(Car.Group)7 2.729e-01 2.875e-01 0.949 0.342393
## factor(Car.Group)8 9.135e-01 2.539e-01 3.598 0.000320 ***
## factor(Car.Group)9 8.766e-01 2.524e-01 3.473 0.000515 ***
## factor(Car.Group)10 9.127e-01 2.501e-01 3.650 0.000263 ***
## factor(Car.Group)11 8.012e-01 2.505e-01 3.198 0.001383 **
## factor(Car.Group)12 1.039e+00 2.452e-01 4.239 2.25e-05 ***
## factor(Car.Group)13 9.643e-01 2.483e-01 3.883 0.000103 ***
## factor(Car.Group)14 1.109e+00 2.427e-01 4.568 4.93e-06 ***
## factor(Car.Group)15 1.111e+00 2.445e-01 4.543 5.54e-06 ***
## factor(Car.Group)16 9.760e-01 2.474e-01 3.945 7.99e-05 ***
## factor(Car.Group)17 1.131e+00 2.424e-01 4.667 3.06e-06 ***
## factor(Car.Group)18 1.188e+00 2.397e-01 4.957 7.14e-07 ***
## factor(Car.Group)19 1.420e+00 2.383e-01 5.962 2.49e-09 ***
## factor(Car.Group)20 1.322e+00 2.386e-01 5.540 3.03e-08 ***
## factor(Area)East Midlands 9.654e-02 1.327e-01 0.727 0.466981
## factor(Area)London 3.190e-01 1.268e-01 2.516 0.011863 *
## factor(Area)NI 3.837e-01 1.251e-01 3.067 0.002161 **
## factor(Area)North East -6.318e-02 1.385e-01 -0.456 0.648255
## factor(Area)North West -2.015e-01 1.438e-01 -1.401 0.161092
## factor(Area)South East -3.268e-01 1.519e-01 -2.151 0.031438 *
## factor(Area)South West -1.148e-01 1.426e-01 -0.805 0.420806
## factor(Area)Wales -3.166e-01 1.484e-01 -2.134 0.032820 *
## factor(Area)West Midlands -8.999e-02 1.415e-01 -0.636 0.524886
## factor(Area)Yorkshire and the Humber 1.060e-01 1.323e-01 0.801 0.423004
## factor(NCD)1 -4.530e-01 8.657e-02 -5.233 1.67e-07 ***
## factor(NCD)2 -6.705e-01 9.130e-02 -7.344 2.07e-13 ***
## factor(NCD)3 -8.753e-01 9.692e-02 -9.031 < 2e-16 ***
## factor(NCD)4 -9.487e-01 1.016e-01 -9.342 < 2e-16 ***
## factor(NCD)5 -1.089e+00 1.043e-01 -10.439 < 2e-16 ***
## factor(Gender)Male 2.657e-01 6.496e-02 4.091 4.30e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4569.9 on 7999 degrees of freedom
## Residual deviance: 3981.3 on 7962 degrees of freedom
## AIC: 6353.4
##
## Number of Fisher Scoring iterations: 6
null_deviance2 <- summary(model2)$null.deviance
null_deviance2
## [1] 4569.915
residual_deviance2 <- deviance(model2)
residual_deviance2
## [1] 3981.337
null_degree2 <- summary(model2)$df[2] + summary(model1)$df[1] - 1
null_degree2
## [1] 7998
resid_degree2 <- summary(model2)$df[2]
resid_degree2
## [1] 7962
deviance_diff2 <- null_deviance2 - residual_deviance2
deviance_diff2
## [1] 588.5777
df_diff2 <- null_degree2 - resid_degree2
df_diff2
## [1] 36
deviance_diff2 > deviance_diff + 2*df_diff2
## [1] TRUE