Datos de los 4 muestreos

rm(list=ls())
library(readxl)
GENERAL <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "GENERAL")
Muestreo1<- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "MUESTREO 1")
Muestreo2 <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "MUESTREO 2")
Muestreo3 <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "MUESTREO 3")
Muestreo4 <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "MUESTREO 4")
tratamiento1 <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "TRATAMIENT 1")
tratamiento2 <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "TRATAMIENTO 2")
tratamiento3 <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "TRATAMIENTO 3")
tratamiento4 <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "TRATAMIENTO 4")

TEMPERATURA

Determinación de la variable en los 4 muestreos

ANOVA

m1 <- aov(Temp~Trat, data = Muestreo1)
m2 <- aov(Temp~Trat, data = Muestreo2)
m3 <- aov(Temp~Trat, data = Muestreo3)
m4 <- aov(Temp~Trat, data = Muestreo4)
anova(m1)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 42.477  14.159  13.123 0.0004262 ***
## Residuals 12 12.948   1.079                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m2)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value Pr(>F)  
## Trat       3 11.107  3.7025  4.4386 0.0256 *
## Residuals 12 10.010  0.8342                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m3)
## Analysis of Variance Table
## 
## Response: Temp
##           Df  Sum Sq Mean Sq F value   Pr(>F)   
## Trat       3 10.9269  3.6423  6.1322 0.009024 **
## Residuals 12  7.1275  0.5940                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m4)
## Analysis of Variance Table
## 
## Response: Temp
##           Df  Sum Sq Mean Sq F value   Pr(>F)   
## Trat       3 20.2119  6.7373  9.0814 0.002058 **
## Residuals 12  8.9025  0.7419                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(m1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m1)
## W = 0.98373, p-value = 0.9862
shapiro.test(resid(m2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m2)
## W = 0.96575, p-value = 0.766
shapiro.test(resid(m3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m3)
## W = 0.93912, p-value = 0.3384
shapiro.test(resid(m4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m4)
## W = 0.94762, p-value = 0.4529

En todos los muestreos se puede observar normalidad en los datos de temperatura.

*Homogeneidad de varianzas**

library(car)
## Loading required package: carData
library(carData)
leveneTest(Muestreo1$Temp~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  2.0138 0.1658
##       12
leveneTest(Muestreo2$Temp~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.7285 0.5545
##       12
leveneTest(Muestreo3$Temp~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3    0.83 0.5026
##       12
leveneTest(Muestreo4$Temp~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.7169 0.5607
##       12

En temperatura, todos los datos representan varianzas homogeneas

Prueba de tukey

library(agricolae)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
m1tukey <-HSD.test(Muestreo1$Temp,Muestreo1$Trat, 12, 1.079, alpha = 0.05)
m2tukey <-HSD.test(Muestreo2$Temp,Muestreo2$Trat, 12, 0.8342, alpha = 0.05)
m3tukey <-HSD.test(Muestreo3$Temp,Muestreo3$Trat, 12, 0.5940, alpha = 0.05)
m4tukey <-HSD.test(Muestreo4$Temp,Muestreo4$Trat, 12, 0.7419, alpha = 0.05)
m1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     1.079 12 19.88125 5.224768 2.180678
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$Temp       std r  Min  Max    Q25   Q50    Q75
## T1         18.225 0.6800735 4 17.3 18.9 17.975 18.35 18.600
## T2         21.950 0.9882645 4 20.9 23.1 21.275 21.90 22.575
## T3         18.350 0.7416198 4 17.4 19.2 18.075 18.40 18.675
## T4         21.000 1.5253415 4 19.3 22.8 20.050 20.95 21.900
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$Temp groups
## T2         21.950      a
## T4         21.000      a
## T3         18.350      b
## T1         18.225      b
## 
## attr(,"class")
## [1] "group"
m2tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    0.8342 12 17.9875 5.077668 1.917414
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$Temp       std r  Min  Max    Q25   Q50    Q75
## T1         17.225 1.2553220 4 16.0 18.9 16.450 17.00 17.775
## T2         19.225 0.5188127 4 18.6 19.7 18.900 19.30 19.625
## T3         17.225 0.9215024 4 16.3 18.5 16.825 17.05 17.450
## T4         18.275 0.8015610 4 17.1 18.9 18.150 18.55 18.675
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$Temp groups
## T2         19.225      a
## T4         18.275     ab
## T1         17.225      b
## T3         17.225      b
## 
## attr(,"class")
## [1] "group"
m3tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     0.594 12 17.76875 4.337469 1.617983
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$Temp       std r  Min  Max    Q25   Q50    Q75
## T1         17.400 0.4546061 4 16.8 17.9 17.250 17.45 17.600
## T2         19.175 0.9464847 4 18.4 20.5 18.550 18.90 19.525
## T3         17.450 0.7767453 4 16.5 18.4 17.175 17.45 17.725
## T4         17.050 0.8185353 4 16.3 17.9 16.375 17.00 17.675
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$Temp groups
## T2         19.175      a
## T3         17.450      b
## T1         17.400      b
## T4         17.050      b
## 
## attr(,"class")
## [1] "group"
m4tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    0.7419 12 17.06875 5.046276 1.808229
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$Temp       std r  Min  Max    Q25   Q50   Q75
## T1         16.625 0.8845903 4 15.9 17.9 16.125 16.35 16.85
## T2         19.000 0.7023769 4 18.3 19.7 18.450 19.00 19.55
## T3         16.225 1.1412712 4 15.1 17.7 15.475 16.05 16.80
## T4         16.425 0.6238322 4 15.6 17.0 16.125 16.55 16.85
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$Temp groups
## T2         19.000      a
## T1         16.625      b
## T4         16.425      b
## T3         16.225      b
## 
## attr(,"class")
## [1] "group"

**Representacion de las diferencias estadisticas dentro de la variable temperatura en los cuatro muestreos

Estomas abiertos

Determinación de la variable en los 4 muestreos

ANOVA

n1 <- aov(E_Abierto~Trat, data = Muestreo1)
n2 <- aov(E_Abierto~Trat, data = Muestreo2)
n3 <- aov(E_Abierto~Trat, data = Muestreo3)
n4 <- aov(E_Abierto~Trat, data = Muestreo4)
anova(n1)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 111.19  37.063  21.434 4.127e-05 ***
## Residuals 12  20.75   1.729                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(n2)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 102.19  34.062  10.973 0.0009358 ***
## Residuals 12  37.25   3.104                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(n3)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 307.69 102.562  57.918 2.072e-07 ***
## Residuals 12  21.25   1.771                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(n4)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## Trat       3 770.19 256.729  18.311 8.96e-05 ***
## Residuals 12 168.25  14.021                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(n1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(n1)
## W = 0.92462, p-value = 0.2001
shapiro.test(resid(n2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(n2)
## W = 0.95152, p-value = 0.5142
shapiro.test(resid(n3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(n3)
## W = 0.95234, p-value = 0.5277
shapiro.test(resid(n4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(n4)
## W = 0.96748, p-value = 0.7963

Todos los datos cumplen los supuestos

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$E_Abierto~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.4333 0.2817
##       12
leveneTest(Muestreo2$E_Abierto~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.0468 0.4074
##       12
leveneTest(Muestreo3$E_Abierto~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.1134 0.9506
##       12
leveneTest(Muestreo4$E_Abierto~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3   4.602 0.02297 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

todos los supuestos se cumplen (casi)

Pueba de tukey

library(agricolae)
library(dplyr)
n1tukey <-HSD.test(Muestreo1$E_Abierto,Muestreo1$Trat, 12, 1.729, alpha = 0.05)
n2tukey <-HSD.test(Muestreo2$E_Abierto,Muestreo2$Trat, 12, 3.104, alpha = 0.05)
n3tukey <-HSD.test(Muestreo3$E_Abierto,Muestreo3$Trat, 12, 1.771, alpha = 0.05)
n4tukey <-HSD.test(Muestreo4$E_Abierto,Muestreo4$Trat, 12, 14.021, alpha = 0.05)
n1tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##     1.729 12 6.5625 20.03679 2.760439
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$E_Abierto       std r Min Max  Q25  Q50   Q75
## T1               10.00 2.1602469 4   7  12 9.25 10.5 11.25
## T2                4.00 0.8164966 4   3   5 3.75  4.0  4.25
## T3                8.25 0.9574271 4   7   9 7.75  8.5  9.00
## T4                4.00 0.8164966 4   3   5 3.75  4.0  4.25
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$E_Abierto groups
## T1               10.00      a
## T3                8.25      a
## T2                4.00      b
## T4                4.00      b
## 
## attr(,"class")
## [1] "group"
n2tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     3.104 12 10.6875 16.48484 3.698636
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$E_Abierto       std r Min Max   Q25  Q50   Q75
## T1               10.75 1.7078251 4   9  13  9.75 10.5 11.50
## T2                6.75 0.9574271 4   6   8  6.00  6.5  7.25
## T3               11.50 1.2909944 4  10  13 10.75 11.5 12.25
## T4               13.75 2.6299556 4  10  16 13.00 14.5 15.25
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$E_Abierto groups
## T4               13.75      a
## T3               11.50      a
## T1               10.75      a
## T2                6.75      b
## 
## attr(,"class")
## [1] "group"
n3tukey
## $statistics
##   MSerror Df    Mean      CV      MSD
##     1.771 12 14.0625 9.46339 2.793766
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$E_Abierto      std r Min Max   Q25  Q50   Q75
## T1               17.25 1.500000 4  15  18 17.25 18.0 18.00
## T2                6.50 1.290994 4   5   8  5.75  6.5  7.25
## T3               16.25 1.258306 4  15  18 15.75 16.0 16.50
## T4               16.25 1.258306 4  15  18 15.75 16.0 16.50
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$E_Abierto groups
## T1               17.25      a
## T3               16.25      a
## T4               16.25      a
## T2                6.50      b
## 
## attr(,"class")
## [1] "group"
n4tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    14.021 12 19.1875 19.51511 7.860863
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$E_Abierto       std r Min Max   Q25  Q50   Q75
## T1               22.00 4.5460606 4  18  28 18.75 21.0 24.25
## T2                7.25 0.9574271 4   6   8  6.75  7.5  8.00
## T3               24.25 4.9916597 4  19  29 20.50 24.5 28.25
## T4               23.25 3.0956959 4  19  26 22.00 24.0 25.25
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$E_Abierto groups
## T3               24.25      a
## T4               23.25      a
## T1               22.00      a
## T2                7.25      b
## 
## attr(,"class")
## [1] "group"

Estomas cerrados

Determinación de la variable en los 4 muestreos

ANOVA

o1 <- aov(E_Cerrado~Trat, data = Muestreo1)
o2 <- aov(E_Cerrado~Trat, data = Muestreo2)
o3 <- aov(E_Cerrado~Trat, data = Muestreo3)
o4 <- aov(E_Cerrado~Trat, data = Muestreo4)
anova(o1)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## Trat       3  74.25  24.750  4.8293 0.01981 *
## Residuals 12  61.50   5.125                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(o2)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df Sum Sq Mean Sq F value Pr(>F)
## Trat       3   31.5  10.500  0.4675 0.7104
## Residuals 12  269.5  22.458
anova(o3)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## Trat       3 39.187 13.0625  7.9367 0.003504 **
## Residuals 12 19.750  1.6458                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(o4)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Trat       3  94.187  31.396  2.0228 0.1645
## Residuals 12 186.250  15.521

Prueba de normalidad de shapiro

shapiro.test(resid(o1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(o1)
## W = 0.97137, p-value = 0.8603
shapiro.test(resid(o2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(o2)
## W = 0.94747, p-value = 0.4508
shapiro.test(resid(o3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(o3)
## W = 0.89228, p-value = 0.06054
shapiro.test(resid(o4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(o4)
## W = 0.9495, p-value = 0.4819

se cumplen todos los supuestos

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$E_Cerrado~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3   0.873  0.482
##       12
leveneTest(Muestreo2$E_Cerrado~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.0725 0.3974
##       12
leveneTest(Muestreo3$E_Cerrado~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3    0.55 0.6577
##       12
leveneTest(Muestreo4$E_Cerrado~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.2875 0.8336
##       12

Se cumplen todos los supuestos

Pueba de tukey

library(agricolae)
library(dplyr)
o1tukey <-HSD.test(Muestreo1$E_Cerrado,Muestreo1$Trat, 12, 5.125, alpha = 0.05)
o2tukey <-HSD.test(Muestreo2$E_Cerrado,Muestreo2$Trat, 12, 22.458, alpha = 0.05)
o3tukey <-HSD.test(Muestreo3$E_Cerrado,Muestreo3$Trat, 12, 1.6458, alpha = 0.05)
o4tukey <-HSD.test(Muestreo4$E_Cerrado,Muestreo4$Trat, 12, 15.521, alpha = 0.05)
o1tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##     5.125 12 29.375 7.706711 4.752561
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$E_Cerrado      std r Min Max   Q25  Q50   Q75
## T1               26.25 3.403430 4  23  31 24.50 25.5 27.25
## T2               31.50 1.290994 4  30  33 30.75 31.5 32.25
## T3               28.50 2.081666 4  26  31 27.50 28.5 29.50
## T4               31.25 1.707825 4  29  33 30.50 31.5 32.25
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$E_Cerrado groups
## T2               31.50      a
## T4               31.25      a
## T3               28.50     ab
## T1               26.25      b
## 
## attr(,"class")
## [1] "group"
o2tukey
## $statistics
##   MSerror Df  Mean       CV      MSD
##    22.458 12 26.75 17.71584 9.948699
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$E_Cerrado      std r Min Max   Q25  Q50   Q75
## T1               27.25 4.787136 4  22  33 24.25 27.0 30.00
## T2               26.00 3.741657 4  22  31 24.25 25.5 27.25
## T3               28.75 4.031129 4  23  32 27.50 30.0 31.25
## T4               25.00 6.055301 4  19  32 20.50 24.5 29.00
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$E_Cerrado groups
## T3               28.75      a
## T1               27.25      a
## T2               26.00      a
## T4               25.00      a
## 
## attr(,"class")
## [1] "group"
o3tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    1.6458 12 25.0625 5.118753 2.693204
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$E_Cerrado      std r Min Max   Q25  Q50   Q75
## T1               24.50 1.290994 4  23  26 23.75 24.5 25.25
## T2               22.75 1.707825 4  21  25 21.75 22.5 23.50
## T3               26.50 1.000000 4  25  27 26.50 27.0 27.00
## T4               26.50 1.000000 4  25  27 26.50 27.0 27.00
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$E_Cerrado groups
## T3               26.50      a
## T4               26.50      a
## T1               24.50     ab
## T2               22.75      b
## 
## attr(,"class")
## [1] "group"
o4tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    15.521 12 24.8125 15.87776 8.270668
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$E_Cerrado      std r Min Max   Q25  Q50   Q75
## T1               23.75 4.645787 4  19  30 21.25 23.0 25.50
## T2               29.00 4.320494 4  23  33 27.50 30.0 31.50
## T3               23.25 3.862210 4  21  29 21.00 21.5 23.75
## T4               23.25 2.629956 4  21  27 21.75 22.5 24.00
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$E_Cerrado groups
## T2               29.00      a
## T1               23.75      a
## T3               23.25      a
## T4               23.25      a
## 
## attr(,"class")
## [1] "group"

Estomas totales

Determinación de la variable en los 4 muestreos

ANOVA

p1 <- aov(E_Total~Trat, data = Muestreo1)
p2 <- aov(E_Total~Trat, data = Muestreo2)
p3 <- aov(E_Total~Trat, data = Muestreo3)
p4 <- aov(E_Total~Trat, data = Muestreo4)
anova(p1)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Trat       3  5.6875  1.8958   0.728 0.5547
## Residuals 12 31.2500  2.6042
anova(p2)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df Sum Sq Mean Sq F value Pr(>F)
## Trat       3 127.69  42.562  1.2153 0.3464
## Residuals 12 420.25  35.021
anova(p3)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 522.75 174.250  48.628 5.466e-07 ***
## Residuals 12  43.00   3.583                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(p4)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## Trat       3  326.5 108.833  4.3899 0.02645 *
## Residuals 12  297.5  24.792                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(p1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(p1)
## W = 0.92768, p-value = 0.224
shapiro.test(resid(p2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(p2)
## W = 0.96291, p-value = 0.7147
shapiro.test(resid(p3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(p3)
## W = 0.94324, p-value = 0.3906
shapiro.test(resid(p4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(p4)
## W = 0.94194, p-value = 0.3735

Se cumplen los supuestos

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$E_Total~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.1652 0.9178
##       12
leveneTest(Muestreo2$E_Total~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.7303 0.5535
##       12
leveneTest(Muestreo3$E_Total~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.6168 0.6172
##       12
leveneTest(Muestreo4$E_Total~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  2.1701 0.1446
##       12

Se cumplen todos los supuestos

Pueba de tukey

library(agricolae)
library(dplyr)
p1tukey <-HSD.test(Muestreo1$E_Total,Muestreo1$Trat, 12, 2.6042, alpha = 0.05)
p2tukey <-HSD.test(Muestreo2$E_Total,Muestreo2$Trat, 12, 35.021, alpha = 0.05)
p3tukey <-HSD.test(Muestreo3$E_Total,Muestreo3$Trat, 12, 3.583, alpha = 0.05)
p4tukey <-HSD.test(Muestreo4$E_Total,Muestreo4$Trat, 12, 24.792, alpha = 0.05)
p1tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    2.6042 12 35.9375 4.490444 3.387801
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$E_Total      std r Min Max   Q25  Q50   Q75
## T1             36.25 1.500000 4  35  38 35.00 36.0 37.25
## T2             35.50 1.290994 4  34  37 34.75 35.5 36.25
## T3             36.75 1.892969 4  34  38 36.25 37.5 38.00
## T4             35.25 1.707825 4  33  37 34.50 35.5 36.25
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$E_Total groups
## T3             36.75      a
## T1             36.25      a
## T2             35.50      a
## T4             35.25      a
## 
## attr(,"class")
## [1] "group"
p2tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    35.021 12 37.4375 15.80729 12.42353
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$E_Total      std r Min Max   Q25  Q50   Q75
## T1             38.00 6.324555 4  32  46 33.50 37.0 41.50
## T2             32.75 4.573474 4  28  39 31.00 32.0 33.75
## T3             40.25 4.787136 4  34  44 37.75 41.5 44.00
## T4             38.75 7.500000 4  29  46 35.00 40.0 43.75
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$E_Total groups
## T3             40.25      a
## T4             38.75      a
## T1             38.00      a
## T2             32.75      a
## 
## attr(,"class")
## [1] "group"
p3tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##     3.583 12 39.125 4.838036 3.973783
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$E_Total      std r Min Max   Q25  Q50   Q75
## T1             41.75 2.629956 4  38  44 41.00 42.5 43.25
## T2             29.25 1.258306 4  28  31 28.75 29.0 29.50
## T3             42.75 1.707825 4  41  45 41.75 42.5 43.50
## T4             42.75 1.707825 4  41  45 41.75 42.5 43.50
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$E_Total groups
## T3             42.75      a
## T4             42.75      a
## T1             41.75      a
## T2             29.25      b
## 
## attr(,"class")
## [1] "group"
p4tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##    24.792 12   44 11.31626 10.45289
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$E_Total      std r Min Max   Q25  Q50   Q75
## T1             45.75 3.947573 4  40  49 45.25 47.0 47.50
## T2             36.25 4.112988 4  31  41 34.75 36.5 38.00
## T3             47.50 7.937254 4  40  58 42.25 46.0 51.25
## T4             46.50 1.914854 4  44  48 45.50 47.0 48.00
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$E_Total groups
## T3             47.50      a
## T4             46.50     ab
## T1             45.75     ab
## T2             36.25      b
## 
## attr(,"class")
## [1] "group"

Contenido relativo de clorofilas

Determinación de la variable en los 4 muestreos

ANOVA

q1 <- aov(CRC~Trat, data = Muestreo1)
q2 <- aov(CRC~Trat, data = Muestreo2)
q3 <- aov(CRC~Trat, data = Muestreo3)
q4 <- aov(CRC~Trat, data = Muestreo4)
anova(q1)
## Analysis of Variance Table
## 
## Response: CRC
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 319.07 106.358   126.8 2.366e-09 ***
## Residuals 12  10.07   0.839                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(q2)
## Analysis of Variance Table
## 
## Response: CRC
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 563.60  187.87  34.987 3.266e-06 ***
## Residuals 12  64.44    5.37                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(q3)
## Analysis of Variance Table
## 
## Response: CRC
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## Trat       3 353.15 117.715   44.47 8.93e-07 ***
## Residuals 12  31.77   2.647                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(q4)
## Analysis of Variance Table
## 
## Response: CRC
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 299.502  99.834  74.434 5.045e-08 ***
## Residuals 12  16.095   1.341                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(q1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q1)
## W = 0.94647, p-value = 0.4359
shapiro.test(resid(q2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q2)
## W = 0.95547, p-value = 0.581
shapiro.test(resid(q3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q3)
## W = 0.97622, p-value = 0.9265
shapiro.test(resid(q4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q4)
## W = 0.96439, p-value = 0.7416

Se cumplen todos los supuestos

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$CRC~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.9071 0.4664
##       12
leveneTest(Muestreo2$CRC~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.2515 0.3346
##       12
leveneTest(Muestreo3$CRC~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.4953 0.6923
##       12
leveneTest(Muestreo4$CRC~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.9169 0.1807
##       12

Se cumplen todos los supuestos

Pueba de tukey

library(agricolae)
library(dplyr)
q1tukey <-HSD.test(Muestreo1$CRC,Muestreo1$Trat, 12, 0.839, alpha = 0.05)
q2tukey <-HSD.test(Muestreo2$CRC,Muestreo2$Trat, 12, 5.37, alpha = 0.05)
q3tukey <-HSD.test(Muestreo3$CRC,Muestreo3$Trat, 12, 2.647, alpha = 0.05)
q4tukey <-HSD.test(Muestreo4$CRC,Muestreo4$Trat, 12, 1.341, alpha = 0.05)
q1tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     0.839 12 29.6875 3.085371 1.922922
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$CRC       std r  Min  Max    Q25   Q50    Q75
## T1        34.750 0.7852813 4 33.8 35.7 34.400 34.75 35.100
## T2        24.700 0.6683313 4 23.8 25.3 24.400 24.85 25.150
## T3        33.475 1.3793114 4 31.5 34.6 33.075 33.90 34.300
## T4        25.825 0.6238322 4 25.2 26.5 25.350 25.80 26.275
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$CRC groups
## T1        34.750      a
## T3        33.475      a
## T4        25.825      b
## T2        24.700      b
## 
## attr(,"class")
## [1] "group"
q2tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##      5.37 12 36.6375 6.325011 4.864832
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$CRC      std r  Min  Max    Q25   Q50    Q75
## T1        42.250 2.489310 4 39.7 45.5 40.750 41.90 43.400
## T2        26.650 2.145538 4 25.1 29.7 25.175 25.90 27.375
## T3        38.625 3.017035 4 34.9 41.5 36.850 39.05 40.825
## T4        39.025 1.255322 4 37.5 40.4 38.325 39.10 39.800
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$CRC groups
## T1        42.250      a
## T4        39.025      a
## T3        38.625      a
## T2        26.650      b
## 
## attr(,"class")
## [1] "group"
q3tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##     2.647 12 30.875 5.269507 3.415527
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$CRC      std r  Min  Max    Q25   Q50    Q75
## T1        34.550 1.438749 4 32.9 35.9 33.575 34.70 35.675
## T2        22.975 1.936276 4 20.2 24.4 22.375 23.65 24.250
## T3        34.300 1.009950 4 33.0 35.1 33.750 34.55 35.100
## T4        31.675 1.936276 4 30.1 34.5 30.775 31.05 31.950
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$CRC groups
## T1        34.550      a
## T3        34.300      a
## T4        31.675      a
## T2        22.975      b
## 
## attr(,"class")
## [1] "group"
q4tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     1.341 12 26.9375 4.298898 2.431057
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$CRC       std r  Min  Max    Q25   Q50    Q75
## T1        30.575 1.1295279 4 28.9 31.3 30.400 31.05 31.225
## T2        19.550 0.8185353 4 18.5 20.5 19.325 19.60 19.825
## T3        28.950 1.7058722 4 27.0 30.9 27.900 28.95 30.000
## T4        28.675 0.7135592 4 27.9 29.5 28.200 28.65 29.125
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$CRC groups
## T1        30.575      a
## T3        28.950      a
## T4        28.675      a
## T2        19.550      b
## 
## attr(,"class")
## [1] "group"

VARIABLES ASOCIADAS AL ESTADO HIDRICO

Contenido Relativo de agua

Determinación de la variable en los 4 muestreos

ANOVA

r1 <- aov(CRA~Trat, data = Muestreo1)
r2 <- aov(CRA~Trat, data = Muestreo2)
r3 <- aov(CRA~Trat, data = Muestreo3)
r4 <- aov(CRA~Trat, data = Muestreo4)
anova(r1)
## Analysis of Variance Table
## 
## Response: CRA
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 760.15 253.383  16.477 0.0001486 ***
## Residuals 12 184.53  15.378                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(r2)
## Analysis of Variance Table
## 
## Response: CRA
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 1072.24  357.41  22.171 3.485e-05 ***
## Residuals 12  193.45   16.12                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(r3)
## Analysis of Variance Table
## 
## Response: CRA
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 2655.73  885.24  25.945 1.568e-05 ***
## Residuals 12  409.44   34.12                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(r4)
## Analysis of Variance Table
## 
## Response: CRA
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 2941.79  980.60  112.58 4.715e-09 ***
## Residuals 12  104.53    8.71                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(r1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r1)
## W = 0.91972, p-value = 0.1669
shapiro.test(resid(r2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r2)
## W = 0.96131, p-value = 0.6856
shapiro.test(resid(r3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r3)
## W = 0.98513, p-value = 0.9914
shapiro.test(resid(r4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r4)
## W = 0.95345, p-value = 0.5462

Se cumplen todos los supuestos

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$CRA~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  2.6384 0.09733 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Muestreo2$CRA~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3   0.047 0.9858
##       12
leveneTest(Muestreo3$CRA~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.9474 0.4485
##       12
leveneTest(Muestreo4$CRA~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.6976 0.2204
##       12

Se cumplen todos los supuestos

Pueba de tukey

library(agricolae)
library(dplyr)
r1tukey <-HSD.test(Muestreo1$CRA,Muestreo1$Trat, 12, 15.378, alpha = 0.05)
r2tukey <-HSD.test(Muestreo2$CRA,Muestreo2$Trat, 12, 16.12, alpha = 0.05)
r3tukey <-HSD.test(Muestreo3$CRA,Muestreo3$Trat, 12, 34.12, alpha = 0.05)
r4tukey <-HSD.test(Muestreo4$CRA,Muestreo4$Trat, 12, 8.71, alpha = 0.05)
r1tukey
## $statistics
##   MSerror Df     Mean       CV     MSD
##    15.378 12 76.08813 5.153865 8.23248
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$CRA      std r      Min      Max      Q25      Q50      Q75
## T1      84.20468 3.542397 4 80.47337 87.86127 81.59375 84.24203 86.85296
## T2      65.56335 5.423975 4 60.59322 71.42857 61.14134 65.11580 69.53782
## T3      79.58223 3.087446 4 75.37688 82.60870 78.42755 80.17166 81.32633
## T4      75.00228 3.163968 4 71.17904 78.57143 73.27945 75.12933 76.85216
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$CRA groups
## T1      84.20468      a
## T3      79.58223     ab
## T4      75.00228      b
## T2      65.56335      c
## 
## attr(,"class")
## [1] "group"
r2tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     16.12 12 79.77192 5.033064 8.428752
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$CRA      std r      Min      Max      Q25      Q50      Q75
## T1      88.14420 3.192775 4 85.31469 91.78082 85.54100 87.74065 90.34385
## T2      66.88609 4.913944 4 60.91371 72.92818 65.09545 66.85124 68.64188
## T3      85.32531 3.705073 4 81.76101 89.50617 82.45948 85.01704 87.88287
## T4      78.73208 4.051680 4 72.95918 82.12291 77.51399 79.92311 81.14119
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$CRA groups
## T1      88.14420      a
## T3      85.32531     ab
## T4      78.73208      b
## T2      66.88609      c
## 
## attr(,"class")
## [1] "group"
r3tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     34.12 12 82.18952 7.107028 12.26268
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$CRA      std r      Min      Max      Q25      Q50      Q75
## T1      92.14515 6.904737 4 82.78146 99.31507 89.97017 93.24203 95.41700
## T2      60.34528 7.479434 4 54.27350 69.94536 54.47747 58.58114 64.44896
## T3      91.04734 3.621355 4 88.23529 96.32353 89.02311 89.81527 91.83950
## T4      85.22032 4.444089 4 80.85106 91.11111 82.45766 84.45956 87.22222
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$CRA groups
## T1      92.14515      a
## T3      91.04734      a
## T4      85.22032      a
## T2      60.34528      b
## 
## attr(,"class")
## [1] "group"
r4tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      8.71 12 83.70869 3.525645 6.195692
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$CRA      std r      Min      Max      Q25      Q50      Q75
## T1      89.81746 1.372111 4 88.46154 91.66667 89.01879 89.57083 90.36950
## T2      60.29217 4.664368 4 54.16667 65.21739 58.32840 60.89230 62.85607
## T3      92.45510 1.390754 4 91.04478 94.26752 91.59681 92.25405 93.11233
## T4      92.27002 3.044487 4 88.19444 95.52239 91.27938 92.68162 93.67226
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$CRA groups
## T3      92.45510      a
## T4      92.27002      a
## T1      89.81746      a
## T2      60.29217      b
## 
## attr(,"class")
## [1] "group"

Perdida de electrolitos

Determinación de la variable en el muestreo 4

ANOVA

s4 <- aov(`% PE`~Trat, data = Muestreo4)
anova(s4)
## Analysis of Variance Table
## 
## Response: % PE
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 2889.92  963.31  127.38 2.305e-09 ***
## Residuals 12   90.75    7.56                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(s4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(s4)
## W = 0.81811, p-value = 0.004787

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo4$`% PE`~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.1694 0.06376 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pueba de tukey

library(agricolae)
library(dplyr)
s4tukey <-HSD.test(Muestreo4$`% PE`,Muestreo4$Trat, 12, 7.56, alpha = 0.05)
s4tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      7.56 12 21.68116 12.68173 5.772203
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$`% PE`      std r      Min      Max      Q25      Q50      Q75
## T1         14.01317 0.579645 4 13.19290 14.46908 13.81387 14.19535 14.39465
## T2         44.93670 5.214482 4 39.73974 52.13675 42.43720 43.93515 46.43465
## T3         13.05812 1.101852 4 11.60896 14.20765 12.58578 13.20793 13.68026
## T4         14.71663 1.228119 4 13.78601 16.50485 14.00039 14.28784 15.00408
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$`% PE` groups
## T2         44.93670      a
## T4         14.71663      b
## T1         14.01317      b
## T3         13.05812      b
## 
## attr(,"class")
## [1] "group"

Densidad estomatica de abiertos/totales

ANOVA

y1 <- aov(densidad_estomatica~Trat, data = Muestreo1)
y2 <- aov(densidad_estomatica~Trat, data = Muestreo2)
y3 <- aov(densidad_estomatica~Trat, data = Muestreo3)
y4 <- aov(densidad_estomatica~Trat, data = Muestreo4)
anova(y1)
## Analysis of Variance Table
## 
## Response: densidad_estomatica
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 819.08 273.027  17.571 0.0001093 ***
## Residuals 12 186.46  15.539                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(y2)
## Analysis of Variance Table
## 
## Response: densidad_estomatica
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 457.87 152.624  14.022 0.0003154 ***
## Residuals 12 130.62  10.885                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(y3)
## Analysis of Variance Table
## 
## Response: densidad_estomatica
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 880.50 293.499  40.142 1.559e-06 ***
## Residuals 12  87.74   7.312                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(y4)
## Analysis of Variance Table
## 
## Response: densidad_estomatica
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 2607.25  869.08  23.957 2.356e-05 ***
## Residuals 12  435.32   36.28                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(y1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(y1)
## W = 0.91197, p-value = 0.1252
shapiro.test(resid(y2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(y2)
## W = 0.94194, p-value = 0.3735
shapiro.test(resid(y3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(y3)
## W = 0.96831, p-value = 0.8106
shapiro.test(resid(y4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(y4)
## W = 0.97646, p-value = 0.9292

Homogeneidad de varianzas

library(car)
library(carData)
leveneTest(Muestreo1$densidad_estomatica~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.6954 0.2208
##       12
leveneTest(Muestreo2$densidad_estomatica~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.6494 0.2304
##       12
leveneTest(Muestreo3$densidad_estomatica~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  5.3333 0.01444 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Muestreo4$densidad_estomatica~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.8234 0.5058
##       12

Pueba de tukey

library(agricolae)
library(dplyr)
y1tukey <-HSD.test(Muestreo1$densidad_estomatica,Muestreo1$Trat, 12, 15.539, alpha = 0.05)
y2tukey <-HSD.test(Muestreo2$densidad_estomatica,Muestreo2$Trat, 12, 10.885, alpha = 0.05)
y3tukey <-HSD.test(Muestreo3$densidad_estomatica,Muestreo3$Trat, 12, 7.312, alpha = 0.05)
y4tukey <-HSD.test(Muestreo4$densidad_estomatica,Muestreo4$Trat, 12, 36.28, alpha = 0.05)
y1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    15.539 12 18.21217 21.64461 8.275462
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$densidad_estomatica      std r       Min      Max      Q25
## T1                      27.75198 6.691758 4 18.421053 34.28571 26.03383
## T2                      11.25779 2.259444 4  8.823529 14.28571 10.31399
## T3                      22.48975 2.734203 4 18.421053 24.32432 22.25232
## T4                      11.34916 2.189521 4  8.333333 13.51351 10.65476
##         Q50      Q75
## T1 29.15058 30.86873
## T2 10.96096 11.90476
## T3 23.60681 23.84424
## T4 11.77489 12.46929
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$densidad_estomatica groups
## T1                      27.75198      a
## T3                      22.48975      a
## T4                      11.34916      b
## T2                      11.25779      b
## 
## attr(,"class")
## [1] "group"
y2tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    10.885 12 28.36903 11.62973 6.926199
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$densidad_estomatica      std r      Min      Max      Q25      Q50
## T1                      28.37036 2.055154 4 26.47059 31.25000 27.24265 27.88043
## T2                      20.64160 1.382671 4 18.75000 21.87500 20.07212 20.97070
## T3                      28.70304 2.912797 4 25.64103 32.35294 26.86480 28.40909
## T4                      35.76113 5.377610 4 30.43478 43.24324 33.47076 34.68324
##         Q75
## T1 29.00815
## T2 21.54018
## T3 30.24733
## T4 36.97360
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$densidad_estomatica groups
## T4                      35.76113      a
## T3                      28.70304      b
## T1                      28.37036      b
## T2                      20.64160      c
## 
## attr(,"class")
## [1] "group"
y3tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     7.312 12 34.87078 7.754547 5.676738
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$densidad_estomatica      std r      Min      Max      Q25      Q50
## T1                      41.27510 1.440437 4 39.47368 42.85714 40.55024 41.38478
## T2                      22.23403 4.461596 4 17.85714 27.58621 18.98041 21.74638
## T3                      37.98699 1.905990 4 35.71429 40.00000 36.83555 38.11685
## T4                      37.98699 1.905990 4 35.71429 40.00000 36.83555 38.11685
##         Q75
## T1 42.10963
## T2 25.00000
## T3 39.26829
## T4 39.26829
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$densidad_estomatica groups
## T1                      41.27510      a
## T3                      37.98699      a
## T4                      37.98699      a
## T2                      22.23403      b
## 
## attr(,"class")
## [1] "group"
y4tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     36.28 12 42.28579 14.24424 12.64487
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$densidad_estomatica      std r      Min      Max      Q25      Q50
## T1                      48.07154 8.735282 4 38.77551 59.57447 43.44388 46.96809
## T2                      20.24483 4.014089 4 16.21622 25.80645 18.63739 19.47832
## T3                      50.87002 4.304834 4 47.50000 57.14286 48.50291 49.41860
## T4                      49.95677 5.844472 4 41.30435 54.16667 49.38859 52.17803
##         Q75
## T1 51.59574
## T2 21.08576
## T3 51.78571
## T4 52.74621
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$densidad_estomatica groups
## T3                      50.87002      a
## T4                      49.95677      a
## T1                      48.07154      a
## T2                      20.24483      b
## 
## attr(,"class")
## [1] "group"

DIFERENCIAS ESTADÍSTICA ENTRE MUESTREOS

Temp

Determinación de la variable en los 4 muestreos

ANOVA

g1 <- aov(Temp~muestreo, data = tratamiento1)
g2 <- aov(Temp~muestreo, data = tratamiento2)
g3 <- aov(Temp~muestreo, data = tratamiento3)
g4 <- aov(Temp~muestreo, data = tratamiento4)
anova(g1)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value Pr(>F)
## muestreo   3 5.2319 1.74396  2.3042 0.1288
## Residuals 12 9.0825 0.75687
anova(g2)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 23.913  7.9708    12.1 0.0006118 ***
## Residuals 12  7.905  0.6588                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(g3)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## muestreo   3 9.1425 3.04750  3.6884 0.04322 *
## Residuals 12 9.9150 0.82625                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(g4)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 49.273 16.4242  16.309 0.0001561 ***
## Residuals 12 12.085  1.0071                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(g1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(g1)
## W = 0.96606, p-value = 0.7715
shapiro.test(resid(g2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(g2)
## W = 0.93232, p-value = 0.2652
shapiro.test(resid(g3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(g3)
## W = 0.93695, p-value = 0.3133
shapiro.test(resid(g4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(g4)
## W = 0.95666, p-value = 0.6018

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(tratamiento1$Temp~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.2219 0.3442
##       12
leveneTest(tratamiento2$Temp~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.8676 0.4846
##       12
leveneTest(tratamiento3$Temp~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.4654 0.7117
##       12
leveneTest(tratamiento4$Temp~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  2.3569 0.1231
##       12

Prueba de tukey

library(agricolae)
library(dplyr)
g1tukey <-HSD.test(tratamiento1$Temp,tratamiento1$muestreo, 12, 0.75687, alpha = 0.05)
g2tukey <-HSD.test(tratamiento2$Temp,tratamiento2$muestreo, 12, 0.6588, alpha = 0.05)
g3tukey <-HSD.test(tratamiento3$Temp,tratamiento3$muestreo, 12, 0.82625, alpha = 0.05)
g4tukey <-HSD.test(tratamiento4$Temp,tratamiento4$muestreo, 12, 1.0071, alpha = 0.05)
g1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##   0.75687 12 17.36875 5.008897 1.826381
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$Temp       std r  Min  Max    Q25   Q50    Q75
## M1            18.225 0.6800735 4 17.3 18.9 17.975 18.35 18.600
## M2            17.225 1.2553220 4 16.0 18.9 16.450 17.00 17.775
## M3            17.400 0.4546061 4 16.8 17.9 17.250 17.45 17.600
## M4            16.625 0.8845903 4 15.9 17.9 16.125 16.35 16.850
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$Temp groups
## M1            18.225      a
## M3            17.400      a
## M2            17.225      a
## M4            16.625      a
## 
## attr(,"class")
## [1] "group"
g2tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    0.6588 12 19.8375 4.091569 1.703953
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$Temp       std r  Min  Max    Q25  Q50    Q75
## M1            21.950 0.9882645 4 20.9 23.1 21.275 21.9 22.575
## M2            19.225 0.5188127 4 18.6 19.7 18.900 19.3 19.625
## M3            19.175 0.9464847 4 18.4 20.5 18.550 18.9 19.525
## M4            19.000 0.7023769 4 18.3 19.7 18.450 19.0 19.550
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$Temp groups
## M1            21.950      a
## M2            19.225      b
## M3            19.175      b
## M4            19.000      b
## 
## attr(,"class")
## [1] "group"
g3tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##   0.82625 12 17.3125 5.250443 1.908255
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$Temp       std r  Min  Max    Q25   Q50    Q75
## M1            18.350 0.7416198 4 17.4 19.2 18.075 18.40 18.675
## M2            17.225 0.9215024 4 16.3 18.5 16.825 17.05 17.450
## M3            17.450 0.7767453 4 16.5 18.4 17.175 17.45 17.725
## M4            16.225 1.1412712 4 15.1 17.7 15.475 16.05 16.800
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$Temp groups
## M1            18.350      a
## M3            17.450     ab
## M2            17.225     ab
## M4            16.225      b
## 
## attr(,"class")
## [1] "group"
g4tukey
## $statistics
##   MSerror Df    Mean       CV     MSD
##    1.0071 12 18.1875 5.517766 2.10677
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$Temp       std r  Min  Max    Q25   Q50    Q75
## M1            21.000 1.5253415 4 19.3 22.8 20.050 20.95 21.900
## M2            18.275 0.8015610 4 17.1 18.9 18.150 18.55 18.675
## M3            17.050 0.8185353 4 16.3 17.9 16.375 17.00 17.675
## M4            16.425 0.6238322 4 15.6 17.0 16.125 16.55 16.850
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$Temp groups
## M1            21.000      a
## M2            18.275      b
## M3            17.050      b
## M4            16.425      b
## 
## attr(,"class")
## [1] "group"

ESTMAS ABIERTOS

Determinación de la variable en los 4 muestreos

ANOVA

h1 <- aov(E_Abierto~muestreo, data = tratamiento1)
h2 <- aov(E_Abierto~muestreo, data = tratamiento2)
h3 <- aov(E_Abierto~muestreo, data = tratamiento3)
h4 <- aov(E_Abierto~muestreo, data = tratamiento4)
anova(h1)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3  388.5 129.500  16.984 0.0001287 ***
## Residuals 12   91.5   7.625                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(h2)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value  Pr(>F)   
## muestreo   3  25.25  8.4167    8.08 0.00327 **
## Residuals 12  12.50  1.0417                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(h3)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 579.69 193.229  26.576 1.385e-05 ***
## Residuals 12  87.25   7.271                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(h4)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## muestreo   3 761.19 253.729  54.129 3.02e-07 ***
## Residuals 12  56.25   4.688                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(h1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(h1)
## W = 0.94048, p-value = 0.3549
shapiro.test(resid(h2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(h2)
## W = 0.9698, p-value = 0.8354
shapiro.test(resid(h3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(h3)
## W = 0.96429, p-value = 0.7398
shapiro.test(resid(h4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(h4)
## W = 0.9155, p-value = 0.1428

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(tratamiento1$E_Abierto~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  2.6901 0.09329 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento2$E_Abierto~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.6667 0.5885
##       12
leveneTest(tratamiento3$E_Abierto~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value    Pr(>F)    
## group  3  24.121 2.276e-05 ***
##       12                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento4$E_Abierto~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.8182 0.1975
##       12

Prueba de tukey

library(agricolae)
library(dplyr)
h1tukey <-HSD.test(tratamiento1$E_Abierto,tratamiento1$muestreo, 12, 7.625, alpha = 0.05)
h2tukey <-HSD.test(tratamiento2$E_Abierto,tratamiento2$muestreo, 12, 1.0417, alpha = 0.05)
h3tukey <-HSD.test(tratamiento3$E_Abierto,tratamiento3$muestreo, 12, 7.271, alpha = 0.05)
h4tukey <-HSD.test(tratamiento4$E_Abierto,tratamiento4$muestreo, 12, 4.688, alpha = 0.05)
h1tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##     7.625 12   15 18.40894 5.796965
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$E_Abierto      std r Min Max   Q25  Q50   Q75
## M1                  10.00 2.160247 4   7  12  9.25 10.5 11.25
## M2                  10.75 1.707825 4   9  13  9.75 10.5 11.50
## M3                  17.25 1.500000 4  15  18 17.25 18.0 18.00
## M4                  22.00 4.546061 4  18  28 18.75 21.0 24.25
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$E_Abierto groups
## M4                  22.00      a
## M3                  17.25      a
## M2                  10.75      b
## M1                  10.00      b
## 
## attr(,"class")
## [1] "group"
h2tukey
## $statistics
##   MSerror Df  Mean       CV      MSD
##    1.0417 12 6.125 16.66346 2.142654
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$E_Abierto       std r Min Max  Q25 Q50  Q75
## M1                   4.00 0.8164966 4   3   5 3.75 4.0 4.25
## M2                   6.75 0.9574271 4   6   8 6.00 6.5 7.25
## M3                   6.50 1.2909944 4   5   8 5.75 6.5 7.25
## M4                   7.25 0.9574271 4   6   8 6.75 7.5 8.00
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$E_Abierto groups
## M4                   7.25      a
## M2                   6.75      a
## M3                   6.50      a
## M1                   4.00      b
## 
## attr(,"class")
## [1] "group"
h3tukey
## $statistics
##   MSerror Df    Mean       CV    MSD
##     7.271 12 15.0625 17.90194 5.6608
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$E_Abierto       std r Min Max   Q25  Q50   Q75
## M1                   8.25 0.9574271 4   7   9  7.75  8.5  9.00
## M2                  11.50 1.2909944 4  10  13 10.75 11.5 12.25
## M3                  16.25 1.2583057 4  15  18 15.75 16.0 16.50
## M4                  24.25 4.9916597 4  19  29 20.50 24.5 28.25
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$E_Abierto groups
## M4                  24.25      a
## M3                  16.25      b
## M2                  11.50     bc
## M1                   8.25      c
## 
## attr(,"class")
## [1] "group"
h4tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     4.688 12 14.3125 15.12789 4.545425
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$E_Abierto       std r Min Max   Q25  Q50   Q75
## M1                   4.00 0.8164966 4   3   5  3.75  4.0  4.25
## M2                  13.75 2.6299556 4  10  16 13.00 14.5 15.25
## M3                  16.25 1.2583057 4  15  18 15.75 16.0 16.50
## M4                  23.25 3.0956959 4  19  26 22.00 24.0 25.25
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$E_Abierto groups
## M4                  23.25      a
## M3                  16.25      b
## M2                  13.75      b
## M1                   4.00      c
## 
## attr(,"class")
## [1] "group"

ESTOMAS CERRADOS

Determinación de la variable en los 4 muestreos

ANOVA

i1 <- aov(E_Cerrado~muestreo, data = tratamiento1)
i2 <- aov(E_Cerrado~muestreo, data = tratamiento2)
i3 <- aov(E_Cerrado~muestreo, data = tratamiento3)
i4 <- aov(E_Cerrado~muestreo, data = tratamiento4)
anova(i1)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df  Sum Sq Mean Sq F value Pr(>F)
## muestreo   3  30.687  10.229  0.7085 0.5652
## Residuals 12 173.250  14.438
anova(i2)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## muestreo   3 171.69  57.229  6.1454 0.008957 **
## Residuals 12 111.75   9.312                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(i3)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## muestreo   3   77.5  25.833  2.8311 0.08323 .
## Residuals 12  109.5   9.125                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(i4)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## muestreo   3  141.5  47.167  3.9719 0.03528 *
## Residuals 12  142.5  11.875                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(i1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(i1)
## W = 0.94964, p-value = 0.484
shapiro.test(resid(i2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(i2)
## W = 0.97047, p-value = 0.8461
shapiro.test(resid(i3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(i3)
## W = 0.96991, p-value = 0.8371
shapiro.test(resid(i4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(i4)
## W = 0.97428, p-value = 0.9023

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(tratamiento1$E_Cerrado~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.4462 0.2783
##       12
leveneTest(tratamiento2$E_Cerrado~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.1049 0.3851
##       12
leveneTest(tratamiento3$E_Cerrado~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.6654  0.227
##       12
leveneTest(tratamiento4$E_Cerrado~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)   
## group  3  8.7868 0.00235 **
##       12                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de tukey

library(agricolae)
library(dplyr)
i1tukey <-HSD.test(tratamiento1$E_Cerrado,tratamiento1$muestreo, 12, 14.438, alpha = 0.05)
i2tukey <-HSD.test(tratamiento2$E_Cerrado,tratamiento2$muestreo, 12, 9.312, alpha = 0.05)
i3tukey <-HSD.test(tratamiento3$E_Cerrado,tratamiento3$muestreo, 12, 9.125, alpha = 0.05)
i4tukey <-HSD.test(tratamiento4$E_Cerrado,tratamiento4$muestreo, 12, 11.875, alpha = 0.05)
i1tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    14.438 12 25.4375 14.93754 7.976902
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$E_Cerrado      std r Min Max   Q25  Q50   Q75
## M1                  26.25 3.403430 4  23  31 24.50 25.5 27.25
## M2                  27.25 4.787136 4  22  33 24.25 27.0 30.00
## M3                  24.50 1.290994 4  23  26 23.75 24.5 25.25
## M4                  23.75 4.645787 4  19  30 21.25 23.0 25.50
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$E_Cerrado groups
## M2                  27.25      a
## M1                  26.25      a
## M3                  24.50      a
## M4                  23.75      a
## 
## attr(,"class")
## [1] "group"
i2tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     9.312 12 27.3125 11.17275 6.406225
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$E_Cerrado      std r Min Max   Q25  Q50   Q75
## M1                  31.50 1.290994 4  30  33 30.75 31.5 32.25
## M2                  26.00 3.741657 4  22  31 24.25 25.5 27.25
## M3                  22.75 1.707825 4  21  25 21.75 22.5 23.50
## M4                  29.00 4.320494 4  23  33 27.50 30.0 31.50
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$E_Cerrado groups
## M1                  31.50      a
## M4                  29.00     ab
## M2                  26.00     ab
## M3                  22.75      b
## 
## attr(,"class")
## [1] "group"
i3tukey
## $statistics
##   MSerror Df  Mean       CV      MSD
##     9.125 12 26.75 11.29257 6.341576
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$E_Cerrado      std r Min Max  Q25  Q50   Q75
## M1                  28.50 2.081666 4  26  31 27.5 28.5 29.50
## M2                  28.75 4.031129 4  23  32 27.5 30.0 31.25
## M3                  26.50 1.000000 4  25  27 26.5 27.0 27.00
## M4                  23.25 3.862210 4  21  29 21.0 21.5 23.75
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$E_Cerrado groups
## M2                  28.75      a
## M1                  28.50      a
## M3                  26.50      a
## M4                  23.25      a
## 
## attr(,"class")
## [1] "group"
i4tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##    11.875 12 26.5 13.00382 7.234317
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$E_Cerrado      std r Min Max   Q25  Q50   Q75
## M1                  31.25 1.707825 4  29  33 30.50 31.5 32.25
## M2                  25.00 6.055301 4  19  32 20.50 24.5 29.00
## M3                  26.50 1.000000 4  25  27 26.50 27.0 27.00
## M4                  23.25 2.629956 4  21  27 21.75 22.5 24.00
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$E_Cerrado groups
## M1                  31.25      a
## M3                  26.50     ab
## M2                  25.00     ab
## M4                  23.25      b
## 
## attr(,"class")
## [1] "group"

ESTOMAS TOTALES

Determinación de la variable en los 4 muestreos

ANOVA

j1 <- aov(E_Total~muestreo, data = tratamiento1)
j2 <- aov(E_Total~muestreo, data = tratamiento2)
j3 <- aov(E_Total~muestreo, data = tratamiento3)
j4 <- aov(E_Total~muestreo, data = tratamiento4)
anova(j1)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## muestreo   3 213.69  71.229  4.4003 0.02627 *
## Residuals 12 194.25  16.188                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(j2)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## muestreo   3 120.69  40.229  3.9168 0.03668 *
## Residuals 12 123.25  10.271                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(j3)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## muestreo   3 245.19  81.729  3.5374 0.04828 *
## Residuals 12 277.25  23.104                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(j4)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## muestreo   3 285.19  95.063  5.7833 0.01103 *
## Residuals 12 197.25  16.438                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(j1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(j1)
## W = 0.93615, p-value = 0.3045
shapiro.test(resid(j2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(j2)
## W = 0.92068, p-value = 0.173
shapiro.test(resid(j3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(j3)
## W = 0.95597, p-value = 0.5897
shapiro.test(resid(j4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(j4)
## W = 0.9117, p-value = 0.124

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(tratamiento1$E_Total~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.1682 0.06382 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento2$E_Total~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3   1.392 0.2928
##       12
leveneTest(tratamiento3$E_Total~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.8566 0.03829 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento4$E_Total~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)  
## group  3  5.3966 0.0139 *
##       12                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de tukey

library(agricolae)
library(dplyr)
j1tukey <-HSD.test(tratamiento1$E_Total,tratamiento1$muestreo, 12, 16.188, alpha = 0.05)
j2tukey <-HSD.test(tratamiento2$E_Total,tratamiento2$muestreo, 12, 10.271, alpha = 0.05)
j3tukey <-HSD.test(tratamiento3$E_Total,tratamiento3$muestreo, 12, 23.104, alpha = 0.05)
j4tukey <-HSD.test(tratamiento4$E_Total,tratamiento4$muestreo, 12, 16.438, alpha = 0.05)
j1tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    16.188 12 40.4375 9.949753 8.446511
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$E_Total      std r Min Max   Q25  Q50   Q75
## M1                36.25 1.500000 4  35  38 35.00 36.0 37.25
## M2                38.00 6.324555 4  32  46 33.50 37.0 41.50
## M3                41.75 2.629956 4  38  44 41.00 42.5 43.25
## M4                45.75 3.947573 4  40  49 45.25 47.0 47.50
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$E_Total groups
## M4                45.75      a
## M3                41.75     ab
## M2                38.00     ab
## M1                36.25      b
## 
## attr(,"class")
## [1] "group"
j2tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    10.271 12 33.4375 9.584568 6.728017
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$E_Total      std r Min Max   Q25  Q50   Q75
## M1                35.50 1.290994 4  34  37 34.75 35.5 36.25
## M2                32.75 4.573474 4  28  39 31.00 32.0 33.75
## M3                29.25 1.258306 4  28  31 28.75 29.0 29.50
## M4                36.25 4.112988 4  31  41 34.75 36.5 38.00
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$E_Total groups
## M4                36.25      a
## M1                35.50     ab
## M2                32.75     ab
## M3                29.25      b
## 
## attr(,"class")
## [1] "group"
j3tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    23.104 12 41.8125 11.49575 10.09077
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$E_Total      std r Min Max   Q25  Q50   Q75
## M1                36.75 1.892969 4  34  38 36.25 37.5 38.00
## M2                40.25 4.787136 4  34  44 37.75 41.5 44.00
## M3                42.75 1.707825 4  41  45 41.75 42.5 43.50
## M4                47.50 7.937254 4  40  58 42.25 46.0 51.25
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$E_Total groups
## M4                47.50      a
## M3                42.75     ab
## M2                40.25     ab
## M1                36.75      b
## 
## attr(,"class")
## [1] "group"
j4tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    16.438 12 40.8125 9.934163 8.511483
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$E_Total      std r Min Max   Q25  Q50   Q75
## M1                35.25 1.707825 4  33  37 34.50 35.5 36.25
## M2                38.75 7.500000 4  29  46 35.00 40.0 43.75
## M3                42.75 1.707825 4  41  45 41.75 42.5 43.50
## M4                46.50 1.914854 4  44  48 45.50 47.0 48.00
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$E_Total groups
## M4                46.50      a
## M3                42.75     ab
## M2                38.75     ab
## M1                35.25      b
## 
## attr(,"class")
## [1] "group"

CRC

Determinación de la variable en los 4 muestreos

ANOVA

k1 <- aov(CRC~muestreo, data = tratamiento1)
k2 <- aov(CRC~muestreo, data = tratamiento2)
k3 <- aov(CRC~muestreo, data = tratamiento3)
k4 <- aov(CRC~muestreo, data = tratamiento4)
anova(k1)
## Analysis of Variance Table
## 
## Response: CRC
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 285.117  95.039   37.42 2.278e-06 ***
## Residuals 12  30.477   2.540                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(k2)
## Analysis of Variance Table
## 
## Response: CRC
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 108.947  36.316  15.341 0.0002081 ***
## Residuals 12  28.407   2.367                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(k3)
## Analysis of Variance Table
## 
## Response: CRC
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 188.612  62.871  16.838 0.0001341 ***
## Residuals 12  44.805   3.734                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(k4)
## Analysis of Variance Table
## 
## Response: CRC
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 386.73 128.910  82.856 2.742e-08 ***
## Residuals 12  18.67   1.556                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(k1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(k1)
## W = 0.96927, p-value = 0.8267
shapiro.test(resid(k2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(k2)
## W = 0.97525, p-value = 0.9149
shapiro.test(resid(k3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(k3)
## W = 0.97164, p-value = 0.8644
shapiro.test(resid(k4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(k4)
## W = 0.92649, p-value = 0.2144

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(tratamiento1$CRC~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3   2.153 0.1467
##       12
leveneTest(tratamiento2$CRC~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.5488 0.2528
##       12
leveneTest(tratamiento3$CRC~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.3626 0.05502 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento4$CRC~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.8337 0.1947
##       12

Prueba de tukey

library(agricolae)
library(dplyr)
k1tukey <-HSD.test(tratamiento1$CRC,tratamiento1$muestreo, 12, 2.540, alpha = 0.05)
k2tukey <-HSD.test(tratamiento2$CRC,tratamiento2$muestreo, 12, 2.367, alpha = 0.05)
k3tukey <-HSD.test(tratamiento3$CRC,tratamiento3$muestreo, 12, 3.734, alpha = 0.05)
k4tukey <-HSD.test(tratamiento4$CRC,tratamiento4$muestreo, 12, 1.556, alpha = 0.05)
k1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      2.54 12 35.53125 4.485454 3.345782
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$CRC       std r  Min  Max    Q25   Q50    Q75
## M1           34.750 0.7852813 4 33.8 35.7 34.400 34.75 35.100
## M2           42.250 2.4893105 4 39.7 45.5 40.750 41.90 43.400
## M3           34.550 1.4387495 4 32.9 35.9 33.575 34.70 35.675
## M4           30.575 1.1295279 4 28.9 31.3 30.400 31.05 31.225
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$CRC groups
## M2           42.250      a
## M1           34.750      b
## M3           34.550      b
## M4           30.575      c
## 
## attr(,"class")
## [1] "group"
k2tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     2.367 12 23.46875 6.555551 3.229831
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$CRC       std r  Min  Max    Q25   Q50    Q75
## M1           24.700 0.6683313 4 23.8 25.3 24.400 24.85 25.150
## M2           26.650 2.1455380 4 25.1 29.7 25.175 25.90 27.375
## M3           22.975 1.9362765 4 20.2 24.4 22.375 23.65 24.250
## M4           19.550 0.8185353 4 18.5 20.5 19.325 19.60 19.825
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$CRC groups
## M2           26.650      a
## M1           24.700     ab
## M3           22.975      b
## M4           19.550      c
## 
## attr(,"class")
## [1] "group"
k3tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     3.734 12 33.8375 5.710694 4.056653
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$CRC      std r  Min  Max    Q25   Q50    Q75
## M1           33.475 1.379311 4 31.5 34.6 33.075 33.90 34.300
## M2           38.625 3.017035 4 34.9 41.5 36.850 39.05 40.825
## M3           34.300 1.009950 4 33.0 35.1 33.750 34.55 35.100
## M4           28.950 1.705872 4 27.0 30.9 27.900 28.95 30.000
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$CRC groups
## M2           38.625      a
## M3           34.300      b
## M1           33.475      b
## M4           28.950      c
## 
## attr(,"class")
## [1] "group"
k4tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##     1.556 12 31.3 3.985295 2.618699
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$CRC       std r  Min  Max    Q25   Q50    Q75
## M1           25.825 0.6238322 4 25.2 26.5 25.350 25.80 26.275
## M2           39.025 1.2553220 4 37.5 40.4 38.325 39.10 39.800
## M3           31.675 1.9362765 4 30.1 34.5 30.775 31.05 31.950
## M4           28.675 0.7135592 4 27.9 29.5 28.200 28.65 29.125
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$CRC groups
## M2           39.025      a
## M3           31.675      b
## M4           28.675      c
## M1           25.825      d
## 
## attr(,"class")
## [1] "group"

CRA

Determinación de la variable en los 4 muestreos

ANOVA

l1 <- aov(CRA~muestreo, data = tratamiento1)
l2 <- aov(CRA~muestreo, data = tratamiento2)
l3 <- aov(CRA~muestreo, data = tratamiento3)
l4 <- aov(CRA~muestreo, data = tratamiento4)
anova(l1)
## Analysis of Variance Table
## 
## Response: CRA
##           Df Sum Sq Mean Sq F value Pr(>F)
## muestreo   3  134.3  44.767  2.4767 0.1113
## Residuals 12  216.9  18.075
anova(l2)
## Analysis of Variance Table
## 
## Response: CRA
##           Df Sum Sq Mean Sq F value Pr(>F)
## muestreo   3 143.03  47.676  1.4528 0.2765
## Residuals 12 393.79  32.816
anova(l3)
## Analysis of Variance Table
## 
## Response: CRA
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 415.70 138.567  14.469 0.0002731 ***
## Residuals 12 114.92   9.577                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(l4)
## Analysis of Variance Table
## 
## Response: CRA
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 691.57 230.522  16.631 0.0001422 ***
## Residuals 12 166.34  13.861                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(l1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(l1)
## W = 0.96006, p-value = 0.6628
shapiro.test(resid(l2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(l2)
## W = 0.91781, p-value = 0.1555
shapiro.test(resid(l3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(l3)
## W = 0.97318, p-value = 0.8871
shapiro.test(resid(l4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(l4)
## W = 0.96501, p-value = 0.7527

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(tratamiento1$CRA~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.8046 0.1999
##       12
leveneTest(tratamiento2$CRA~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.9515 0.4467
##       12
leveneTest(tratamiento3$CRA~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.4667  0.273
##       12
leveneTest(tratamiento4$CRA~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.2921 0.8303
##       12

Prueba de tukey

library(agricolae)
library(dplyr)
l1tukey <-HSD.test(tratamiento1$CRA,tratamiento1$muestreo, 12, 18.075, alpha = 0.05)
l2tukey <-HSD.test(tratamiento2$CRA,tratamiento2$muestreo, 12, 32.816, alpha = 0.05)
l3tukey <-HSD.test(tratamiento3$CRA,tratamiento3$muestreo, 12, 9.577, alpha = 0.05)
l4tukey <-HSD.test(tratamiento4$CRA,tratamiento4$muestreo, 12, 13.861, alpha = 0.05)
l1tukey
## $statistics
##   MSerror Df     Mean       CV     MSD
##    18.075 12 88.57787 4.799698 8.92524
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$CRA      std r      Min      Max      Q25      Q50      Q75
## M1         84.20468 3.542397 4 80.47337 87.86127 81.59375 84.24203 86.85296
## M2         88.14420 3.192775 4 85.31469 91.78082 85.54100 87.74065 90.34385
## M3         92.14515 6.904737 4 82.78146 99.31507 89.97017 93.24203 95.41700
## M4         89.81746 1.372111 4 88.46154 91.66667 89.01879 89.57083 90.36950
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$CRA groups
## M3         92.14515      a
## M4         89.81746      a
## M2         88.14420      a
## M1         84.20468      a
## 
## attr(,"class")
## [1] "group"
l2tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    32.816 12 63.27172 9.053847 12.02607
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$CRA      std r      Min      Max      Q25      Q50      Q75
## M1         65.56335 5.423975 4 60.59322 71.42857 61.14134 65.11580 69.53782
## M2         66.88609 4.913944 4 60.91371 72.92818 65.09545 66.85124 68.64188
## M3         60.34528 7.479434 4 54.27350 69.94536 54.47747 58.58114 64.44896
## M4         60.29217 4.664368 4 54.16667 65.21739 58.32840 60.89230 62.85607
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$CRA groups
## M2         66.88609      a
## M1         65.56335      a
## M3         60.34528      a
## M4         60.29217      a
## 
## attr(,"class")
## [1] "group"
l3tukey
## $statistics
##   MSerror Df     Mean      CV     MSD
##     9.577 12 87.10249 3.55291 6.49674
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$CRA      std r      Min      Max      Q25      Q50      Q75
## M1         79.58223 3.087446 4 75.37688 82.60870 78.42755 80.17166 81.32633
## M2         85.32531 3.705073 4 81.76101 89.50617 82.45948 85.01704 87.88287
## M3         91.04734 3.621355 4 88.23529 96.32353 89.02311 89.81527 91.83950
## M4         92.45510 1.390754 4 91.04478 94.26752 91.59681 92.25405 93.11233
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$CRA groups
## M4         92.45510      a
## M3         91.04734     ab
## M2         85.32531     bc
## M1         79.58223      c
## 
## attr(,"class")
## [1] "group"
l4tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    13.861 12 82.80618 4.496085 7.815882
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$CRA      std r      Min      Max      Q25      Q50      Q75
## M1         75.00228 3.163968 4 71.17904 78.57143 73.27945 75.12933 76.85216
## M2         78.73208 4.051680 4 72.95918 82.12291 77.51399 79.92311 81.14119
## M3         85.22032 4.444089 4 80.85106 91.11111 82.45766 84.45956 87.22222
## M4         92.27002 3.044487 4 88.19444 95.52239 91.27938 92.68162 93.67226
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$CRA groups
## M4         92.27002      a
## M3         85.22032     ab
## M2         78.73208     bc
## M1         75.00228      c
## 
## attr(,"class")
## [1] "group"

DENSIDAD DE ESTOMAS ABIERTOS

Determinación de la variable en los 4 muestreos

ANOVA

q1 <- aov(densidad_estomática~muestreo, data = tratamiento1)
q2 <- aov(densidad_estomática~muestreo, data = tratamiento2)
q3 <- aov(densidad_estomática~muestreo, data = tratamiento3)
q4 <- aov(densidad_estomática~muestreo, data = tratamiento4)
anova(q1)
## Analysis of Variance Table
## 
## Response: densidad_estomática
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 1197.00  399.00  12.529 0.0005243 ***
## Residuals 12  382.15   31.85                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(q2)
## Analysis of Variance Table
## 
## Response: densidad_estomática
##           Df Sum Sq Mean Sq F value  Pr(>F)   
## muestreo   3 295.95  98.650  9.1692 0.00198 **
## Residuals 12 129.11  10.759                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(q3)
## Analysis of Variance Table
## 
## Response: densidad_estomática
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 1827.75  609.25  63.922 1.192e-07 ***
## Residuals 12  114.37    9.53                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(q4)
## Analysis of Variance Table
## 
## Response: densidad_estomática
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 3145.81 1048.60   58.66 1.929e-07 ***
## Residuals 12  214.51   17.88                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(q1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q1)
## W = 0.91952, p-value = 0.1657
shapiro.test(resid(q2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q2)
## W = 0.95362, p-value = 0.5492
shapiro.test(resid(q3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q3)
## W = 0.95935, p-value = 0.65
shapiro.test(resid(q4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q4)
## W = 0.96743, p-value = 0.7954

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(tratamiento1$densidad_estomática~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  2.2978 0.1295
##       12
leveneTest(tratamiento2$densidad_estomática~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  2.1112 0.1522
##       12
leveneTest(tratamiento3$densidad_estomática~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.7489 0.5436
##       12
leveneTest(tratamiento4$densidad_estomática~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.5953 0.2422
##       12

Prueba de tukey

library(agricolae)
library(dplyr)
q1tukey <-HSD.test(tratamiento1$densidad_estomática,tratamiento1$muestreo, 12, 31.85, alpha = 0.05)
q2tukey <-HSD.test(tratamiento2$densidad_estomática,tratamiento2$muestreo, 12, 10.759, alpha = 0.05)
q3tukey <-HSD.test(tratamiento3$densidad_estomática,tratamiento3$muestreo, 12, 9.53, alpha = 0.05)
q4tukey <-HSD.test(tratamiento4$densidad_estomática,tratamiento4$muestreo, 12, 17.88, alpha = 0.05)
q1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     31.85 12 36.36724 15.51831 11.84774
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$densidad_estomática      std r      Min      Max      Q25
## M1                         27.75198 6.691758 4 18.42105 34.28571 26.03383
## M2                         28.37036 2.055154 4 26.47059 31.25000 27.24265
## M3                         41.27510 1.440437 4 39.47368 42.85714 40.55024
## M4                         48.07154 8.735282 4 38.77551 59.57447 43.44388
##         Q50      Q75
## M1 29.15058 30.86873
## M2 27.88043 29.00815
## M3 41.38478 42.10963
## M4 46.96809 51.59574
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$densidad_estomática groups
## M4                         48.07154      a
## M3                         41.27510      a
## M2                         28.37036      b
## M1                         27.75198      b
## 
## attr(,"class")
## [1] "group"
q2tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    10.759 12 18.59456 17.64006 6.885995
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$densidad_estomática      std r       Min      Max      Q25
## M1                         11.25779 2.259444 4  8.823529 14.28571 10.31399
## M2                         20.64160 1.382671 4 18.750000 21.87500 20.07212
## M3                         22.23403 4.461596 4 17.857143 27.58621 18.98041
## M4                         20.24483 4.014089 4 16.216216 25.80645 18.63739
##         Q50      Q75
## M1 10.96096 11.90476
## M2 20.97070 21.54018
## M3 21.74638 25.00000
## M4 19.47832 21.08576
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$densidad_estomática groups
## M3                         22.23403      a
## M2                         20.64160      a
## M4                         20.24483      a
## M1                         11.25779      b
## 
## attr(,"class")
## [1] "group"
q3tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      9.53 12 35.01245 8.817063 6.480779
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$densidad_estomática      std r      Min      Max      Q25
## M1                         22.48975 2.734203 4 18.42105 24.32432 22.25232
## M2                         28.70304 2.912797 4 25.64103 32.35294 26.86480
## M3                         37.98699 1.905990 4 35.71429 40.00000 36.83555
## M4                         50.87002 4.304834 4 47.50000 57.14286 48.50291
##         Q50      Q75
## M1 23.60681 23.84424
## M2 28.40909 30.24733
## M3 38.11685 39.26829
## M4 49.41860 51.78571
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$densidad_estomática groups
## M4                         50.87002      a
## M3                         37.98699      b
## M2                         28.70304      c
## M1                         22.48975      c
## 
## attr(,"class")
## [1] "group"
q4tukey
## $statistics
##   MSerror Df     Mean      CV      MSD
##     17.88 12 33.76351 12.5238 8.876965
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$densidad_estomática      std r       Min      Max      Q25
## M1                         11.34916 2.189521 4  8.333333 13.51351 10.65476
## M2                         35.76113 5.377610 4 30.434783 43.24324 33.47076
## M3                         37.98699 1.905990 4 35.714286 40.00000 36.83555
## M4                         49.95677 5.844472 4 41.304348 54.16667 49.38859
##         Q50      Q75
## M1 11.77489 12.46929
## M2 34.68324 36.97360
## M3 38.11685 39.26829
## M4 52.17803 52.74621
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$densidad_estomática groups
## M4                         49.95677      a
## M3                         37.98699      b
## M2                         35.76113      b
## M1                         11.34916      c
## 
## attr(,"class")
## [1] "group"

LONGITUD DE PARTE AEREA

Determinación de la variable en los 4 muestreos

ANOVA

r1 <- aov(PA_Longitud~muestreo, data = tratamiento1)
r2 <- aov(PA_Longitud~muestreo, data = tratamiento2)
r3 <- aov(PA_Longitud~muestreo, data = tratamiento3)
r4 <- aov(PA_Longitud~muestreo, data = tratamiento4)
anova(r1)
## Analysis of Variance Table
## 
## Response: PA_Longitud
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 244.489  81.496  20.303 5.403e-05 ***
## Residuals 12  48.169   4.014                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(r2)
## Analysis of Variance Table
## 
## Response: PA_Longitud
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 68.305 22.7683   55.93 2.517e-07 ***
## Residuals 12  4.885  0.4071                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(r3)
## Analysis of Variance Table
## 
## Response: PA_Longitud
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 294.310  98.103  97.968 1.051e-08 ***
## Residuals 12  12.017   1.001                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(r4)
## Analysis of Variance Table
## 
## Response: PA_Longitud
##           Df  Sum Sq Mean Sq F value   Pr(>F)    
## muestreo   3 200.263  66.754  112.27 4.79e-09 ***
## Residuals 12   7.135   0.595                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(r1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r1)
## W = 0.90173, p-value = 0.08567
shapiro.test(resid(r2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r2)
## W = 0.97115, p-value = 0.8569
shapiro.test(resid(r3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r3)
## W = 0.97286, p-value = 0.8825
shapiro.test(resid(r4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r4)
## W = 0.97505, p-value = 0.9122
library(car)
library(carData)
leveneTest(tratamiento1$PA_Longitud~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value    Pr(>F)    
## group  3  12.355 0.0005578 ***
##       12                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento2$PA_Longitud~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  2.7282 0.09044 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento3$PA_Longitud~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.3332 0.05626 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento4$PA_Longitud~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.9985 0.4268
##       12
library(agricolae)
library(dplyr)
r1tukey <-HSD.test(tratamiento1$PA_Longitud,tratamiento1$muestreo, 12, 4.014, alpha = 0.05)
r2tukey <-HSD.test(tratamiento2$PA_Longitud,tratamiento2$muestreo, 12, 0.4071, alpha = 0.05)
r3tukey <-HSD.test(tratamiento3$PA_Longitud,tratamiento3$muestreo, 12, 1.001, alpha = 0.05)
r4tukey <-HSD.test(tratamiento4$PA_Longitud,tratamiento4$muestreo, 12, 0.595, alpha = 0.05)
r1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     4.014 12 12.68062 15.79967 4.206001
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$PA_Longitud       std r   Min  Max     Q25   Q50    Q75
## M1                   7.5725 0.8942548 4  6.99  8.9  7.0725  7.20  7.700
## M2                  10.4500 3.8336232 4  6.50 15.0  7.7750 10.15 12.825
## M3                  15.1000 0.5291503 4 14.60 15.8 14.7500 15.00 15.350
## M4                  17.6000 0.5291503 4 16.90 18.1 17.3500 17.70 17.950
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$PA_Longitud groups
## M4                  17.6000      a
## M3                  15.1000      a
## M2                  10.4500      b
## M1                   7.5725      b
## 
## attr(,"class")
## [1] "group"
r2tukey
## $statistics
##   MSerror Df  Mean       CV      MSD
##    0.4071 12 8.125 7.852848 1.339465
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$PA_Longitud       std r  Min  Max    Q25   Q50    Q75
## M1                    6.225 0.2362908 4  5.9  6.4  6.125  6.30  6.400
## M2                    6.750 0.4654747 4  6.3  7.2  6.375  6.75  7.125
## M3                    8.000 0.8755950 4  7.2  9.1  7.350  7.85  8.500
## M4                   11.525 0.7675719 4 10.4 12.1 11.375 11.80 11.950
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$PA_Longitud groups
## M4                   11.525      a
## M3                    8.000      b
## M2                    6.750     bc
## M1                    6.225      c
## 
## attr(,"class")
## [1] "group"
r3tukey
## $statistics
##   MSerror Df     Mean       CV     MSD
##     1.001 12 13.29937 7.522909 2.10038
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$PA_Longitud       std r   Min  Max     Q25   Q50    Q75
## M1                   7.3225 0.3022554 4  6.99  7.7  7.1475  7.30  7.475
## M2                  11.6250 1.5840349 4  9.60 13.2 10.8000 11.85 12.675
## M3                  15.4250 0.8539126 4 14.30 16.3 15.0500 15.55 15.925
## M4                  18.8250 0.8220908 4 17.90 19.7 18.2750 18.85 19.400
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$PA_Longitud groups
## M4                  18.8250      a
## M3                  15.4250      b
## M2                  11.6250      c
## M1                   7.3225      d
## 
## attr(,"class")
## [1] "group"
r4tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     0.595 12 11.0125 7.004426 1.619344
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$PA_Longitud       std r  Min  Max    Q25   Q50    Q75
## M1                    6.800 0.3559026 4  6.3  7.1  6.675  6.90  7.025
## M2                    9.625 0.5123475 4  8.9 10.1  9.500  9.75  9.875
## M3                   11.100 0.8793937 4 10.1 12.1 10.550 11.10 11.650
## M4                   16.525 1.1026483 4 15.2 17.9 16.175 16.50 16.850
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$PA_Longitud groups
## M4                   16.525      a
## M3                   11.100      b
## M2                    9.625      b
## M1                    6.800      c
## 
## attr(,"class")
## [1] "group"

ÁREA FOLIAR

Determinación de la variable en los 4 muestreos

ANOVA

s1 <- aov(Area_foliar~muestreo, data = tratamiento1)
s2 <- aov(Area_foliar~muestreo, data = tratamiento2)
s3 <- aov(Area_foliar~muestreo, data = tratamiento3)
s4 <- aov(Area_foliar~muestreo, data = tratamiento4)
anova(s1)
## Analysis of Variance Table
## 
## Response: Area_foliar
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3  36026 12008.8  127.46 2.296e-09 ***
## Residuals 12   1131    94.2                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(s2)
## Analysis of Variance Table
## 
## Response: Area_foliar
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 5716.2 1905.41  37.391 2.288e-06 ***
## Residuals 12  611.5   50.96                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(s3)
## Analysis of Variance Table
## 
## Response: Area_foliar
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3  34921 11640.5  1270.3 2.802e-15 ***
## Residuals 12    110     9.2                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(s4)
## Analysis of Variance Table
## 
## Response: Area_foliar
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 29667.8  9889.3   750.2 6.512e-14 ***
## Residuals 12   158.2    13.2                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(s1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(s1)
## W = 0.80397, p-value = 0.003076
shapiro.test(resid(s2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(s2)
## W = 0.95525, p-value = 0.577
shapiro.test(resid(s3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(s3)
## W = 0.97114, p-value = 0.8567
shapiro.test(resid(s4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(s4)
## W = 0.96601, p-value = 0.7706
library(car)
library(carData)
leveneTest(tratamiento1$Area_foliar~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.9578 0.03563 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento2$Area_foliar~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  5.4839 0.01318 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento3$Area_foliar~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.5735 0.6432
##       12
leveneTest(tratamiento4$Area_foliar~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.0646 0.4004
##       12
library(agricolae)
library(dplyr)
s1tukey <-HSD.test(tratamiento1$Area_foliar,tratamiento1$muestreo, 12, 94.2, alpha = 0.05)
s2tukey <-HSD.test(tratamiento2$Area_foliar,tratamiento2$muestreo, 12, 50.96, alpha = 0.05)
s3tukey <-HSD.test(tratamiento3$Area_foliar,tratamiento3$muestreo, 12, 9.2, alpha = 0.05)
s4tukey <-HSD.test(tratamiento4$Area_foliar,tratamiento4$muestreo, 12, 13.2, alpha = 0.05)
s1tukey
## $statistics
##   MSerror Df     Mean     CV     MSD
##      94.2 12 125.6641 7.7235 20.3754
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$Area_foliar       std r     Min     Max      Q25     Q50
## M1                  66.5740  1.953636 4  64.925  69.223  65.2025  66.074
## M2                  92.7750 18.570115 4  66.700 109.500  86.8000  97.450
## M3                 161.5750  1.447699 4 159.600 162.800 160.9500 161.950
## M4                 181.7325  5.107709 4 174.810 186.170 179.4750 182.975
##         Q75
## M1  67.4455
## M2 103.4250
## M3 162.5750
## M4 185.2325
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$Area_foliar groups
## M4                 181.7325      a
## M3                 161.5750      a
## M2                  92.7750      b
## M1                  66.5740      c
## 
## attr(,"class")
## [1] "group"
s2tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     50.96 12 75.19206 9.493858 14.98634
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$Area_foliar       std r    Min     Max       Q25     Q50
## M1                 52.04325  1.303762 4 50.238  53.351  51.73575  52.292
## M2                 67.30000  4.817330 4 61.200  71.900  64.65000  68.050
## M3                 77.50000 12.451774 4 61.200  88.600  71.17500  80.100
## M4                103.92500  4.887191 4 98.670 109.750 100.72500 103.640
##         Q75
## M1  52.5995
## M2  70.7000
## M3  86.4250
## M4 106.8400
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$Area_foliar groups
## M4                103.92500      a
## M3                 77.50000      b
## M2                 67.30000      b
## M1                 52.04325      c
## 
## attr(,"class")
## [1] "group"
s3tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##       9.2 12 122.7049 2.471906 6.367584
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$Area_foliar      std r     Min     Max       Q25      Q50
## M1                  63.5370 2.607883 4  59.999  66.252  62.73875  63.9485
## M2                  92.5000 3.221801 4  88.600  95.700  90.55000  92.8500
## M3                 154.6750 1.936276 4 151.900 156.300 154.15000 155.2500
## M4                 180.1078 3.965360 4 175.923 185.483 178.48725 179.5125
##          Q75
## M1  64.74675
## M2  94.80000
## M3 155.77500
## M4 181.13300
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$Area_foliar groups
## M4                 180.1078      a
## M3                 154.6750      b
## M2                  92.5000      c
## M1                  63.5370      d
## 
## attr(,"class")
## [1] "group"
s4tukey
## $statistics
##   MSerror Df     Mean      CV      MSD
##      13.2 12 111.0436 3.27185 7.627245
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$Area_foliar      std r     Min     Max       Q25     Q50
## M1                  55.5420 3.746375 4  50.356  58.346  54.01225  56.733
## M2                  85.9750 5.208567 4  81.500  93.300  82.77500  84.550
## M3                 136.1250 1.645955 4 134.300 138.000 135.05000 136.100
## M4                 166.5325 2.975739 4 163.360 169.360 164.32750 166.705
##          Q75
## M1  58.26275
## M2  87.75000
## M3 137.17500
## M4 168.91000
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$Area_foliar groups
## M4                 166.5325      a
## M3                 136.1250      b
## M2                  85.9750      c
## M1                  55.5420      d
## 
## attr(,"class")
## [1] "group"

PESO FRESCO EN HOJAS

Determinación de la variable en los 4 muestreos

ANOVA

t1 <- aov(Hojas_Peso_fresco~muestreo, data = tratamiento1)
t2 <- aov(Hojas_Peso_fresco~muestreo, data = tratamiento2)
t3 <- aov(Hojas_Peso_fresco~muestreo, data = tratamiento3)
t4 <- aov(Hojas_Peso_fresco~muestreo, data = tratamiento4)
anova(t1)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_fresco
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 545.86 181.952  334.46 7.951e-12 ***
## Residuals 12   6.53   0.544                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(t2)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_fresco
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 82.373 27.4577  90.663 1.639e-08 ***
## Residuals 12  3.634  0.3029                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(t3)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_fresco
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## muestreo   3 464.90  154.97  535.06 4.88e-13 ***
## Residuals 12   3.48    0.29                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(t4)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_fresco
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## muestreo   3 441.53 147.177  1150.3 5.07e-15 ***
## Residuals 12   1.54   0.128                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(t1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(t1)
## W = 0.96018, p-value = 0.6651
shapiro.test(resid(t2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(t2)
## W = 0.96431, p-value = 0.7401
shapiro.test(resid(t3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(t3)
## W = 0.96391, p-value = 0.733
shapiro.test(resid(t4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(t4)
## W = 0.96637, p-value = 0.7769
library(car)
library(carData)
leveneTest(tratamiento1$Hojas_Peso_fresco~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.8597 0.1902
##       12
leveneTest(tratamiento2$Hojas_Peso_fresco~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.0203 0.07161 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento3$Hojas_Peso_fresco~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.3122 0.05716 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento4$Hojas_Peso_fresco~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.7217 0.2156
##       12
library(agricolae)
library(dplyr)
t1tukey <-HSD.test(tratamiento1$Hojas_Peso_fresco,tratamiento1$muestreo, 12, 0.544, alpha = 0.05)
t2tukey <-HSD.test(tratamiento2$Hojas_Peso_fresco,tratamiento2$muestreo, 12, 0.3029, alpha = 0.05)
t3tukey <-HSD.test(tratamiento3$Hojas_Peso_fresco,tratamiento3$muestreo, 12, 0.29, alpha = 0.05)
t4tukey <-HSD.test(tratamiento4$Hojas_Peso_fresco,tratamiento4$muestreo, 12, 0.128, alpha = 0.05)
t1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     0.544 12 11.26519 6.547282 1.548389
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$Hojas_Peso_fresco       std r    Min    Max     Q25     Q50
## M1                        4.68800 0.3633492 4  4.223  5.023  4.4915  4.7530
## M2                        6.28075 1.0659588 4  4.841  7.234  5.8085  6.5240
## M3                       16.17300 0.7805583 4 15.232 16.961 15.7000 16.2495
## M4                       17.91900 0.5463833 4 17.382 18.492 17.4915 17.9010
##         Q75
## M1  4.94950
## M2  6.99625
## M3 16.72250
## M4 18.32850
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$Hojas_Peso_fresco groups
## M4                       17.91900      a
## M3                       16.17300      b
## M2                        6.28075      c
## M1                        4.68800      d
## 
## attr(,"class")
## [1] "group"
t2tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    0.3029 12 5.689563 9.673213 1.155395
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$Hojas_Peso_fresco       std r   Min   Max     Q25    Q50
## M1                        3.09075 0.1257971 4 2.936 3.219 3.01850 3.1040
## M2                        4.07075 0.7024127 4 3.138 4.812 3.80025 4.1665
## M3                        6.72025 0.4411314 4 6.162 7.193 6.50025 6.7630
## M4                        8.87650 0.7124729 4 8.078 9.531 8.37650 8.9485
##        Q75
## M1 3.17625
## M2 4.43700
## M3 6.98300
## M4 9.44850
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$Hojas_Peso_fresco groups
## M4                        8.87650      a
## M3                        6.72025      b
## M2                        4.07075      c
## M1                        3.09075      c
## 
## attr(,"class")
## [1] "group"
t3tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      0.29 12 10.66706 5.048405 1.130524
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$Hojas_Peso_fresco       std r    Min    Max      Q25     Q50
## M1                        4.17550 0.2728864 4  3.902  4.510  3.98525  4.1450
## M2                        6.72025 0.4411314 4  6.162  7.193  6.50025  6.7630
## M3                       14.46700 0.4530350 4 13.933 14.994 14.21425 14.4705
## M4                       17.30550 0.8271693 4 16.284 17.978 16.80750 17.4800
##         Q75
## M1  4.33525
## M2  6.98300
## M3 14.72325
## M4 17.97800
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$Hojas_Peso_fresco groups
## M4                       17.30550      a
## M3                       14.46700      b
## M2                        6.72025      c
## M1                        4.17550      d
## 
## attr(,"class")
## [1] "group"
t4tukey
## $statistics
##   MSerror Df     Mean      CV       MSD
##     0.128 12 10.13937 3.52853 0.7510792
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$Hojas_Peso_fresco       std r    Min    Max      Q25     Q50
## M1                        3.76375 0.1719852 4  3.520  3.923  3.72400  3.8060
## M2                        6.21825 0.4864945 4  5.872  6.917  5.89375  6.0420
## M3                       14.46700 0.4530350 4 13.933 14.994 14.21425 14.4705
## M4                       16.10850 0.2006830 4 15.939 16.364 15.95325 16.0655
##         Q75
## M1  3.84575
## M2  6.36650
## M3 14.72325
## M4 16.22075
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$Hojas_Peso_fresco groups
## M4                       16.10850      a
## M3                       14.46700      b
## M2                        6.21825      c
## M1                        3.76375      d
## 
## attr(,"class")
## [1] "group"

HOJAS PESO SECO

Determinación de la variable en los 4 muestreos

ANOVA

u1 <- aov(Hojas_Peso_seco~muestreo, data = tratamiento1)
u2 <- aov(Hojas_Peso_seco~muestreo, data = tratamiento2)
u3 <- aov(Hojas_Peso_seco~muestreo, data = tratamiento3)
u4 <- aov(Hojas_Peso_seco~muestreo, data = tratamiento4)
anova(u1)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_seco
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 5.5562 1.85206  141.06 1.274e-09 ***
## Residuals 12 0.1576 0.01313                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(u2)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_seco
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 1.10645 0.36882  85.691 2.263e-08 ***
## Residuals 12 0.05165 0.00430                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(u3)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_seco
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## muestreo   3 3.9518 1.31726  118.94 3.43e-09 ***
## Residuals 12 0.1329 0.01107                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(u4)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_seco
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 3.6622 1.22073  110.81 5.166e-09 ***
## Residuals 12 0.1322 0.01102                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(u1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(u1)
## W = 0.96748, p-value = 0.7963
shapiro.test(resid(u2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(u2)
## W = 0.9622, p-value = 0.7018
shapiro.test(resid(u3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(u3)
## W = 0.94751, p-value = 0.4514
shapiro.test(resid(u4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(u4)
## W = 0.9709, p-value = 0.853
library(car)
library(carData)
leveneTest(tratamiento1$Hojas_Peso_seco~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  2.7935 0.08578 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento2$Hojas_Peso_seco~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  5.7341 0.01136 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento3$Hojas_Peso_seco~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.6034 0.2403
##       12
leveneTest(tratamiento4$Hojas_Peso_seco~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)   
## group  3  10.135 0.00131 **
##       12                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(agricolae)
library(dplyr)
u1tukey <-HSD.test(tratamiento1$densidad_estomática,tratamiento1$muestreo, 12, 0.01313, alpha = 0.05)
u2tukey <-HSD.test(tratamiento2$densidad_estomática,tratamiento2$muestreo, 12, 0.00430, alpha = 0.05)
u3tukey <-HSD.test(tratamiento3$densidad_estomática,tratamiento3$muestreo, 12, 0.01107, alpha = 0.05)
u4tukey <-HSD.test(tratamiento4$densidad_estomática,tratamiento4$muestreo, 12, 0.01102, alpha = 0.05)
u1tukey
## $statistics
##   MSerror Df     Mean        CV       MSD
##   0.01313 12 36.36724 0.3150808 0.2405543
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$densidad_estomática      std r      Min      Max      Q25
## M1                         27.75198 6.691758 4 18.42105 34.28571 26.03383
## M2                         28.37036 2.055154 4 26.47059 31.25000 27.24265
## M3                         41.27510 1.440437 4 39.47368 42.85714 40.55024
## M4                         48.07154 8.735282 4 38.77551 59.57447 43.44388
##         Q50      Q75
## M1 29.15058 30.86873
## M2 27.88043 29.00815
## M3 41.38478 42.10963
## M4 46.96809 51.59574
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$densidad_estomática groups
## M4                         48.07154      a
## M3                         41.27510      b
## M2                         28.37036      c
## M1                         27.75198      d
## 
## attr(,"class")
## [1] "group"
u2tukey
## $statistics
##   MSerror Df     Mean        CV       MSD
##    0.0043 12 18.59456 0.3526536 0.1376623
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$densidad_estomática      std r       Min      Max      Q25
## M1                         11.25779 2.259444 4  8.823529 14.28571 10.31399
## M2                         20.64160 1.382671 4 18.750000 21.87500 20.07212
## M3                         22.23403 4.461596 4 17.857143 27.58621 18.98041
## M4                         20.24483 4.014089 4 16.216216 25.80645 18.63739
##         Q50      Q75
## M1 10.96096 11.90476
## M2 20.97070 21.54018
## M3 21.74638 25.00000
## M4 19.47832 21.08576
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$densidad_estomática groups
## M3                         22.23403      a
## M2                         20.64160      b
## M4                         20.24483      c
## M1                         11.25779      d
## 
## attr(,"class")
## [1] "group"
u3tukey
## $statistics
##   MSerror Df     Mean        CV       MSD
##   0.01107 12 35.01245 0.3005047 0.2208791
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$densidad_estomática      std r      Min      Max      Q25
## M1                         22.48975 2.734203 4 18.42105 24.32432 22.25232
## M2                         28.70304 2.912797 4 25.64103 32.35294 26.86480
## M3                         37.98699 1.905990 4 35.71429 40.00000 36.83555
## M4                         50.87002 4.304834 4 47.50000 57.14286 48.50291
##         Q50      Q75
## M1 23.60681 23.84424
## M2 28.40909 30.24733
## M3 38.11685 39.26829
## M4 49.41860 51.78571
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$densidad_estomática groups
## M4                         50.87002      a
## M3                         37.98699      b
## M2                         28.70304      c
## M1                         22.48975      d
## 
## attr(,"class")
## [1] "group"
u4tukey
## $statistics
##   MSerror Df     Mean        CV       MSD
##   0.01102 12 33.76351 0.3109161 0.2203797
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$densidad_estomática      std r       Min      Max      Q25
## M1                         11.34916 2.189521 4  8.333333 13.51351 10.65476
## M2                         35.76113 5.377610 4 30.434783 43.24324 33.47076
## M3                         37.98699 1.905990 4 35.714286 40.00000 36.83555
## M4                         49.95677 5.844472 4 41.304348 54.16667 49.38859
##         Q50      Q75
## M1 11.77489 12.46929
## M2 34.68324 36.97360
## M3 38.11685 39.26829
## M4 52.17803 52.74621
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$densidad_estomática groups
## M4                         49.95677      a
## M3                         37.98699      b
## M2                         35.76113      c
## M1                         11.34916      d
## 
## attr(,"class")
## [1] "group"

DIAMETRO DE RAIZ TUBEROSA

Determinación de la variable en los 4 muestreos

ANOVA

v1 <- aov(RT_Diámetro~muestreo, data = tratamiento1)
v2 <- aov(RT_Diámetro~muestreo, data = tratamiento2)
v3 <- aov(RT_Diámetro~muestreo, data = tratamiento3)
v4 <- aov(RT_Diámetro~muestreo, data = tratamiento4)
anova(v1)
## Analysis of Variance Table
## 
## Response: RT_Diámetro
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 2691.2  897.08  221.96 8.956e-11 ***
## Residuals 12   48.5    4.04                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(v2)
## Analysis of Variance Table
## 
## Response: RT_Diámetro
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 157.25  52.417  27.956 1.066e-05 ***
## Residuals 12  22.50   1.875                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(v3)
## Analysis of Variance Table
## 
## Response: RT_Diámetro
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## muestreo   3 4346.9 1448.98  302.88 1.43e-11 ***
## Residuals 12   57.4    4.78                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(v4)
## Analysis of Variance Table
## 
## Response: RT_Diámetro
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 2047.05  682.35  273.51 2.614e-11 ***
## Residuals 12   29.94    2.49                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(v1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(v1)
## W = 0.88487, p-value = 0.04624
shapiro.test(resid(v2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(v2)
## W = 0.89138, p-value = 0.05858
shapiro.test(resid(v3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(v3)
## W = 0.95915, p-value = 0.6463
shapiro.test(resid(v4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(v4)
## W = 0.9729, p-value = 0.8831
library(car)
library(carData)
leveneTest(tratamiento1$RT_Diámetro~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  2.9124 0.07799 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento2$RT_Diámetro~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3   2.626 0.09833 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento3$RT_Diámetro~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  2.3091 0.1283
##       12
leveneTest(tratamiento4$RT_Diámetro~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  2.6707 0.09478 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(agricolae)
library(dplyr)
v1tukey <-HSD.test(tratamiento1$RT_Diámetro,tratamiento1$muestreo, 12, 4.04, alpha = 0.05)
v2tukey <-HSD.test(tratamiento2$RT_Diámetro,tratamiento2$muestreo, 12, 1.875, alpha = 0.05)
v3tukey <-HSD.test(tratamiento3$RT_Diámetro,tratamiento3$muestreo, 12, 4.78, alpha = 0.05)
v4tukey <-HSD.test(tratamiento4$RT_Diámetro,tratamiento4$muestreo, 12, 2.49, alpha = 0.05)
v1tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##      4.04 12 30.875 6.510041 4.219601
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$RT_Diámetro       std r Min Max   Q25  Q50   Q75
## M1                    14.25 1.7078251 4  12  16 13.50 14.5 15.25
## M2                    25.00 3.5590261 4  20  28 23.75 26.0 27.25
## M3                    34.75 0.5000000 4  34  35 34.75 35.0 35.00
## M4                    49.50 0.5773503 4  49  50 49.00 49.5 50.00
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$RT_Diámetro groups
## M4                    49.50      a
## M3                    34.75      b
## M2                    25.00      c
## M1                    14.25      d
## 
## attr(,"class")
## [1] "group"
v2tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##     1.875 12 12.875 10.63539 2.874626
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$RT_Diámetro       std r Min Max   Q25  Q50   Q75
## M1                     8.75 2.5000000 4   6  12  7.50  8.5  9.75
## M2                    12.00 0.8164966 4  11  13 11.75 12.0 12.25
## M3                    13.25 0.5000000 4  13  14 13.00 13.0 13.25
## M4                    17.50 0.5773503 4  17  18 17.00 17.5 18.00
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$RT_Diámetro groups
## M4                    17.50      a
## M3                    13.25      b
## M2                    12.00      b
## M1                     8.75      c
## 
## attr(,"class")
## [1] "group"
v3tukey
## $statistics
##   MSerror Df     Mean       CV     MSD
##      4.78 12 34.13125 6.405629 4.58981
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$RT_Diámetro       std r Min  Max   Q25  Q50    Q75
## M1                   14.000 0.8164966 4  13 15.0 13.75 14.0 14.250
## M2                   25.025 2.8523382 4  21 27.1 24.00 26.0 27.025
## M3                   39.500 3.1091264 4  37 44.0 37.75 38.5 40.250
## M4                   58.000 0.8164966 4  57 59.0 57.75 58.0 58.250
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$RT_Diámetro groups
## M4                   58.000      a
## M3                   39.500      b
## M2                   25.025      c
## M1                   14.000      d
## 
## attr(,"class")
## [1] "group"
v4tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      2.49 12 26.28125 6.004179 3.312687
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$RT_Diámetro       std r Min  Max   Q25  Q50    Q75
## M1                   11.500 1.2909944 4  10 13.0 10.75 11.5 12.250
## M2                   22.875 1.6520190 4  21 24.5 21.75 23.0 24.125
## M3                   27.750 2.2173558 4  25 30.0 26.50 28.0 29.250
## M4                   43.000 0.8164966 4  42 44.0 42.75 43.0 43.250
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$RT_Diámetro groups
## M4                   43.000      a
## M3                   27.750      b
## M2                   22.875      c
## M1                   11.500      d
## 
## attr(,"class")
## [1] "group"

PESO FRESCO DE RAÍZ TUBEROSA

Determinación de la variable en los 4 muestreos

ANOVA

w1 <- aov(RT_Peso_fresco~muestreo, data = tratamiento1)
w2 <- aov(RT_Peso_fresco~muestreo, data = tratamiento2)
w3 <- aov(RT_Peso_fresco~muestreo, data = tratamiento3)
w4 <- aov(RT_Peso_fresco~muestreo, data = tratamiento4)
anova(w1)
## Analysis of Variance Table
## 
## Response: RT_Peso_fresco
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 403.16 134.387  56.821 2.305e-07 ***
## Residuals 12  28.38   2.365                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(w2)
## Analysis of Variance Table
## 
## Response: RT_Peso_fresco
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## muestreo   3 39.531 13.1771  47.268 6.39e-07 ***
## Residuals 12  3.345  0.2788                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(w3)
## Analysis of Variance Table
## 
## Response: RT_Peso_fresco
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 909.33 303.109  54.137 3.018e-07 ***
## Residuals 12  67.19   5.599                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(w4)
## Analysis of Variance Table
## 
## Response: RT_Peso_fresco
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 407.48 135.825  64.899 1.095e-07 ***
## Residuals 12  25.11   2.093                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(w1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(w1)
## W = 0.87814, p-value = 0.0363
shapiro.test(resid(w2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(w2)
## W = 0.93321, p-value = 0.2739
shapiro.test(resid(w3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(w3)
## W = 0.86399, p-value = 0.02203
shapiro.test(resid(w4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(w4)
## W = 0.97053, p-value = 0.8471
library(car)
library(carData)
leveneTest(tratamiento1$RT_Peso_fresco~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)  
## group  3  3.4124  0.053 .
##       12                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento2$RT_Peso_fresco~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.8501 0.03846 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento3$RT_Peso_fresco~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  4.0137 0.03426 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento4$RT_Peso_fresco~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3     4.5 0.02457 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(agricolae)
library(dplyr)
w1tukey <-HSD.test(tratamiento1$RT_Peso_fresco,tratamiento1$muestreo, 12, 2.365, alpha = 0.05)
w2tukey <-HSD.test(tratamiento2$RT_Peso_fresco,tratamiento2$muestreo, 12, 0.2788, alpha = 0.05)
w3tukey <-HSD.test(tratamiento3$RT_Peso_fresco,tratamiento3$muestreo, 12, 0.001, alpha = 0.05)
w4tukey <-HSD.test(tratamiento4$RT_Peso_fresco,tratamiento4$muestreo, 12, 5.599, alpha = 0.05)
w1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     2.365 12 10.64944 14.44072 3.228467
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$RT_Peso_fresco       std r    Min    Max     Q25     Q50
## M1                     3.47075 0.2578648 4  3.122  3.734  3.3785  3.5135
## M2                     8.84200 2.7575440 4  6.494 12.805  7.3640  8.0345
## M3                    13.46700 0.6758555 4 12.483 13.958 13.3005 13.7135
## M4                    16.81800 1.1545998 4 15.223 17.738 16.3450 17.1555
##         Q75
## M1  3.60575
## M2  9.51250
## M3 13.88000
## M4 17.62850
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$RT_Peso_fresco groups
## M4                    16.81800      a
## M3                    13.46700      b
## M2                     8.84200      c
## M1                     3.47075      d
## 
## attr(,"class")
## [1] "group"
w2tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    0.2788 12 3.125375 16.89446 1.108478
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$RT_Peso_fresco       std r   Min   Max     Q25    Q50     Q75
## M1                     1.08900 0.1629438 4 0.922 1.298 0.98650 1.0680 1.17050
## M2                     2.44875 0.2434822 4 2.201 2.762 2.29475 2.4160 2.57000
## M3                     3.58800 0.8404864 4 2.917 4.817 3.18250 3.3090 3.71450
## M4                     5.37575 0.5681974 4 4.782 5.888 4.94400 5.4165 5.84825
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$RT_Peso_fresco groups
## M4                     5.37575      a
## M3                     3.58800      b
## M2                     2.44875      c
## M1                     1.08900      d
## 
## attr(,"class")
## [1] "group"
w3tukey
## $statistics
##   MSerror Df     Mean        CV        MSD
##     0.001 12 13.55781 0.2332439 0.06638665
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$RT_Peso_fresco       std r    Min    Max      Q25     Q50
## M1                     3.15050 0.1493106 4  2.927  3.238  3.14300  3.2185
## M2                    10.45900 4.1825588 4  4.284 13.521  9.89175 12.0155
## M3                    17.29350 1.6845360 4 15.187 19.215 16.51525 17.3860
## M4                    23.32825 1.4290231 4 21.568 24.957 22.61650 23.3940
##         Q75
## M1  3.22600
## M2 12.58275
## M3 18.16425
## M4 24.10575
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$RT_Peso_fresco groups
## M4                    23.32825      a
## M3                    17.29350      b
## M2                    10.45900      c
## M1                     3.15050      d
## 
## attr(,"class")
## [1] "group"
w4tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     5.599 12 9.717437 24.35025 4.967478
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$RT_Peso_fresco       std r    Min    Max      Q25     Q50
## M1                     2.93975 0.4873297 4  2.251  3.361  2.78425  3.0735
## M2                     7.70225 1.6723252 4  5.935  9.961  6.96475  7.4565
## M3                    11.54350 2.2140449 4  9.215 13.958  9.94400 11.5005
## M4                    16.68425 0.6597991 4 15.822 17.375 16.39200 16.7700
##         Q75
## M1  3.22900
## M2  8.19400
## M3 13.10000
## M4 17.06225
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$RT_Peso_fresco groups
## M4                    16.68425      a
## M3                    11.54350      b
## M2                     7.70225     bc
## M1                     2.93975      c
## 
## attr(,"class")
## [1] "group"

PESO SECO DE RAÍZ TUBEROSA

Determinación de la variable en los 4 muestreos

ANOVA

x1 <- aov(RT_Peso_seco~muestreo, data = tratamiento1)
x2 <- aov(RT_Peso_seco~muestreo, data = tratamiento2)
x3 <- aov(RT_Peso_seco~muestreo, data = tratamiento3)
x4 <- aov(RT_Peso_seco~muestreo, data = tratamiento4)
anova(x1)
## Analysis of Variance Table
## 
## Response: RT_Peso_seco
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 6.5201 2.17338  48.827 5.344e-07 ***
## Residuals 12 0.5341 0.04451                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(x2)
## Analysis of Variance Table
## 
## Response: RT_Peso_seco
##           Df  Sum Sq  Mean Sq F value    Pr(>F)    
## muestreo   3 0.89174 0.297246  134.56 1.676e-09 ***
## Residuals 12 0.02651 0.002209                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(x3)
## Analysis of Variance Table
## 
## Response: RT_Peso_seco
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 16.3678  5.4559  255.95 3.867e-11 ***
## Residuals 12  0.2558  0.0213                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(x4)
## Analysis of Variance Table
## 
## Response: RT_Peso_seco
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 3.3126  1.1042  172.62 3.919e-10 ***
## Residuals 12 0.0768  0.0064                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(x1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(x1)
## W = 0.79083, p-value = 0.002063
shapiro.test(resid(x2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(x2)
## W = 0.96035, p-value = 0.6682
shapiro.test(resid(x3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(x3)
## W = 0.9627, p-value = 0.711
shapiro.test(resid(x4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(x4)
## W = 0.91653, p-value = 0.1483
library(car)
library(carData)
leveneTest(tratamiento1$RT_Peso_seco~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  4.1823 0.03047 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento2$RT_Peso_seco~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  2.3943 0.1193
##       12
leveneTest(tratamiento3$RT_Peso_seco~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.7061 0.2187
##       12
leveneTest(tratamiento4$RT_Peso_seco~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.5005 0.2645
##       12
library(agricolae)
library(dplyr)
x1tukey <-HSD.test(tratamiento1$RT_Peso_seco,tratamiento1$muestreo, 12, 0.04451, alpha = 0.05)
x2tukey <-HSD.test(tratamiento2$RT_Peso_seco,tratamiento2$muestreo, 12, 0.002209, alpha = 0.05)
x3tukey <-HSD.test(tratamiento3$RT_Peso_seco,tratamiento3$muestreo, 12, 0.0213, alpha = 0.05)
x4tukey <-HSD.test(tratamiento4$RT_Peso_seco,tratamiento4$muestreo, 12, 0.0064, alpha = 0.05)
x1tukey
## $statistics
##   MSerror Df     Mean       CV       MSD
##   0.04451 12 1.064625 19.81674 0.4429039
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$RT_Peso_seco        std r   Min   Max     Q25    Q50     Q75
## M1                   0.40550 0.06477911 4 0.342 0.493 0.36750 0.3935 0.43150
## M2                   0.54325 0.07347278 4 0.474 0.636 0.49050 0.5315 0.58425
## M3                   1.31800 0.06694774 4 1.248 1.387 1.26825 1.3185 1.36825
## M4                   1.99175 0.40493240 4 1.638 2.573 1.78875 1.8780 2.08100
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$RT_Peso_seco groups
## M4                   1.99175      a
## M3                   1.31800      b
## M2                   0.54325      c
## M1                   0.40550      c
## 
## attr(,"class")
## [1] "group"
x2tukey
## $statistics
##    MSerror Df    Mean       CV        MSD
##   0.002209 12 0.35025 13.41899 0.09866852
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$RT_Peso_seco        std r   Min   Max     Q25    Q50     Q75
## M1                   0.06800 0.02294922 4 0.039 0.095 0.06000 0.0690 0.07700
## M2                   0.24375 0.03933086 4 0.186 0.274 0.23775 0.2575 0.26350
## M3                   0.37675 0.04431986 4 0.317 0.418 0.35750 0.3860 0.40525
## M4                   0.71250 0.06927000 4 0.628 0.782 0.67150 0.7200 0.76100
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$RT_Peso_seco groups
## M4                   0.71250      a
## M3                   0.37675      b
## M2                   0.24375      c
## M1                   0.06800      d
## 
## attr(,"class")
## [1] "group"
x3tukey
## $statistics
##   MSerror Df    Mean       CV       MSD
##    0.0213 12 1.32125 11.04599 0.3063871
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$RT_Peso_seco        std r   Min   Max     Q25    Q50     Q75
## M1                    0.3390 0.03787699 4 0.293 0.385 0.32300 0.3390 0.35500
## M2                    0.5255 0.19077474 4 0.242 0.649 0.50000 0.6055 0.63100
## M3                    1.5345 0.18227909 4 1.362 1.792 1.45875 1.4920 1.56775
## M4                    2.8860 0.11920570 4 2.720 2.978 2.83925 2.9230 2.96975
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$RT_Peso_seco groups
## M4                    2.8860      a
## M3                    1.5345      b
## M2                    0.5255      c
## M1                    0.3390      c
## 
## attr(,"class")
## [1] "group"
x4tukey
## $statistics
##   MSerror Df Mean       CV       MSD
##    0.0064 12 0.79 10.12658 0.1679464
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$RT_Peso_seco        std r   Min   Max     Q25    Q50     Q75
## M1                   0.27325 0.04914180 4 0.229 0.331 0.23425 0.2665 0.30550
## M2                   0.45450 0.06634506 4 0.391 0.524 0.40150 0.4515 0.50450
## M3                   1.00950 0.12816266 4 0.892 1.191 0.94450 0.9775 1.04250
## M4                   1.42275 0.04842434 4 1.376 1.467 1.38350 1.4240 1.46325
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$RT_Peso_seco groups
## M4                   1.42275      a
## M3                   1.00950      b
## M2                   0.45450      c
## M1                   0.27325      d
## 
## attr(,"class")
## [1] "group"

fin :)