Problem Set

This week, we’ll work out some Taylor Series expansions of popular functions.

  • \(f(x)=\frac { 1 }{ (1-x) }\)
  • \(f(x)={ e }^{ x }\)
  • \(f(x)=ln(1+x)\)

For each function, only consider its valid ranges as indicated in the notes when you are computing the Taylor Series expansion. Please submit your assignment as a R-Markdown document.

Solution

The Taylor Series of f(x), centered at c is

\(f(c)=\sum _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(c) }{ n! } { (x-c) }^{ n } }\)

Setting c = 0 gives the Maclaurin Series of f(x):

\(\sum _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } { x }^{ n } }\)

Part 1

\(f(x)=\frac { 1 }{ (1-x) }\)

If centered at c=0,

\(f'(0)=\frac { 1 }{ { (1-x) }^{ 2 } }=1\)
\(f''(0)=\frac { 2 }{ { (1-x) }^{ 3 } } =2\)
\(f'''(0)=\frac { 6 }{ { (1-x) }^{ 4 } } =6\)
\(f''''(0)=\frac { 24 }{ { (1-x) }^{ 5 } } =24\)

So,

\(\sum _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } { x }^{ n } } =\frac { 1 }{ (1-0) } +\frac { \frac { 1 }{ { (1-0) }^{ 2 } } }{ 1! } { x }^{ 1 }+\frac { \frac { 2 }{ { (1-0) }^{ 3 } } }{ 2! } { x }^{ 2 }+\frac { \frac { 6 }{ { (1-0) }^{ 4 } } }{ 3! } { x }^{ 3 }+\frac { \frac { 24 }{ { (1-0) }^{ 5 } } }{ 4! } { x }^{ 4 }+...\)

\(\sum _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } { x }^{ n } } =1+{ x }^{ 1 }+{ x }^{ 2 }+{ x }^{ 3 }+{ x }^{ 4 }+...\)

\(\sum _{ n=0 }^{ \infty }{ { x }^{ n } }\)

Example of using the taylor() function from the pracma package in R to calculate the first 4 coefficients of the Taylor series through numerical differentiation:

library(pracma)

f <- function(x) 1/(1-x)
p <- taylor(f, 0, 4)
p
## [1] 1.000029 1.000003 1.000000 1.000000 1.000000

Part 2

\(f(x)={ e }^{ x }\)

If centered at c=0,

\(f'(0)={ e }^{ x }=1\)
\(f''(0)={ e }^{ x }=1\)
\(f'''(0)={ e }^{ x }=1\)
\(f''''(0)={ e }^{ x }=1\)

So,

\(\sum _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } { x }^{ n } } ={ e }^{ 0 }+\frac { { e }^{ 1 } }{ 1! } { x }^{ 1 }+\frac { { e }^{ 2 } }{ 2! } { x }^{ 2 }+\frac { { e }^{ 3 } }{ 3! } { x }^{ 3 }+\frac { { e }^{ 4 } }{ 4! } { x }^{ 4 }+...\)

\(\sum _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } { x }^{ n } } =1+\frac { 1 }{ 1! } { x }^{ 1 }+\frac { 1 }{ 2! } { x }^{ 2 }+\frac { 1 }{ 3! } { x }^{ 3 }+\frac { 1 }{ 4! } { x }^{ 4 }+...\)

\(\sum _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } { x }^{ n } }\)

Example of using the taylor() function from the pracma package in R to calculate the first 4 coefficients of the Taylor series through numerical differentiation:

library(pracma)

f <- function(x) exp(x)
p <- taylor(f, 0, 4)
p
## [1] 0.04166657 0.16666673 0.50000000 1.00000000 1.00000000

Part 3

\(f(x)=ln(1+x)\)

If centered at c=0,

\(\frac { d }{ dx } \left[ ln(x+1 \right] =\frac { 1 }{ x+1 } \frac { d }{ dx } [x+1]\)
\(\frac { d }{ dx } \left[ ln(x+1 \right] =\frac { \frac { d }{ dx } [x]+\frac { d }{ dx } [1] }{ x+1 }\)
\(\frac { d }{ dx } \left[ ln(x+1 \right] =\frac { 1+0 }{ x+1 }\)
\(\frac { d }{ dx } \left[ ln(x+1 \right] =\frac { 1 }{ x+1 }\)

\(f'(0)=\frac { 1 }{ x+1 } =1\)
\(f''(0)=-\frac { 1 }{ { (1+x) }^{ 2 } } =-1\)
\(f'''(0)=\frac { 2 }{ { (1+x) }^{ 3 } } =2\)
\(f''''(0)=-\frac { 6 }{ { (1+x) }^{ 4 } } =-6\)

So,

\(\sum _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } { x }^{ n } } =ln(1+0)+\frac { \frac { 1 }{ 0+1 } }{ 1! } { x }^{ 1 }+\frac { -\frac { 1 }{ { (1+0) }^{ 2 } } }{ 2! } { x }^{ 2 }+\frac { \frac { 2 }{ { (1+0) }^{ 3 } } }{ 3! } { x }^{ 3 }+\frac { -\frac { 6 }{ { (1+0) }^{ 4 } } }{ 4! } { x }^{ 4 }+...\)

\(\sum _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } { x }^{ n } } =0+\frac { 1 }{ 1! } { x }^{ 1 }+\frac { -1 }{ 2! } { x }^{ 2 }+\frac { 2 }{ 3! } { x }^{ 3 }+\frac { -6 }{ 4! } { x }^{ 4 }+...\)

\(\sum _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } { x }^{ n } } =x-\frac { 1 }{ 2 } { x }^{ 2 }+\frac { 1 }{ 3 } { x }^{ 3 }-\frac { 1 }{ 4 } { x }^{ 4 }+...\)

\(\sum _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } { x }^{ n } } =\sum _{ n=0 }^{ \infty }{ { (-1) }^{ n+1 }\frac { 1 }{ n } } { x }^{ n }\)

Example of using the taylor() function from the pracma package in R to calculate the first 4 coefficients of the Taylor series through numerical differentiation:

library(pracma)

f <- function(x) log(1+x)
p <- taylor(f, 0, 4)
p
## [1] -0.2500044  0.3333339 -0.5000000  1.0000000  0.0000000