Question 1

(i) Construct a two-sided 95% confidence interval for the mean difference in weights. Assume the differences in weights to be normally distributed.

weight_before <- c(58.5, 60.3, 61.7, 69.0, 64.0, 62.6, 56.7)
weight_after <- c(60.0, 54.9, 58.1, 62.1, 58.5, 59.9, 54.4)

weight_diff <- weight_before - weight_after

weight_diff_size <- length(weight_diff)
weight_diff_mean <- mean(weight_diff)
weight_diff_stdv <- sd(weight_diff)

degree_of_freedom <- weight_diff_size - 1
t_score <- qt(0.975, degree_of_freedom)

confidence_interval <- c(weight_diff_mean - t_score*weight_diff_stdv/sqrt(weight_diff_size), weight_diff_mean + t_score*weight_diff_stdv/sqrt(weight_diff_size))

confidence_interval
## [1] 0.9897686 6.1245171

Conclusion: The two-sided 95% confidence interval for the mean difference in weights is [0.9897686,6.1245171].

(ii)Perform a suitable t-test for the null hypothesis that the mean difference in weights before and after the diet is more than or equal to 4.5 kg, against the alternative that it is less than 4.5 kg. Use a significance level of 1%.

t.test(x = weight_before, y = weight_after, paired = TRUE, alternative = "less", mu = 4.5, conf.level = 0.99)
## 
##  Paired t-test
## 
## data:  weight_before and weight_after
## t = -0.89862, df = 6, p-value = 0.2017
## alternative hypothesis: true difference in means is less than 4.5
## 99 percent confidence interval:
##      -Inf 6.854526
## sample estimates:
## mean of the differences 
##                3.557143
t_score_0.01 <- qt(0.99, degree_of_freedom)
t_score_0.01
## [1] 3.142668

Since |to|= 0.89862 < 3.142668 = t0.01,6 or p-value = 0.2017 > 0.01 = alpha, the null hypothesis is not rejected at 1% significance level.

Question 2

(i)(a) Repeat the Monte Carlo simulation of a credibility analysis with 1000 repetitions. Use the credibility factor Z=1/alpha to estimate the distribution of the posterior mean of parameter “lamda”.

library(invgamma)
## Warning: package 'invgamma' was built under R version 4.0.3
set.seed(508)

simulation = 1000
alpha = 3
theta = 10
Z = 1/alpha
posterior_mean <- rep(0, simulation)
X <- rep(0, simulation)
for(i in 1:simulation){
  lamda = rinvgamma(1, shape = alpha, rate = theta)
  x = rexp(1, 1/lamda)
  X[i]= x
  posterior_mean[i] = Z*x + (1-Z)*theta/(alpha-1)
}
posterior_mean
##    [1] 10.787679  4.004492  7.352629  3.938469  5.174283  5.773552  3.759917
##    [8]  4.361107  3.644244  4.320933  3.600820  5.251919  3.664630  3.437343
##   [15]  5.698721  4.238877  7.448848  4.147898  5.381237  4.519442  3.511072
##   [22]  6.386186 10.309665  3.398516  4.039870  3.620133  3.987903  3.549944
##   [29]  3.799118  4.027226  4.862665  3.785228  3.453635  4.808308  3.708284
##   [36]  4.248184  3.975580  5.804092  3.983857  3.370710  3.445960  3.525557
##   [43]  4.126426  5.632545  4.053977  5.699111  9.826866  3.610726  4.891751
##   [50]  3.524536  3.653747  3.379791  3.587522  5.281632  4.476903 13.938718
##   [57]  4.328783  3.396682  4.425576  9.737877  4.440940  4.049396  5.856198
##   [64]  3.545282  7.988983  3.528352  3.460233  3.746473  4.905222  3.474839
##   [71]  3.600426  7.143879  3.867841  4.445173  7.365354  3.333474  5.394556
##   [78]  3.746328  3.788844  5.681103  3.565494  3.337860  4.524515  8.096445
##   [85]  5.539874  4.478216  3.905670  5.053452  3.986433  3.974038  6.605156
##   [92]  4.668482  7.247284  3.831834 12.617454  3.731171  4.925688  3.912574
##   [99]  4.312236  5.291052  3.823822  4.297184  4.833268  3.765076  3.368473
##  [106]  4.803011  3.744405  5.367477  3.815068  4.096627  6.081352 13.488962
##  [113]  6.767325  3.472159  3.351290  4.271077  4.646828  5.114747  8.080545
##  [120]  4.807886  4.237252  3.779772  4.956105  3.473713  4.370283  5.851106
##  [127]  4.347780  5.519935  4.026523  5.612978  6.182154  3.847134  3.382508
##  [134]  5.803728  6.349085  4.582005  3.734777  3.966116  6.495820  3.562147
##  [141]  4.029852  6.398565  4.904241  5.999412  6.013848  4.109885  3.503393
##  [148]  3.555280  3.636339  5.050223  8.758505  4.131706  4.480623  6.680508
##  [155]  4.925562  5.108362  4.027557  3.674691  4.252670  6.518433  4.235079
##  [162]  3.559955  4.226598  3.626465  4.830192 23.663783  6.828567  4.650674
##  [169]  3.359534  3.373003  4.604730  3.798236  3.377434  3.456319  6.386665
##  [176]  3.344118  4.605153  3.492026  3.687670  4.371171 14.437302  5.184352
##  [183]  4.288761  4.331929  4.610506  5.445721  4.683762  3.663825  3.527371
##  [190]  3.526904  4.068335  5.038427  4.235394  6.044897  6.306354  3.707687
##  [197]  3.407470  3.999684  3.478840  4.181758  4.888421  3.653241  5.426433
##  [204] 12.658988  3.584790  8.650062  4.133849  3.584965  4.188749  3.800772
##  [211]  3.437018  3.688614  4.658512  9.672260  4.573379  4.006852  4.652431
##  [218]  3.500562  3.846194  4.789932  4.308561  3.435165  3.919064  9.990730
##  [225]  5.073204  3.638954  4.183315  3.459365  3.549533  3.601303  4.976444
##  [232]  3.369048  4.805990  3.531149  4.995554  4.252463  4.614993  5.439632
##  [239]  3.860735  4.267660  3.514343  4.755595  4.322156 16.494300  3.714280
##  [246]  3.629738  4.385435  3.685736  3.359241  4.461566  4.633818  4.092015
##  [253]  8.762667  3.511456  9.828019  3.569450  3.684522  4.516947  3.549428
##  [260]  3.536983  3.642456  4.240218  4.122019  3.581151  5.013071  5.062447
##  [267]  3.979766  3.777869  5.101428  4.509249  5.017906  5.194486  3.563715
##  [274]  6.286274  4.866633  4.147811  8.567851  4.061263  6.255519  4.245671
##  [281]  6.084255  3.469410  3.648664  5.687585  4.495914  4.009731  4.164198
##  [288]  3.421427  3.676036  4.576836  3.515794  5.687122  4.194376  4.822310
##  [295]  9.098458  3.625591  4.338387  3.478803 11.144101  3.828813  4.680124
##  [302]  4.459982  3.789894  3.506382  3.449137  3.407731  3.636466  3.474421
##  [309]  6.423319  4.322540  3.531530  4.552226  4.737846  6.335236  3.896725
##  [316]  3.835775  3.407313  3.847345 13.219633  4.194821  3.717239  7.866132
##  [323]  5.008512  6.635342  4.121576  3.373266  6.883239  3.942542  3.450547
##  [330]  6.116680  4.708658  3.980154  5.303808  4.000516  4.439875  3.517683
##  [337]  4.203049  5.086068  3.347605  7.100914  4.346348  5.023225  5.731162
##  [344]  8.400088  5.342110  4.200789  5.978356  7.040099  3.571648 16.976757
##  [351]  4.492945  4.513997  3.400303  4.280681  4.076967  4.351296  8.473505
##  [358]  3.847550  9.098675  4.374831  4.936703  3.436448  4.403436  3.540744
##  [365]  3.340646  3.507705  4.613600  3.972573  3.645236  8.002819  5.651759
##  [372]  6.558240  4.055923  3.923387  3.632470  3.879902  8.241400  8.600877
##  [379]  3.497341  3.940884  5.440708  4.056389  3.462543  3.465261  3.989090
##  [386]  3.957239  4.283731  3.384094  4.197831  6.283493  8.129240  4.119317
##  [393]  4.128642  4.920555  3.485532  3.556740  4.901122  4.990825  3.915095
##  [400]  8.913669  3.872756  3.423063  3.532035  4.999907  3.414914  3.336694
##  [407]  4.905739  3.334990  3.462654  7.301690  5.189206  3.576466  4.411319
##  [414]  3.632750  4.114442  9.928595  3.709196  3.512185  6.436412  7.662415
##  [421]  3.743496  4.682611  5.485125  3.922223  4.356569  4.332852  3.650636
##  [428]  5.513105  6.506093  5.396327  4.180270  8.526727  4.973971  4.150731
##  [435]  3.769768  4.162085  4.292791  4.132557  8.102478  4.327450  4.698675
##  [442] 12.901770  3.404518  3.546052  3.958736  5.090478  4.507910  3.606440
##  [449]  4.634292  4.349447  3.896882  5.817466  3.424015  5.389747  3.742573
##  [456]  3.761331  4.630245  4.740647  3.979690  3.962635  4.019475  4.412411
##  [463]  4.123438  8.427067  4.315698  3.540145  3.520298  3.423806  4.269145
##  [470]  8.032020  4.214815  7.305254  9.072054  4.087377  3.791415  4.384330
##  [477]  4.156700  3.596796  3.699375  5.589300  3.682880  3.952649  3.803739
##  [484]  3.456762  3.855027  5.195406  4.116909  3.511944  3.543488  4.431504
##  [491]  3.872761  3.640635  7.932992  3.516948  4.178896  3.940470  5.064382
##  [498]  4.427910  4.254190  6.148352  4.678541  4.097702 16.966185  6.714732
##  [505]  4.312089  5.957861  3.438046  3.626774  4.711123  7.005208  5.861842
##  [512]  8.084566  3.764364  5.112156  3.509892  4.541243  3.635431  3.942028
##  [519]  5.401508  5.598004  3.810431  4.641591  3.754424  4.121204  7.921436
##  [526]  5.336322  3.865240  3.892012  5.237728  7.658179  3.828863  3.501561
##  [533] 16.253779  4.209874  4.088284  6.103688  3.916069  3.662578  7.710307
##  [540]  5.102089  3.358149  3.382938  3.874895  3.510189  4.720819  4.134780
##  [547]  5.781415  4.507966  4.078679  3.546156  3.646610  3.366559  4.252116
##  [554]  3.543520  5.255360  3.863117  6.126400  4.220865  4.808106  5.463809
##  [561]  3.857423  4.107220  3.984800  6.051878  3.347032  5.546730  4.436872
##  [568]  3.938543  9.850314  3.349137  4.817697  3.580211  3.408454  3.379068
##  [575]  3.426476  4.649539  3.399649  3.649928  4.071275  4.463659  3.691750
##  [582]  6.103484  3.760637  8.679411  3.674069  4.500000  3.682916  5.521894
##  [589]  5.154624  3.916028  4.148298  3.472690  3.723402  4.335467  3.385575
##  [596]  3.488488  9.521467  4.014830  3.367788  3.458869  3.397291  4.143019
##  [603]  3.614259  3.689817 17.810596  3.617614  5.221858  3.623444  3.646731
##  [610]  4.707306  5.270672  5.112578  3.494257  3.380836  6.101766  4.950060
##  [617]  6.938910  4.545325  4.200944  3.807739  4.340306  9.880651  3.808400
##  [624]  3.609526  4.560805  4.252033  4.501385  4.620337  3.631929  3.571714
##  [631]  9.354052  3.356318  3.410060  3.482077  3.648689  3.389522  4.981854
##  [638]  3.751371  4.363128  4.126777  3.437157  9.083321 22.542653  4.561044
##  [645]  4.156581  5.875978  4.646031  3.572224  3.651257  3.364292  3.608213
##  [652]  4.374283  3.603310  3.985534  3.655081  5.058131  4.517255  4.591532
##  [659]  4.822289  3.596317  3.402335  4.236203  7.416053  4.960865  4.135426
##  [666]  5.488083  3.999444  3.747768  4.980687  3.772237  5.219193  3.741960
##  [673] 11.152395  7.932314  3.494949  3.400157  6.325461 10.391607  4.924681
##  [680]  3.506923  4.088508  3.614405  6.028570  4.993726  4.745982  3.695732
##  [687]  4.186208  3.533799  4.407512  4.546385  3.782688  3.984126  5.021312
##  [694]  3.504543  3.874480  4.128668  4.152251  5.207259  4.125451  4.187084
##  [701]  3.854722  7.620993  3.460893  3.920754  3.803910  5.255638  3.873747
##  [708]  3.367068  5.747232  4.836625  4.558355  5.943101  3.912491  4.224666
##  [715]  3.405829  5.253328  4.328696  6.630868  5.291883  4.238747  4.113339
##  [722]  5.075427  3.963649  4.266625  3.440875  3.585158  5.835994  5.629500
##  [729]  9.409130 10.265310  3.687235  9.041338  7.807293  4.098831  3.805297
##  [736]  4.054982  5.428435  7.974463  3.534706  5.482554  6.513360  5.519681
##  [743]  3.539168  4.132714  3.546316  3.678342  3.440179  4.793617  3.757676
##  [750]  4.509618  3.657608  5.883179  3.507940  3.623012  6.365470  3.432411
##  [757]  6.432006  3.920322  3.849479  3.394965  6.546594  3.391756  3.944922
##  [764]  3.921157  4.389315  3.472948  6.275120  4.629957  3.762649  5.002833
##  [771]  5.349245  4.237065  4.161210  7.424755  3.427066  3.615589  3.652228
##  [778]  7.457971  7.177882  3.945541  4.547753  3.453558  7.625347  4.505481
##  [785]  8.363320  3.536622  7.603814  3.414147  3.526650  3.903042  3.480018
##  [792]  3.578391  4.452721  4.139765  3.530550  4.682266  5.583198  6.653817
##  [799]  5.467122  5.757508  3.400510  3.394988  4.412425  3.627728  5.561259
##  [806]  3.819906  3.735731  9.237169  6.607413  3.747815  4.263449  3.336041
##  [813]  3.452754  4.645954 13.346148  4.808386  3.473015  3.552897  4.490008
##  [820]  3.427301  3.582157  5.752566  3.590654  3.522570  4.977402  4.089026
##  [827]  3.654357  4.204616 14.405400  3.395152  6.370668  3.821348  4.803218
##  [834]  4.011733  6.612212 24.428233  3.747455 11.770129  3.506718 10.023902
##  [841]  3.644921  3.457438  7.639443  3.439307 11.775049  3.538067  6.843982
##  [848]  5.191984  3.548718  3.562393  3.636264  3.446218  3.450627  4.041285
##  [855]  4.606072  6.441264  4.049736  3.717495  4.950407  6.800731  4.204093
##  [862] 11.534433 10.470570  5.209692  4.289867 56.537157  3.528617  4.929205
##  [869]  3.502631  3.888781  3.715656  5.281908  3.370401  4.312158  5.509419
##  [876]  3.412045  3.401115  5.157665  5.154028  3.525218  3.559851  6.928404
##  [883]  9.842829  4.161899  3.739783  4.378798  3.702640  7.285479  5.391680
##  [890]  4.014716  3.895717  4.485464  6.834661  6.566617 13.666889  5.540343
##  [897]  5.275363  3.367246  3.499753  4.091715  3.760996  3.602175  8.225190
##  [904]  4.273731  7.343453  6.909321  3.463444  3.334226  3.544951  9.329251
##  [911]  4.660338  3.878545  3.403161  5.784140  4.182150  4.077272  3.419741
##  [918]  4.213928  7.471789  3.914527  3.932505  3.729008  6.821493  4.955086
##  [925]  3.460775  3.644205  3.421442  5.156680  4.117724  3.838177  4.074811
##  [932]  3.799011  3.712921  3.829254  9.138670  6.191550  3.554297  5.294367
##  [939]  3.843047  3.980560  3.489206  3.610275  3.847092  3.466941  4.873124
##  [946]  4.397267  4.823008  4.570346  3.918202  5.265505  5.142342  4.147010
##  [953]  3.586765  3.536943  5.285223  3.874026  3.643967  4.157855  4.197034
##  [960]  3.627436  3.682170  3.610702  9.806385  4.459375  3.398503  4.666791
##  [967]  7.496659  3.364376  4.953376  3.850600  6.658194  4.309880  4.769633
##  [974]  3.662653  3.525202  4.179977  7.944241  3.756973  3.391335  4.845874
##  [981]  3.586628  3.519675  8.691511  4.234541  4.000760  3.510726  3.611813
##  [988]  3.536807  6.811752  3.618343  3.975355 12.359052  6.031932  4.290997
##  [995]  6.185529  3.380162  8.606369  3.340724  3.778845  3.520688

(i)(b) Plot the histogram of the 1000 Monte Carlo posterior mean estimates calculated in part (i)(a).

hist(posterior_mean, main = "Histogram of Posterior Mean", xlab = "Estimated posterior mean", ylab = "frequency")

(ii)(a)Calculate the mean and variance of the Monte Carlo posterior mean estimates from part (i). Give your answers to three decimal places.

mean1 <- round(mean(posterior_mean),3)
mean1
## [1] 4.954
var1 <- round(var(posterior_mean),3)
var1
## [1] 7.577

(ii)(b) Draw another 1000 samples with sample size of 1000 from an inverse gamma distribution with parameters (alpha+x) and (theta+1). Compute the mean and variance from the samples. Give your answers to three decimal places.

set.seed(508)

InvGamma_mean <- rep(0,simulation)
for(i in 1:simulation){
  lamda_2 = rinvgamma(1, shape=alpha, rate = theta)
  x = rexp(1, 1/lamda_2)
  y = rinvgamma(1000, shape = alpha + x, rate = theta + 1)
  InvGamma_mean[i] = mean(y)
}
InvGamma_mean
##    [1] 0.4528455 1.1154490 2.7660686 3.5108914 5.5036172 4.4175952 1.5760896
##    [8] 5.1711123 2.0457014 4.8479597 0.7329518 1.4792504 4.9798844 3.2860042
##   [15] 4.0467570 2.2440856 2.4428618 0.4418879 3.7246421 4.2532156 1.7005713
##   [22] 4.4601984 2.8846886 1.0600917 2.9005702 1.8663431 1.4882195 5.0893601
##   [29] 0.8246347 3.0530775 1.4140200 1.7268893 2.0228870 1.8658839 1.8655319
##   [36] 1.3603827 2.3095280 1.3084266 2.9517030 2.6759447 0.5473656 1.2634541
##   [43] 0.7939488 3.5468646 0.2921530 1.8740286 5.1608652 1.3927144 0.8249398
##   [50] 1.9705110 4.5084420 3.8728939 1.9831910 1.5710352 3.2865672 1.2086492
##   [57] 3.0852447 3.5649418 3.9870339 3.4866799 2.1337591 1.2332760 1.1113554
##   [64] 1.8449380 3.6497043 3.3162041 0.5966781 0.7992572 0.6378376 3.0257287
##   [71] 1.8895758 5.4887922 0.7715542 2.1602091 1.6059832 2.0219840 1.7276020
##   [78] 2.5340317 0.7234572 5.2672128 5.0883979 2.8616020 4.1106597 3.5427518
##   [85] 1.6819709 1.5107651 0.8003198 3.5364358 4.1263694 1.4424756 2.3492423
##   [92] 1.7554169 4.9596701 0.4201931 0.2710016 1.1265545 2.1404786 3.5439059
##   [99] 1.5426759 1.5203004 0.9087866 0.6071479 0.8639980 0.3489839 0.6494372
##  [106] 3.9842289 4.0026614 2.8648763 1.3327295 5.0893934 1.1557094 2.0291828
##  [113] 1.7936196 1.8690467 0.8735780 3.5181104 4.0897129 1.2497278 2.7668506
##  [120] 3.7352879 1.2671235 0.7511893 3.8095218 3.2308745 0.9643090 3.4240817
##  [127] 3.3723743 3.6490711 1.7051309 1.1699557 5.2377827 2.9916951 4.4127935
##  [134] 2.1465436 3.6440365 3.6292358 2.0285370 0.4318151 0.3798680 3.0953474
##  [141] 0.5329301 1.0396997 1.4546231 4.1498227 2.1817604 1.3748617 4.2871681
##  [148] 0.9957030 4.5320760 0.7124334 0.8784055 2.8726773 1.0727903 1.0072409
##  [155] 3.2943308 3.8456319 1.8831843 4.3894135 1.1945740 1.4234888 3.5922632
##  [162] 0.4787572 2.9664013 1.5587183 1.6468420 2.4591638 2.3965643 3.5648569
##  [169] 1.4750787 0.3769256 2.8577228 3.1602090 2.5596854 1.2439860 2.6451389
##  [176] 2.7655296 5.0132480 1.1885544 1.3079784 4.8981617 3.9730371 3.2488457
##  [183] 3.7945564 0.8139167 5.3073301 4.1056284 3.1658535 2.5926541 5.0210945
##  [190] 2.8507450 2.0784141 1.3959440 2.9958665 0.5016819 2.5880195 1.0251910
##  [197] 2.8622180 1.1371431 4.4704570 1.9255612 4.7689870 1.8889239 1.5270193
##  [204] 2.5633827 2.4258583 0.5711748 4.3259181 2.1910928 0.9880339 2.9018115
##  [211] 0.8415276 0.8375638 1.1844204 0.8494366 3.2024444 2.2394480 0.9588459
##  [218] 3.7584095 2.9323297 0.8887133 1.6197297 0.8893519 0.9040925 0.8283098
##  [225] 0.9635464 3.8877960 0.8044784 4.0106566 3.2527557 3.2296128 5.7194561
##  [232] 1.3399381 1.1683980 2.6302498 4.4616083 1.7543147 0.3567273 5.1542434
##  [239] 1.0898997 1.6329184 0.3221966 3.6138337 5.4769452 2.2508752 1.3397348
##  [246] 0.7533053 3.8462243 4.1274383 0.8857076 4.9922789 1.8636874 1.9034812
##  [253] 4.7527674 3.2312592 1.8846801 2.2229226 4.7768387 5.3540965 1.4105912
##  [260] 3.0066666 3.7395103 4.8981606 3.5861133 1.6412343 3.4137261 3.8257461
##  [267] 5.4224889 3.2670601 2.2151950 0.9696565 3.4014087 3.0962481 5.0385872
##  [274] 1.9415213 3.1501884 0.3051769 0.1415141 0.8797703 3.9675819 2.2398994
##  [281] 0.3808153 1.7268817 0.7965069 2.8038486 1.4971264 4.2488659 2.0737372
##  [288] 1.7404600 1.9429186 4.7602304 4.9971591 0.8886146 2.9143835 1.4682736
##  [295] 5.0122955 0.7503327 3.2005326 1.3049805 1.8009199 4.5793783 1.9687860
##  [302] 3.9848185 3.6091545 3.2702234 3.3230683 3.3882814 2.1461322 3.5876499
##  [309] 0.9365813 2.9483052 2.1238587 0.6236544 4.8542273 5.0720298 1.1146693
##  [316] 1.7669281 2.2104013 3.6758661 4.1641893 1.5424859 3.1886789 5.3987226
##  [323] 4.5608291 2.1277715 1.9568252 1.8738373 1.8398984 2.1121293 5.3145722
##  [330] 1.6769802 1.7673316 3.8385041 2.9756252 3.7765909 2.4493343 0.9525884
##  [337] 2.0041859 1.6331763 1.5579284 0.3907023 1.0249365 1.3639474 0.1133856
##  [344] 0.5275447 5.7657049 2.9368747 1.8605942 4.8103918 1.9035779 4.2318347
##  [351] 2.4496794 1.2328464 4.8814074 3.5897116 0.9551220 3.3478712 0.9012248
##  [358] 4.6841297 0.9316971 4.1362256 2.6924055 1.8685647 0.2118757 1.8358248
##  [365] 3.1752916 1.4996790 2.8724224 4.0339754 5.1511512 3.1305016 4.0958385
##  [372] 1.2163290 3.2758148 4.3787013 1.2222095 3.6306436 5.1155056 3.1451475
##  [379] 1.5405333 2.4677292 0.4800295 0.1928023 5.3588185 2.6651074 3.7447355
##  [386] 1.4834094 2.4836019 0.8705411 1.4705107 5.2447729 3.3223226 0.3643578
##  [393] 1.8424815 1.6275231 1.1517639 4.5701081 0.6315761 0.6762398 3.5530167
##  [400] 3.1288605 0.8481073 1.7355158 3.7437854 4.0486484 3.1548851 2.6058688
##  [407] 1.4136439 1.2983875 3.5272948 1.2568043 4.7690709 3.5196682 1.3016162
##  [414] 0.3362631 5.2858398 0.6586516 5.6958084 3.1025407 2.2839498 0.8448567
##  [421] 1.5100567 3.4922219 4.8826842 2.0583225 4.1700542 1.6679286 2.3383248
##  [428] 1.2418360 1.5181339 2.2159176 0.6104076 5.4078878 1.9266301 4.9429668
##  [435] 1.4026602 3.7369995 3.0541329 3.9852772 3.8980142 3.6231788 2.2526205
##  [442] 2.4544315 1.0401197 5.2027624 5.2881917 2.9874583 3.9053168 2.0113123
##  [449] 0.5402704 4.6586652 0.4503325 4.5278397 5.3745448 1.8519707 1.1442759
##  [456] 0.9609141 5.2178094 3.1492760 1.7687426 1.0883882 0.2359387 4.3412886
##  [463] 4.7151754 5.3413387 2.8940675 2.5558524 1.4253781 0.8899529 1.4964504
##  [470] 0.5730605 0.5509815 4.1067092 3.4705732 3.8044874 1.0034477 3.9234279
##  [477] 0.7236052 2.3499000 2.6709916 1.7538199 1.7982581 4.7466375 3.4971260
##  [484] 3.4047280 5.0420100 1.4882295 0.3540391 1.1975753 3.6200914 2.9689053
##  [491] 4.6876745 0.9857318 1.3412846 2.2205684 2.7775015 2.9665085 0.8962940
##  [498] 1.7945433 0.3994264 4.5729785 3.2378235 3.1821613 3.5466778 3.7333771
##  [505] 3.9409122 2.0508474 4.8576318 1.6721448 3.9377678 1.8117787 2.0535924
##  [512] 1.8609506 4.4484776 5.0509178 0.9025151 5.5021956 1.6970009 1.1334251
##  [519] 0.9282858 1.7133996 3.7474512 1.6169505 2.0136155 2.1963330 4.7514180
##  [526] 0.4861871 5.3494781 0.7050817 3.4094564 0.6732598 0.8544340 2.4467829
##  [533] 1.2371384 2.1291804 0.5146497 1.1871992 5.3918529 2.7944833 3.1825742
##  [540] 1.3692722 4.3349099 1.7882319 0.6143338 0.8860344 3.0204682 3.1499355
##  [547] 4.0879582 1.3718297 1.2894056 2.0148160 4.8233237 3.7076943 1.2833214
##  [554] 2.7642430 1.1152592 3.8091597 2.4336382 5.1770561 2.3400343 2.5323501
##  [561] 3.1058335 3.4070044 5.2643219 1.5897630 0.5659836 0.8129473 4.2272538
##  [568] 0.6600196 2.8793511 4.0734599 3.2938192 1.0631020 4.2357894 3.1885529
##  [575] 1.1942369 2.2316898 2.0059203 1.8674142 2.3772932 3.2159222 1.3907635
##  [582] 1.4341080 1.3511132 2.8498743 5.0580096 0.4409590 3.5383323 1.2095557
##  [589] 3.4614871 1.1448317 4.6912775 2.4109547 2.1014680 2.1734020 1.8053222
##  [596] 2.2891560 4.4488872 4.0318710 1.9162956 4.7677817 4.0986832 0.5961969
##  [603] 2.6415897 4.5148667 4.4516112 0.8184991 3.6194846 3.0952546 1.0653842
##  [610] 4.0181571 1.4789458 0.7906875 3.3136626 0.7699718 5.6943778 1.5896442
##  [617] 5.0554372 1.5436022 2.9929239 3.9771121 1.9813198 1.0215891 2.4841887
##  [624] 5.0209129 2.0569310 1.3709069 5.2909022 3.7825458 0.9036302 1.5359432
##  [631] 2.3039457 1.4213097 0.4982314 4.5628347 4.3588640 1.9198978 4.0147485
##  [638] 1.8176554 4.1774287 2.8910149 4.1208819 4.1942820 3.0036219 4.8153169
##  [645] 5.2455062 1.4780647 0.5296742 1.3437274 1.9849031 4.1564289 4.9787445
##  [652] 3.3463027 2.3369469 2.4294849 3.7684277 2.3000704 3.5415034 3.2653695
##  [659] 0.7361545 0.7890317 3.2986516 2.0693051 2.1750318 3.7314953 2.6779305
##  [666] 1.6420698 3.4543812 0.8421596 1.4331441 3.0619411 2.5873898 4.7113765
##  [673] 1.1743647 3.0365452 5.2386130 2.3931650 2.1941886 1.2788839 3.7347996
##  [680] 1.3829213 0.6003583 0.8814799 1.5745850 1.2229610 2.0944786 2.6111498
##  [687] 1.1531807 3.6266326 2.6618526 5.1095609 0.5386897 3.5477975 2.8832530
##  [694] 2.6669611 2.3961350 2.2197567 1.0547531 1.4449093 1.0010750 1.2089777
##  [701] 1.2536075 2.0747320 2.0304295 0.7987186 1.0944149 0.8652461 2.1546179
##  [708] 0.7852070 0.4825748 1.1183794 3.6446113 0.4004811 3.7283501 2.4330317
##  [715] 0.4873435 4.4582439 3.2599651 0.3775390 1.0764958 4.7223482 4.9877534
##  [722] 4.0297753 3.2015358 4.9463936 2.0029758 4.5242077 0.6156263 0.6469607
##  [729] 1.1609281 3.1796877 3.6444033 4.0784637 1.9966365 2.4287341 5.2530148
##  [736] 2.7197471 1.5372965 1.9470886 1.7541256 3.3555713 0.4314949 2.3649226
##  [743] 5.3744377 2.2079060 5.2529834 1.7084546 0.6321942 0.8493124 4.5540834
##  [750] 0.5072338 4.0314859 1.9496685 2.5313778 0.4123980 1.9364205 4.3789011
##  [757] 0.6035532 2.4621953 2.0805433 2.8421000 0.6827488 1.1554024 4.7044096
##  [764] 3.2926485 3.2732105 5.1379018 2.8883640 2.9972377 1.0584864 3.1173693
##  [771] 1.1722502 2.7507740 0.8231800 1.6334624 3.4906520 1.4174645 2.3439014
##  [778] 0.2411913 1.4550513 2.2035601 2.1023716 1.2888984 1.9514718 5.3406310
##  [785] 1.3434288 2.6095676 3.5353372 0.5470604 5.0820147 1.5267695 2.1217402
##  [792] 3.8070330 3.3819589 0.8397971 2.8710814 3.9086337 1.2278954 1.4238853
##  [799] 3.2031367 2.3668719 1.2014489 0.5101170 5.0572419 4.7732622 2.4837227
##  [806] 5.0212588 2.7364925 2.5856292 1.6219991 3.5415430 4.2400029 4.2871797
##  [813] 2.0536793 1.1045793 5.4593789 0.8075749 2.5121392 2.9714101 1.2087128
##  [820] 2.0763828 1.7548921 3.0193853 5.2671710 3.9083375 0.4067920 1.1693598
##  [827] 4.2266161 1.4495648 5.3771004 2.8567718 1.2741526 1.4894426 2.2135957
##  [834] 1.5800951 4.0509605 1.8555491 1.9470107 0.8230733 3.3929320 1.6746741
##  [841] 2.9507827 4.5560535 1.7241660 3.3192257 3.8884149 1.9143514 2.6175116
##  [848] 3.6326724 1.6703912 2.7035559 2.3376948 0.4820992 3.9600808 4.3235997
##  [855] 1.5415136 2.7991466 1.6170869 4.2664558 0.9433894 0.6692336 2.7701962
##  [862] 1.8405431 0.4111109 3.2782767 1.7788668 1.3769273 2.6861293 1.9530853
##  [869] 0.7002908 2.3039531 3.4925266 2.2420922 0.9543217 1.7678143 2.2201936
##  [876] 4.5676954 1.4794846 2.8768592 4.3543676 2.7857130 1.2964815 1.4956199
##  [883] 4.8149134 2.6014883 5.6532729 2.7600756 0.5965309 1.4289123 4.9812601
##  [890] 3.9344124 3.7064027 3.1960860 1.3913708 2.2489057 4.4821830 2.3395064
##  [897] 1.8985060 2.5456275 1.3131202 0.5445455 1.8612873 2.3798578 1.1804404
##  [904] 0.9920554 4.2637722 0.9772130 4.8348768 1.0348114 3.6489887 4.1880202
##  [911] 4.8635471 5.2653701 3.0574887 1.4598367 2.7214003 5.1148474 5.2626023
##  [918] 1.7930783 4.3170545 3.3848387 1.2805839 0.2331395 1.5628935 0.7428235
##  [925] 0.7826520 5.2765994 3.3129281 1.9157192 0.9519059 1.5245481 1.9348275
##  [932] 0.3969309 4.4170088 2.7114701 3.7703103 3.3582338 1.4047555 3.1416984
##  [939] 1.1753388 5.6655999 3.3629788 0.4407420 1.0502049 1.4345923 2.3366078
##  [946] 3.8108014 3.7185987 0.8568197 1.0700136 2.9973626 2.5499141 1.9663407
##  [953] 3.4933361 1.0805930 2.5226570 3.5184661 4.8552384 4.7373606 5.4035095
##  [960] 5.4245378 2.5592343 1.3919447 1.2252652 1.0358870 4.3398540 5.1779559
##  [967] 3.9759817 1.9382669 1.3281990 2.8732076 5.4448429 0.3283673 1.0930451
##  [974] 3.0713871 2.0655776 1.2579016 3.1355631 2.9704311 1.0184263 5.7119790
##  [981] 2.4825375 5.0661325 2.2326024 2.9603189 1.9882172 5.2286726 4.4573113
##  [988] 3.0809559 1.4872853 2.3249624 2.9258383 1.5953500 0.9583087 0.5875814
##  [995] 2.9655767 1.6470701 4.4075902 3.1703623 3.1812618 2.2687367
mean2 <- round(mean(InvGamma_mean),3)
mean2
## [1] 2.55
var2 <- round(var(InvGamma_mean),3)
var2
## [1] 2.101

(ii)(c) Compare the answers obtained in part (ii)(a) and part (ii)(b).

mean_diff = mean2 - mean1
mean_diff
## [1] -2.404
var_diff = var2 - var1
var_diff
## [1] -5.476

As the difference of the mean and variance from part(ii)(b) and part(ii)(a) are NEGATIVE, which are -2.404 and -5.476 respectively, hence it can be concluded that both the mean and variance from part(ii)(a) are higher compared to part(ii)(b).

(iii) Comment on your findings in parts (i) and (ii).

The difference calculated of the Monte Carlo estimates for the mean and variance and those from Inverse Gamma (alpha + x, theta + 1) sample demonstrates that the posterior Distribution for the Exponential/Inverse Gamma credibility model is not the Inverse Gamma (alpha + x, theta + 1).

This may be due to the fact that the Inverse Gamma (alpha + x, theta + 1) sample has parameters that are different and where its alpha value is now dependent on the claim severity model, X. On the other hand, its theta value is now greater by 1.

Hence, the difference in properties and values of the respective parameters are the main reason that lead to the difference in the model and the value of parameters.

Question 3

(i) Explain what error structure could be used in building this generalized linear model (GLM), including in your answer the R code used to justify your choice.

library(readxl)
HD_clean_data <- read.csv("C:/Users/User/Documents/BAS/SEM 7 (AUG 2020)/MAT 3024 Regression Analysis/CBT/IFOA April 2020 (CSB1)/HD_clean_data.csv",header = T)

head(HD_clean_data)
##   Age Resting_Blood_Pressure Serum_Cholesterol Max_Heart_Rate_Achieved
## 1  63                    145               233                     150
## 2  67                    160               286                     108
## 3  67                    120               229                     129
## 4  37                    130               250                     187
## 5  41                    130               204                     172
## 6  56                    120               236                     178
##   ST_Depression_Exercise Num_Major_Vessels_Flouro Sex Chest_Pain_Type
## 1                    2.3                        3   1               1
## 2                    1.5                        6   1               4
## 3                    2.6                        5   1               4
## 4                    3.5                        3   1               3
## 5                    1.4                        3   0               2
## 6                    0.8                        3   1               2
##   Fasting_Blood_Sugar Resting_ECG Exercise_Induced_Angina
## 1                   1           2                       0
## 2                   0           2                       1
## 3                   0           2                       1
## 4                   0           0                       0
## 5                   0           2                       0
## 6                   0           0                       0
##   Peak_Exercise_ST_Segment Thalassemia Diagnosis_Heart_Disease
## 1                        3           6                       0
## 2                        2           3                       1
## 3                        2           7                       1
## 4                        3           3                       0
## 5                        1           3                       0
## 6                        1           3                       0
tail(HD_clean_data)
##     Age Resting_Blood_Pressure Serum_Cholesterol Max_Heart_Rate_Achieved
## 296  57                    140               241                     123
## 297  45                    110               264                     132
## 298  68                    144               193                     141
## 299  57                    130               131                     115
## 300  57                    130               236                     174
## 301  38                    138               175                     173
##     ST_Depression_Exercise Num_Major_Vessels_Flouro Sex Chest_Pain_Type
## 296                    0.2                        3   0               4
## 297                    1.2                        3   1               1
## 298                    3.4                        5   1               4
## 299                    1.2                        4   1               4
## 300                    0.0                        4   0               2
## 301                    0.0                        2   1               3
##     Fasting_Blood_Sugar Resting_ECG Exercise_Induced_Angina
## 296                   0           0                       1
## 297                   0           0                       0
## 298                   1           0                       0
## 299                   0           0                       1
## 300                   0           2                       0
## 301                   0           0                       0
##     Peak_Exercise_ST_Segment Thalassemia Diagnosis_Heart_Disease
## 296                        2           7                       1
## 297                        2           7                       1
## 298                        2           7                       1
## 299                        2           7                       1
## 300                        2           3                       1
## 301                        1           3                       0
str(HD_clean_data)
## 'data.frame':    301 obs. of  14 variables:
##  $ Age                     : int  63 67 67 37 41 56 62 57 63 53 ...
##  $ Resting_Blood_Pressure  : int  145 160 120 130 130 120 140 120 130 140 ...
##  $ Serum_Cholesterol       : int  233 286 229 250 204 236 268 354 254 203 ...
##  $ Max_Heart_Rate_Achieved : int  150 108 129 187 172 178 160 163 147 155 ...
##  $ ST_Depression_Exercise  : num  2.3 1.5 2.6 3.5 1.4 0.8 3.6 0.6 1.4 3.1 ...
##  $ Num_Major_Vessels_Flouro: int  3 6 5 3 3 3 5 3 4 3 ...
##  $ Sex                     : int  1 1 1 1 0 1 0 0 1 1 ...
##  $ Chest_Pain_Type         : int  1 4 4 3 2 2 4 4 4 4 ...
##  $ Fasting_Blood_Sugar     : int  1 0 0 0 0 0 0 0 0 1 ...
##  $ Resting_ECG             : int  2 2 2 0 2 0 2 0 2 2 ...
##  $ Exercise_Induced_Angina : int  0 1 1 0 0 0 0 1 0 1 ...
##  $ Peak_Exercise_ST_Segment: int  3 2 2 3 1 1 3 1 2 3 ...
##  $ Thalassemia             : int  6 3 7 3 3 3 3 3 7 7 ...
##  $ Diagnosis_Heart_Disease : int  0 1 1 0 0 0 1 0 1 1 ...
summary(HD_clean_data)
##       Age        Resting_Blood_Pressure Serum_Cholesterol
##  Min.   :29.00   Min.   : 94.0          Min.   :126.0    
##  1st Qu.:48.00   1st Qu.:120.0          1st Qu.:211.0    
##  Median :56.00   Median :130.0          Median :242.0    
##  Mean   :54.45   Mean   :131.7          Mean   :246.9    
##  3rd Qu.:61.00   3rd Qu.:140.0          3rd Qu.:275.0    
##  Max.   :77.00   Max.   :200.0          Max.   :564.0    
##  Max_Heart_Rate_Achieved ST_Depression_Exercise Num_Major_Vessels_Flouro
##  Min.   : 71.0           Min.   :0.000          Min.   :2.000           
##  1st Qu.:134.0           1st Qu.:0.000          1st Qu.:3.000           
##  Median :153.0           Median :0.800          Median :3.000           
##  Mean   :149.7           Mean   :1.043          Mean   :3.654           
##  3rd Qu.:166.0           3rd Qu.:1.600          3rd Qu.:4.000           
##  Max.   :202.0           Max.   :6.200          Max.   :6.000           
##       Sex         Chest_Pain_Type Fasting_Blood_Sugar  Resting_ECG  
##  Min.   :0.0000   Min.   :1.000   Min.   :0.0000      Min.   :0.00  
##  1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:0.0000      1st Qu.:0.00  
##  Median :1.0000   Median :3.000   Median :0.0000      Median :1.00  
##  Mean   :0.6811   Mean   :3.156   Mean   :0.1462      Mean   :0.99  
##  3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:0.0000      3rd Qu.:2.00  
##  Max.   :1.0000   Max.   :4.000   Max.   :1.0000      Max.   :2.00  
##  Exercise_Induced_Angina Peak_Exercise_ST_Segment  Thalassemia   
##  Min.   :0.0000          Min.   :1.000            Min.   :3.000  
##  1st Qu.:0.0000          1st Qu.:1.000            1st Qu.:3.000  
##  Median :0.0000          Median :2.000            Median :3.000  
##  Mean   :0.3256          Mean   :1.601            Mean   :4.734  
##  3rd Qu.:1.0000          3rd Qu.:2.000            3rd Qu.:7.000  
##  Max.   :1.0000          Max.   :3.000            Max.   :7.000  
##  Diagnosis_Heart_Disease
##  Min.   :0.0000         
##  1st Qu.:0.0000         
##  Median :0.0000         
##  Mean   :0.4585         
##  3rd Qu.:1.0000         
##  Max.   :1.0000

From the structure and property of the dataset, it can be clearly seen that the data is a binary data that consists of only values 0 and 1. Hence, we use Binomial distribution as the error structure in building this generalized linear model.

(ii) Fit a GLM that treats Age, Resting Blood Pressure, Serum Cholesterol, Maximum Heart Rate Achieved, ST Depression Exercise, and Number of Major Vessels as linear factors, and all other seven factors as categorical variables. Your answer should show the coefficient, standard error, and p-value of each parameter estimate in the model.

model <- glm(Diagnosis_Heart_Disease ~ Age + Resting_Blood_Pressure + Serum_Cholesterol + Max_Heart_Rate_Achieved + ST_Depression_Exercise + Num_Major_Vessels_Flouro + factor(Sex) + factor(Chest_Pain_Type) + factor(Fasting_Blood_Sugar) + factor(Resting_ECG) + factor(Exercise_Induced_Angina) + factor(Peak_Exercise_ST_Segment) + factor(Thalassemia), data = HD_clean_data, family = binomial())

summary(model)
## 
## Call:
## glm(formula = Diagnosis_Heart_Disease ~ Age + Resting_Blood_Pressure + 
##     Serum_Cholesterol + Max_Heart_Rate_Achieved + ST_Depression_Exercise + 
##     Num_Major_Vessels_Flouro + factor(Sex) + factor(Chest_Pain_Type) + 
##     factor(Fasting_Blood_Sugar) + factor(Resting_ECG) + factor(Exercise_Induced_Angina) + 
##     factor(Peak_Exercise_ST_Segment) + factor(Thalassemia), family = binomial(), 
##     data = HD_clean_data)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.7657  -0.5015  -0.1386   0.3134   2.7962  
## 
## Coefficients:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                       -9.836277   3.089155  -3.184 0.001452 ** 
## Age                               -0.016429   0.024719  -0.665 0.506298    
## Resting_Blood_Pressure             0.024578   0.011286   2.178 0.029426 *  
## Serum_Cholesterol                  0.004556   0.004007   1.137 0.255492    
## Max_Heart_Rate_Achieved           -0.018073   0.011134  -1.623 0.104548    
## ST_Depression_Exercise             0.349926   0.230502   1.518 0.128988    
## Num_Major_Vessels_Flouro           1.305828   0.275083   4.747 2.06e-06 ***
## factor(Sex)1                       1.545454   0.532301   2.903 0.003692 ** 
## factor(Chest_Pain_Type)2           1.204088   0.768206   1.567 0.117020    
## factor(Chest_Pain_Type)3           0.241776   0.662567   0.365 0.715180    
## factor(Chest_Pain_Type)4           2.114648   0.666969   3.171 0.001522 ** 
## factor(Fasting_Blood_Sugar)1      -0.493078   0.588486  -0.838 0.402101    
## factor(Resting_ECG)1               0.851656   2.488853   0.342 0.732209    
## factor(Resting_ECG)2               0.510913   0.382580   1.335 0.181731    
## factor(Exercise_Induced_Angina)1   0.738811   0.439467   1.681 0.092733 .  
## factor(Peak_Exercise_ST_Segment)2  1.152364   0.472645   2.438 0.014764 *  
## factor(Peak_Exercise_ST_Segment)3  0.519801   0.924706   0.562 0.574030    
## factor(Thalassemia)6              -0.029854   0.790598  -0.038 0.969878    
## factor(Thalassemia)7               1.399100   0.424551   3.295 0.000983 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 415.20  on 300  degrees of freedom
## Residual deviance: 192.95  on 282  degrees of freedom
## AIC: 230.95
## 
## Number of Fisher Scoring iterations: 6

(iii) Interpret the coefficient for sex. Your answer should include a numerical comparison of the odds of getting heart disease between male and female patient.

Beta <- coef(model)["factor(Sex)1"]
Beta
## factor(Sex)1 
##     1.545454

The coefficient for male is 1.545454 while the coefficient for female is 0. This means that an increment of 1 unit in the regressor for male will cause an expected increase of 1 unit in the systematic component of the generalised linear model.

On the other hand, the zero coefficient for female indicates that the category of female is used as the baseline to obtain the significant positive results for the factor(sex)1 which is the category of male.

exp(Beta)/(1+exp(Beta)) - exp(0)/(1+exp(0))
## factor(Sex)1 
##    0.3242562

Male patients have higher mean of getting heart disease of (32.43%) than female patients. The difference is significant at 5% significance level as the p-value = 0.003692 < 0.05 = alpha.

(iv) Comment on the fit of the model fitted in part (ii), based on the deviance value of the model, with reference to the suitability of the model.

null_deviance <- summary(model)$null.deviance
null_deviance
## [1] 415.1958
residual_deviance <- deviance(model)
residual_deviance
## [1] 192.9529
null_degree <- summary(model)$df[2] + summary(model)$df[1] - 1
null_degree
## [1] 300
resid_degree <- summary(model)$df[2]
resid_degree
## [1] 282
deviance_diff <- null_deviance - residual_deviance
deviance_diff
## [1] 222.2428
df_diff <- null_degree - resid_degree
df_diff
## [1] 18
qchisq(0.95, 18)
## [1] 28.8693

After comparison is made, it is shown that the deviance is reduced by 222.25 while the degrees of freedom is reduced by 18.

As the observed difference = 222.2428 > 28.8693 = chi-square statistic with alpha = 0.05 and df = 18, the null hypothesis is rejected. Hence, the fitted model is significant at 5% significance level.

(v) Find the reduced model by using backward elimination method based on p-value criteria.

model_backward_fit = step(model, direction = "backward", trace=0)
formula(model_backward_fit)
## Diagnosis_Heart_Disease ~ Resting_Blood_Pressure + Max_Heart_Rate_Achieved + 
##     ST_Depression_Exercise + Num_Major_Vessels_Flouro + factor(Sex) + 
##     factor(Chest_Pain_Type) + factor(Exercise_Induced_Angina) + 
##     factor(Peak_Exercise_ST_Segment) + factor(Thalassemia)
summary(model_backward_fit)
## 
## Call:
## glm(formula = Diagnosis_Heart_Disease ~ Resting_Blood_Pressure + 
##     Max_Heart_Rate_Achieved + ST_Depression_Exercise + Num_Major_Vessels_Flouro + 
##     factor(Sex) + factor(Chest_Pain_Type) + factor(Exercise_Induced_Angina) + 
##     factor(Peak_Exercise_ST_Segment) + factor(Thalassemia), family = binomial(), 
##     data = HD_clean_data)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.7896  -0.4929  -0.1479   0.3404   2.7824  
## 
## Coefficients:
##                                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                       -9.48926    2.62745  -3.612 0.000304 ***
## Resting_Blood_Pressure             0.02315    0.01034   2.239 0.025157 *  
## Max_Heart_Rate_Achieved           -0.01464    0.01013  -1.446 0.148205    
## ST_Depression_Exercise             0.38222    0.22161   1.725 0.084573 .  
## Num_Major_Vessels_Flouro           1.24221    0.25447   4.881 1.05e-06 ***
## factor(Sex)1                       1.43651    0.49449   2.905 0.003672 ** 
## factor(Chest_Pain_Type)2           1.22865    0.75333   1.631 0.102900    
## factor(Chest_Pain_Type)3           0.20237    0.64952   0.312 0.755372    
## factor(Chest_Pain_Type)4           2.18778    0.65675   3.331 0.000865 ***
## factor(Exercise_Induced_Angina)1   0.70999    0.43087   1.648 0.099392 .  
## factor(Peak_Exercise_ST_Segment)2  1.20100    0.46245   2.597 0.009404 ** 
## factor(Peak_Exercise_ST_Segment)3  0.46862    0.89722   0.522 0.601458    
## factor(Thalassemia)6              -0.24773    0.76358  -0.324 0.745609    
## factor(Thalassemia)7               1.35384    0.41284   3.279 0.001040 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 415.20  on 300  degrees of freedom
## Residual deviance: 197.46  on 287  degrees of freedom
## AIC: 225.46
## 
## Number of Fisher Scoring iterations: 6
null_deviance2 <- summary(model_backward_fit)$null.deviance
null_deviance2
## [1] 415.1958
residual_deviance2 <- deviance(model_backward_fit)
residual_deviance2
## [1] 197.4618
null_degree2 <- summary(model_backward_fit)$df[2] + summary(model_backward_fit)$df[1] - 1
null_degree2
## [1] 300
resid_degree2 <- summary(model_backward_fit)$df[2]
resid_degree2
## [1] 287
deviance_diff2 <- null_deviance2 - residual_deviance2
deviance_diff2
## [1] 217.734
df_diff2 <- null_degree2 - resid_degree2
df_diff2
## [1] 13
deviance_diff2 > deviance_diff + 2*df_diff2
## [1] FALSE

Hence, the fitted model is ln miu = -9.48926 + 0.02315x1 - 0.01464x2 + 0.38222x3 + 1.24221x4 + 1.43651x5 + 1.22865x6 + 0.20237x7 + 2.18778x8 + 0.70999x9 + 1.20100x10 + 0.46862x11 - 0.24773x12 + 1.35384x13. (Note that the regressor xi where i=1,2,3… is equivalent to the names of variables according to the summary of the model.).

Also, it is proven that the deviance is NOT reduced more than twice the change in degrees of freedom. Hence, the removal of regressors are not playing a significant role. Therefore, the model will perform better if it includes all regressors and variables.