Datos de los 4 muestreos

rm(list=ls())
library(readxl)
GENERAL <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "GENERAL")
Muestreo1<- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "MUESTREO 1")
Muestreo2 <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "MUESTREO 2")
Muestreo3 <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "MUESTREO 3")
Muestreo4 <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "MUESTREO 4")
tratamiento1 <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "TRATAMIENT 1")
tratamiento2 <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "TRATAMIENTO 2")
tratamiento3 <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "TRATAMIENTO 3")
tratamiento4 <- read_excel("~/Downloads/BASE DE DATOS FINAL.xlsx", 
    sheet = "TRATAMIENTO 4")

TEMPERATURA

Determinación de la variable en los 4 muestreos

ANOVA

m1 <- aov(Temp~Trat, data = Muestreo1)
m2 <- aov(Temp~Trat, data = Muestreo2)
m3 <- aov(Temp~Trat, data = Muestreo3)
m4 <- aov(Temp~Trat, data = Muestreo4)
anova(m1)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 42.477  14.159  13.123 0.0004262 ***
## Residuals 12 12.948   1.079                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m2)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value Pr(>F)  
## Trat       3 11.107  3.7025  4.4386 0.0256 *
## Residuals 12 10.010  0.8342                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m3)
## Analysis of Variance Table
## 
## Response: Temp
##           Df  Sum Sq Mean Sq F value   Pr(>F)   
## Trat       3 10.9269  3.6423  6.1322 0.009024 **
## Residuals 12  7.1275  0.5940                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m4)
## Analysis of Variance Table
## 
## Response: Temp
##           Df  Sum Sq Mean Sq F value   Pr(>F)   
## Trat       3 20.2119  6.7373  9.0814 0.002058 **
## Residuals 12  8.9025  0.7419                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(m1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m1)
## W = 0.98373, p-value = 0.9862
shapiro.test(resid(m2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m2)
## W = 0.96575, p-value = 0.766
shapiro.test(resid(m3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m3)
## W = 0.93912, p-value = 0.3384
shapiro.test(resid(m4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m4)
## W = 0.94762, p-value = 0.4529

En todos los muestreos se puede observar normalidad en los datos de temperatura.

*Homogeneidad de varianzas**

library(car)
## Loading required package: carData
library(carData)
leveneTest(Muestreo1$Temp~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  2.0138 0.1658
##       12
leveneTest(Muestreo2$Temp~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.7285 0.5545
##       12
leveneTest(Muestreo3$Temp~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3    0.83 0.5026
##       12
leveneTest(Muestreo4$Temp~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.7169 0.5607
##       12

En temperatura, todos los datos representan varianzas homogeneas

Prueba de tukey

library(agricolae)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
m1tukey <-HSD.test(Muestreo1$Temp,Muestreo1$Trat, 12, 1.079, alpha = 0.05)
m2tukey <-HSD.test(Muestreo2$Temp,Muestreo2$Trat, 12, 0.8342, alpha = 0.05)
m3tukey <-HSD.test(Muestreo3$Temp,Muestreo3$Trat, 12, 0.5940, alpha = 0.05)
m4tukey <-HSD.test(Muestreo4$Temp,Muestreo4$Trat, 12, 0.7419, alpha = 0.05)
m1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     1.079 12 19.88125 5.224768 2.180678
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$Temp       std r  Min  Max    Q25   Q50    Q75
## T1         18.225 0.6800735 4 17.3 18.9 17.975 18.35 18.600
## T2         21.950 0.9882645 4 20.9 23.1 21.275 21.90 22.575
## T3         18.350 0.7416198 4 17.4 19.2 18.075 18.40 18.675
## T4         21.000 1.5253415 4 19.3 22.8 20.050 20.95 21.900
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$Temp groups
## T2         21.950      a
## T4         21.000      a
## T3         18.350      b
## T1         18.225      b
## 
## attr(,"class")
## [1] "group"
m2tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    0.8342 12 17.9875 5.077668 1.917414
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$Temp       std r  Min  Max    Q25   Q50    Q75
## T1         17.225 1.2553220 4 16.0 18.9 16.450 17.00 17.775
## T2         19.225 0.5188127 4 18.6 19.7 18.900 19.30 19.625
## T3         17.225 0.9215024 4 16.3 18.5 16.825 17.05 17.450
## T4         18.275 0.8015610 4 17.1 18.9 18.150 18.55 18.675
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$Temp groups
## T2         19.225      a
## T4         18.275     ab
## T1         17.225      b
## T3         17.225      b
## 
## attr(,"class")
## [1] "group"
m3tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     0.594 12 17.76875 4.337469 1.617983
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$Temp       std r  Min  Max    Q25   Q50    Q75
## T1         17.400 0.4546061 4 16.8 17.9 17.250 17.45 17.600
## T2         19.175 0.9464847 4 18.4 20.5 18.550 18.90 19.525
## T3         17.450 0.7767453 4 16.5 18.4 17.175 17.45 17.725
## T4         17.050 0.8185353 4 16.3 17.9 16.375 17.00 17.675
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$Temp groups
## T2         19.175      a
## T3         17.450      b
## T1         17.400      b
## T4         17.050      b
## 
## attr(,"class")
## [1] "group"
m4tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    0.7419 12 17.06875 5.046276 1.808229
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$Temp       std r  Min  Max    Q25   Q50   Q75
## T1         16.625 0.8845903 4 15.9 17.9 16.125 16.35 16.85
## T2         19.000 0.7023769 4 18.3 19.7 18.450 19.00 19.55
## T3         16.225 1.1412712 4 15.1 17.7 15.475 16.05 16.80
## T4         16.425 0.6238322 4 15.6 17.0 16.125 16.55 16.85
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$Temp groups
## T2         19.000      a
## T1         16.625      b
## T4         16.425      b
## T3         16.225      b
## 
## attr(,"class")
## [1] "group"

**Representacion de las diferencias estadisticas dentro de la variable temperatura en los cuatro muestreos

Estomas abiertos

Determinación de la variable en los 4 muestreos

ANOVA

n1 <- aov(E_Abierto~Trat, data = Muestreo1)
n2 <- aov(E_Abierto~Trat, data = Muestreo2)
n3 <- aov(E_Abierto~Trat, data = Muestreo3)
n4 <- aov(E_Abierto~Trat, data = Muestreo4)
anova(n1)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 111.19  37.063  21.434 4.127e-05 ***
## Residuals 12  20.75   1.729                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(n2)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 102.19  34.062  10.973 0.0009358 ***
## Residuals 12  37.25   3.104                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(n3)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 307.69 102.562  57.918 2.072e-07 ***
## Residuals 12  21.25   1.771                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(n4)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## Trat       3 770.19 256.729  18.311 8.96e-05 ***
## Residuals 12 168.25  14.021                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(n1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(n1)
## W = 0.92462, p-value = 0.2001
shapiro.test(resid(n2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(n2)
## W = 0.95152, p-value = 0.5142
shapiro.test(resid(n3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(n3)
## W = 0.95234, p-value = 0.5277
shapiro.test(resid(n4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(n4)
## W = 0.96748, p-value = 0.7963

Todos los datos cumplen los supuestos

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$E_Abierto~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.4333 0.2817
##       12
leveneTest(Muestreo2$E_Abierto~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.0468 0.4074
##       12
leveneTest(Muestreo3$E_Abierto~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.1134 0.9506
##       12
leveneTest(Muestreo4$E_Abierto~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3   4.602 0.02297 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

todos los supuestos se cumplen (casi)

Pueba de tukey

library(agricolae)
library(dplyr)
n1tukey <-HSD.test(Muestreo1$E_Abierto,Muestreo1$Trat, 12, 1.729, alpha = 0.05)
n2tukey <-HSD.test(Muestreo2$E_Abierto,Muestreo2$Trat, 12, 3.104, alpha = 0.05)
n3tukey <-HSD.test(Muestreo3$E_Abierto,Muestreo3$Trat, 12, 1.771, alpha = 0.05)
n4tukey <-HSD.test(Muestreo4$E_Abierto,Muestreo4$Trat, 12, 14.021, alpha = 0.05)
n1tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##     1.729 12 6.5625 20.03679 2.760439
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$E_Abierto       std r Min Max  Q25  Q50   Q75
## T1               10.00 2.1602469 4   7  12 9.25 10.5 11.25
## T2                4.00 0.8164966 4   3   5 3.75  4.0  4.25
## T3                8.25 0.9574271 4   7   9 7.75  8.5  9.00
## T4                4.00 0.8164966 4   3   5 3.75  4.0  4.25
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$E_Abierto groups
## T1               10.00      a
## T3                8.25      a
## T2                4.00      b
## T4                4.00      b
## 
## attr(,"class")
## [1] "group"
n2tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     3.104 12 10.6875 16.48484 3.698636
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$E_Abierto       std r Min Max   Q25  Q50   Q75
## T1               10.75 1.7078251 4   9  13  9.75 10.5 11.50
## T2                6.75 0.9574271 4   6   8  6.00  6.5  7.25
## T3               11.50 1.2909944 4  10  13 10.75 11.5 12.25
## T4               13.75 2.6299556 4  10  16 13.00 14.5 15.25
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$E_Abierto groups
## T4               13.75      a
## T3               11.50      a
## T1               10.75      a
## T2                6.75      b
## 
## attr(,"class")
## [1] "group"
n3tukey
## $statistics
##   MSerror Df    Mean      CV      MSD
##     1.771 12 14.0625 9.46339 2.793766
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$E_Abierto      std r Min Max   Q25  Q50   Q75
## T1               17.25 1.500000 4  15  18 17.25 18.0 18.00
## T2                6.50 1.290994 4   5   8  5.75  6.5  7.25
## T3               16.25 1.258306 4  15  18 15.75 16.0 16.50
## T4               16.25 1.258306 4  15  18 15.75 16.0 16.50
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$E_Abierto groups
## T1               17.25      a
## T3               16.25      a
## T4               16.25      a
## T2                6.50      b
## 
## attr(,"class")
## [1] "group"
n4tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    14.021 12 19.1875 19.51511 7.860863
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$E_Abierto       std r Min Max   Q25  Q50   Q75
## T1               22.00 4.5460606 4  18  28 18.75 21.0 24.25
## T2                7.25 0.9574271 4   6   8  6.75  7.5  8.00
## T3               24.25 4.9916597 4  19  29 20.50 24.5 28.25
## T4               23.25 3.0956959 4  19  26 22.00 24.0 25.25
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$E_Abierto groups
## T3               24.25      a
## T4               23.25      a
## T1               22.00      a
## T2                7.25      b
## 
## attr(,"class")
## [1] "group"

Estomas cerrados

Determinación de la variable en los 4 muestreos

ANOVA

o1 <- aov(E_Cerrado~Trat, data = Muestreo1)
o2 <- aov(E_Cerrado~Trat, data = Muestreo2)
o3 <- aov(E_Cerrado~Trat, data = Muestreo3)
o4 <- aov(E_Cerrado~Trat, data = Muestreo4)
anova(o1)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## Trat       3  74.25  24.750  4.8293 0.01981 *
## Residuals 12  61.50   5.125                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(o2)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df Sum Sq Mean Sq F value Pr(>F)
## Trat       3   31.5  10.500  0.4675 0.7104
## Residuals 12  269.5  22.458
anova(o3)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## Trat       3 39.187 13.0625  7.9367 0.003504 **
## Residuals 12 19.750  1.6458                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(o4)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Trat       3  94.187  31.396  2.0228 0.1645
## Residuals 12 186.250  15.521

Prueba de normalidad de shapiro

shapiro.test(resid(o1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(o1)
## W = 0.97137, p-value = 0.8603
shapiro.test(resid(o2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(o2)
## W = 0.94747, p-value = 0.4508
shapiro.test(resid(o3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(o3)
## W = 0.89228, p-value = 0.06054
shapiro.test(resid(o4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(o4)
## W = 0.9495, p-value = 0.4819

se cumplen todos los supuestos

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$E_Cerrado~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3   0.873  0.482
##       12
leveneTest(Muestreo2$E_Cerrado~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.0725 0.3974
##       12
leveneTest(Muestreo3$E_Cerrado~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3    0.55 0.6577
##       12
leveneTest(Muestreo4$E_Cerrado~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.2875 0.8336
##       12

Se cumplen todos los supuestos

Pueba de tukey

library(agricolae)
library(dplyr)
o1tukey <-HSD.test(Muestreo1$E_Cerrado,Muestreo1$Trat, 12, 5.125, alpha = 0.05)
o2tukey <-HSD.test(Muestreo2$E_Cerrado,Muestreo2$Trat, 12, 22.458, alpha = 0.05)
o3tukey <-HSD.test(Muestreo3$E_Cerrado,Muestreo3$Trat, 12, 1.6458, alpha = 0.05)
o4tukey <-HSD.test(Muestreo4$E_Cerrado,Muestreo4$Trat, 12, 15.521, alpha = 0.05)
o1tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##     5.125 12 29.375 7.706711 4.752561
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$E_Cerrado      std r Min Max   Q25  Q50   Q75
## T1               26.25 3.403430 4  23  31 24.50 25.5 27.25
## T2               31.50 1.290994 4  30  33 30.75 31.5 32.25
## T3               28.50 2.081666 4  26  31 27.50 28.5 29.50
## T4               31.25 1.707825 4  29  33 30.50 31.5 32.25
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$E_Cerrado groups
## T2               31.50      a
## T4               31.25      a
## T3               28.50     ab
## T1               26.25      b
## 
## attr(,"class")
## [1] "group"
o2tukey
## $statistics
##   MSerror Df  Mean       CV      MSD
##    22.458 12 26.75 17.71584 9.948699
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$E_Cerrado      std r Min Max   Q25  Q50   Q75
## T1               27.25 4.787136 4  22  33 24.25 27.0 30.00
## T2               26.00 3.741657 4  22  31 24.25 25.5 27.25
## T3               28.75 4.031129 4  23  32 27.50 30.0 31.25
## T4               25.00 6.055301 4  19  32 20.50 24.5 29.00
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$E_Cerrado groups
## T3               28.75      a
## T1               27.25      a
## T2               26.00      a
## T4               25.00      a
## 
## attr(,"class")
## [1] "group"
o3tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    1.6458 12 25.0625 5.118753 2.693204
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$E_Cerrado      std r Min Max   Q25  Q50   Q75
## T1               24.50 1.290994 4  23  26 23.75 24.5 25.25
## T2               22.75 1.707825 4  21  25 21.75 22.5 23.50
## T3               26.50 1.000000 4  25  27 26.50 27.0 27.00
## T4               26.50 1.000000 4  25  27 26.50 27.0 27.00
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$E_Cerrado groups
## T3               26.50      a
## T4               26.50      a
## T1               24.50     ab
## T2               22.75      b
## 
## attr(,"class")
## [1] "group"
o4tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    15.521 12 24.8125 15.87776 8.270668
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$E_Cerrado      std r Min Max   Q25  Q50   Q75
## T1               23.75 4.645787 4  19  30 21.25 23.0 25.50
## T2               29.00 4.320494 4  23  33 27.50 30.0 31.50
## T3               23.25 3.862210 4  21  29 21.00 21.5 23.75
## T4               23.25 2.629956 4  21  27 21.75 22.5 24.00
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$E_Cerrado groups
## T2               29.00      a
## T1               23.75      a
## T3               23.25      a
## T4               23.25      a
## 
## attr(,"class")
## [1] "group"

Estomas totales

Determinación de la variable en los 4 muestreos

ANOVA

p1 <- aov(E_Total~Trat, data = Muestreo1)
p2 <- aov(E_Total~Trat, data = Muestreo2)
p3 <- aov(E_Total~Trat, data = Muestreo3)
p4 <- aov(E_Total~Trat, data = Muestreo4)
anova(p1)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Trat       3  5.6875  1.8958   0.728 0.5547
## Residuals 12 31.2500  2.6042
anova(p2)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df Sum Sq Mean Sq F value Pr(>F)
## Trat       3 127.69  42.562  1.2153 0.3464
## Residuals 12 420.25  35.021
anova(p3)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 522.75 174.250  48.628 5.466e-07 ***
## Residuals 12  43.00   3.583                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(p4)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## Trat       3  326.5 108.833  4.3899 0.02645 *
## Residuals 12  297.5  24.792                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(p1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(p1)
## W = 0.92768, p-value = 0.224
shapiro.test(resid(p2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(p2)
## W = 0.96291, p-value = 0.7147
shapiro.test(resid(p3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(p3)
## W = 0.94324, p-value = 0.3906
shapiro.test(resid(p4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(p4)
## W = 0.94194, p-value = 0.3735

Se cumplen los supuestos

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$E_Total~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.1652 0.9178
##       12
leveneTest(Muestreo2$E_Total~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.7303 0.5535
##       12
leveneTest(Muestreo3$E_Total~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.6168 0.6172
##       12
leveneTest(Muestreo4$E_Total~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  2.1701 0.1446
##       12

Se cumplen todos los supuestos

Pueba de tukey

library(agricolae)
library(dplyr)
p1tukey <-HSD.test(Muestreo1$E_Total,Muestreo1$Trat, 12, 2.6042, alpha = 0.05)
p2tukey <-HSD.test(Muestreo2$E_Total,Muestreo2$Trat, 12, 35.021, alpha = 0.05)
p3tukey <-HSD.test(Muestreo3$E_Total,Muestreo3$Trat, 12, 3.583, alpha = 0.05)
p4tukey <-HSD.test(Muestreo4$E_Total,Muestreo4$Trat, 12, 24.792, alpha = 0.05)
p1tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    2.6042 12 35.9375 4.490444 3.387801
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$E_Total      std r Min Max   Q25  Q50   Q75
## T1             36.25 1.500000 4  35  38 35.00 36.0 37.25
## T2             35.50 1.290994 4  34  37 34.75 35.5 36.25
## T3             36.75 1.892969 4  34  38 36.25 37.5 38.00
## T4             35.25 1.707825 4  33  37 34.50 35.5 36.25
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$E_Total groups
## T3             36.75      a
## T1             36.25      a
## T2             35.50      a
## T4             35.25      a
## 
## attr(,"class")
## [1] "group"
p2tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    35.021 12 37.4375 15.80729 12.42353
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$E_Total      std r Min Max   Q25  Q50   Q75
## T1             38.00 6.324555 4  32  46 33.50 37.0 41.50
## T2             32.75 4.573474 4  28  39 31.00 32.0 33.75
## T3             40.25 4.787136 4  34  44 37.75 41.5 44.00
## T4             38.75 7.500000 4  29  46 35.00 40.0 43.75
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$E_Total groups
## T3             40.25      a
## T4             38.75      a
## T1             38.00      a
## T2             32.75      a
## 
## attr(,"class")
## [1] "group"
p3tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##     3.583 12 39.125 4.838036 3.973783
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$E_Total      std r Min Max   Q25  Q50   Q75
## T1             41.75 2.629956 4  38  44 41.00 42.5 43.25
## T2             29.25 1.258306 4  28  31 28.75 29.0 29.50
## T3             42.75 1.707825 4  41  45 41.75 42.5 43.50
## T4             42.75 1.707825 4  41  45 41.75 42.5 43.50
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$E_Total groups
## T3             42.75      a
## T4             42.75      a
## T1             41.75      a
## T2             29.25      b
## 
## attr(,"class")
## [1] "group"
p4tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##    24.792 12   44 11.31626 10.45289
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$E_Total      std r Min Max   Q25  Q50   Q75
## T1             45.75 3.947573 4  40  49 45.25 47.0 47.50
## T2             36.25 4.112988 4  31  41 34.75 36.5 38.00
## T3             47.50 7.937254 4  40  58 42.25 46.0 51.25
## T4             46.50 1.914854 4  44  48 45.50 47.0 48.00
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$E_Total groups
## T3             47.50      a
## T4             46.50     ab
## T1             45.75     ab
## T2             36.25      b
## 
## attr(,"class")
## [1] "group"

Contenido relativo de clorofilas

Determinación de la variable en los 4 muestreos

ANOVA

q1 <- aov(CRC~Trat, data = Muestreo1)
q2 <- aov(CRC~Trat, data = Muestreo2)
q3 <- aov(CRC~Trat, data = Muestreo3)
q4 <- aov(CRC~Trat, data = Muestreo4)
anova(q1)
## Analysis of Variance Table
## 
## Response: CRC
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 319.07 106.358   126.8 2.366e-09 ***
## Residuals 12  10.07   0.839                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(q2)
## Analysis of Variance Table
## 
## Response: CRC
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 563.60  187.87  34.987 3.266e-06 ***
## Residuals 12  64.44    5.37                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(q3)
## Analysis of Variance Table
## 
## Response: CRC
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## Trat       3 353.15 117.715   44.47 8.93e-07 ***
## Residuals 12  31.77   2.647                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(q4)
## Analysis of Variance Table
## 
## Response: CRC
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 299.502  99.834  74.434 5.045e-08 ***
## Residuals 12  16.095   1.341                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(q1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q1)
## W = 0.94647, p-value = 0.4359
shapiro.test(resid(q2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q2)
## W = 0.95547, p-value = 0.581
shapiro.test(resid(q3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q3)
## W = 0.97622, p-value = 0.9265
shapiro.test(resid(q4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q4)
## W = 0.96439, p-value = 0.7416

Se cumplen todos los supuestos

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$CRC~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.9071 0.4664
##       12
leveneTest(Muestreo2$CRC~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.2515 0.3346
##       12
leveneTest(Muestreo3$CRC~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.4953 0.6923
##       12
leveneTest(Muestreo4$CRC~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.9169 0.1807
##       12

Se cumplen todos los supuestos

Pueba de tukey

library(agricolae)
library(dplyr)
q1tukey <-HSD.test(Muestreo1$CRC,Muestreo1$Trat, 12, 0.839, alpha = 0.05)
q2tukey <-HSD.test(Muestreo2$CRC,Muestreo2$Trat, 12, 5.37, alpha = 0.05)
q3tukey <-HSD.test(Muestreo3$CRC,Muestreo3$Trat, 12, 2.647, alpha = 0.05)
q4tukey <-HSD.test(Muestreo4$CRC,Muestreo4$Trat, 12, 1.341, alpha = 0.05)
q1tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     0.839 12 29.6875 3.085371 1.922922
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$CRC       std r  Min  Max    Q25   Q50    Q75
## T1        34.750 0.7852813 4 33.8 35.7 34.400 34.75 35.100
## T2        24.700 0.6683313 4 23.8 25.3 24.400 24.85 25.150
## T3        33.475 1.3793114 4 31.5 34.6 33.075 33.90 34.300
## T4        25.825 0.6238322 4 25.2 26.5 25.350 25.80 26.275
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$CRC groups
## T1        34.750      a
## T3        33.475      a
## T4        25.825      b
## T2        24.700      b
## 
## attr(,"class")
## [1] "group"
q2tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##      5.37 12 36.6375 6.325011 4.864832
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$CRC      std r  Min  Max    Q25   Q50    Q75
## T1        42.250 2.489310 4 39.7 45.5 40.750 41.90 43.400
## T2        26.650 2.145538 4 25.1 29.7 25.175 25.90 27.375
## T3        38.625 3.017035 4 34.9 41.5 36.850 39.05 40.825
## T4        39.025 1.255322 4 37.5 40.4 38.325 39.10 39.800
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$CRC groups
## T1        42.250      a
## T4        39.025      a
## T3        38.625      a
## T2        26.650      b
## 
## attr(,"class")
## [1] "group"
q3tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##     2.647 12 30.875 5.269507 3.415527
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$CRC      std r  Min  Max    Q25   Q50    Q75
## T1        34.550 1.438749 4 32.9 35.9 33.575 34.70 35.675
## T2        22.975 1.936276 4 20.2 24.4 22.375 23.65 24.250
## T3        34.300 1.009950 4 33.0 35.1 33.750 34.55 35.100
## T4        31.675 1.936276 4 30.1 34.5 30.775 31.05 31.950
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$CRC groups
## T1        34.550      a
## T3        34.300      a
## T4        31.675      a
## T2        22.975      b
## 
## attr(,"class")
## [1] "group"
q4tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     1.341 12 26.9375 4.298898 2.431057
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$CRC       std r  Min  Max    Q25   Q50    Q75
## T1        30.575 1.1295279 4 28.9 31.3 30.400 31.05 31.225
## T2        19.550 0.8185353 4 18.5 20.5 19.325 19.60 19.825
## T3        28.950 1.7058722 4 27.0 30.9 27.900 28.95 30.000
## T4        28.675 0.7135592 4 27.9 29.5 28.200 28.65 29.125
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$CRC groups
## T1        30.575      a
## T3        28.950      a
## T4        28.675      a
## T2        19.550      b
## 
## attr(,"class")
## [1] "group"

VARIABLES ASOCIADAS AL ESTADO HIDRICO

Contenido Relativo de agua

Determinación de la variable en los 4 muestreos

ANOVA

r1 <- aov(CRA~Trat, data = Muestreo1)
r2 <- aov(CRA~Trat, data = Muestreo2)
r3 <- aov(CRA~Trat, data = Muestreo3)
r4 <- aov(CRA~Trat, data = Muestreo4)
anova(r1)
## Analysis of Variance Table
## 
## Response: CRA
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 760.15 253.383  16.477 0.0001486 ***
## Residuals 12 184.53  15.378                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(r2)
## Analysis of Variance Table
## 
## Response: CRA
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 1072.24  357.41  22.171 3.485e-05 ***
## Residuals 12  193.45   16.12                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(r3)
## Analysis of Variance Table
## 
## Response: CRA
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 2655.73  885.24  25.945 1.568e-05 ***
## Residuals 12  409.44   34.12                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(r4)
## Analysis of Variance Table
## 
## Response: CRA
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 2941.79  980.60  112.58 4.715e-09 ***
## Residuals 12  104.53    8.71                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(r1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r1)
## W = 0.91972, p-value = 0.1669
shapiro.test(resid(r2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r2)
## W = 0.96131, p-value = 0.6856
shapiro.test(resid(r3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r3)
## W = 0.98513, p-value = 0.9914
shapiro.test(resid(r4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r4)
## W = 0.95345, p-value = 0.5462

Se cumplen todos los supuestos

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$CRA~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  2.6384 0.09733 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Muestreo2$CRA~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3   0.047 0.9858
##       12
leveneTest(Muestreo3$CRA~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.9474 0.4485
##       12
leveneTest(Muestreo4$CRA~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.6976 0.2204
##       12

Se cumplen todos los supuestos

Pueba de tukey

library(agricolae)
library(dplyr)
r1tukey <-HSD.test(Muestreo1$CRA,Muestreo1$Trat, 12, 15.378, alpha = 0.05)
r2tukey <-HSD.test(Muestreo2$CRA,Muestreo2$Trat, 12, 16.12, alpha = 0.05)
r3tukey <-HSD.test(Muestreo3$CRA,Muestreo3$Trat, 12, 34.12, alpha = 0.05)
r4tukey <-HSD.test(Muestreo4$CRA,Muestreo4$Trat, 12, 8.71, alpha = 0.05)
r1tukey
## $statistics
##   MSerror Df     Mean       CV     MSD
##    15.378 12 76.08813 5.153865 8.23248
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$CRA      std r      Min      Max      Q25      Q50      Q75
## T1      84.20468 3.542397 4 80.47337 87.86127 81.59375 84.24203 86.85296
## T2      65.56335 5.423975 4 60.59322 71.42857 61.14134 65.11580 69.53782
## T3      79.58223 3.087446 4 75.37688 82.60870 78.42755 80.17166 81.32633
## T4      75.00228 3.163968 4 71.17904 78.57143 73.27945 75.12933 76.85216
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$CRA groups
## T1      84.20468      a
## T3      79.58223     ab
## T4      75.00228      b
## T2      65.56335      c
## 
## attr(,"class")
## [1] "group"
r2tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     16.12 12 79.77192 5.033064 8.428752
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$CRA      std r      Min      Max      Q25      Q50      Q75
## T1      88.14420 3.192775 4 85.31469 91.78082 85.54100 87.74065 90.34385
## T2      66.88609 4.913944 4 60.91371 72.92818 65.09545 66.85124 68.64188
## T3      85.32531 3.705073 4 81.76101 89.50617 82.45948 85.01704 87.88287
## T4      78.73208 4.051680 4 72.95918 82.12291 77.51399 79.92311 81.14119
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$CRA groups
## T1      88.14420      a
## T3      85.32531     ab
## T4      78.73208      b
## T2      66.88609      c
## 
## attr(,"class")
## [1] "group"
r3tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     34.12 12 82.18952 7.107028 12.26268
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$CRA      std r      Min      Max      Q25      Q50      Q75
## T1      92.14515 6.904737 4 82.78146 99.31507 89.97017 93.24203 95.41700
## T2      60.34528 7.479434 4 54.27350 69.94536 54.47747 58.58114 64.44896
## T3      91.04734 3.621355 4 88.23529 96.32353 89.02311 89.81527 91.83950
## T4      85.22032 4.444089 4 80.85106 91.11111 82.45766 84.45956 87.22222
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$CRA groups
## T1      92.14515      a
## T3      91.04734      a
## T4      85.22032      a
## T2      60.34528      b
## 
## attr(,"class")
## [1] "group"
r4tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      8.71 12 83.70869 3.525645 6.195692
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$CRA      std r      Min      Max      Q25      Q50      Q75
## T1      89.81746 1.372111 4 88.46154 91.66667 89.01879 89.57083 90.36950
## T2      60.29217 4.664368 4 54.16667 65.21739 58.32840 60.89230 62.85607
## T3      92.45510 1.390754 4 91.04478 94.26752 91.59681 92.25405 93.11233
## T4      92.27002 3.044487 4 88.19444 95.52239 91.27938 92.68162 93.67226
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$CRA groups
## T3      92.45510      a
## T4      92.27002      a
## T1      89.81746      a
## T2      60.29217      b
## 
## attr(,"class")
## [1] "group"

Perdida de electrolitos

Determinación de la variable en el muestreo 4

ANOVA

s4 <- aov(`% PE`~Trat, data = Muestreo4)
anova(s4)
## Analysis of Variance Table
## 
## Response: % PE
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 2889.92  963.31  127.38 2.305e-09 ***
## Residuals 12   90.75    7.56                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(s4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(s4)
## W = 0.81811, p-value = 0.004787

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo4$`% PE`~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.1694 0.06376 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pueba de tukey

library(agricolae)
library(dplyr)
s4tukey <-HSD.test(Muestreo4$`% PE`,Muestreo4$Trat, 12, 7.56, alpha = 0.05)
s4tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      7.56 12 21.68116 12.68173 5.772203
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$`% PE`      std r      Min      Max      Q25      Q50      Q75
## T1         14.01317 0.579645 4 13.19290 14.46908 13.81387 14.19535 14.39465
## T2         44.93670 5.214482 4 39.73974 52.13675 42.43720 43.93515 46.43465
## T3         13.05812 1.101852 4 11.60896 14.20765 12.58578 13.20793 13.68026
## T4         14.71663 1.228119 4 13.78601 16.50485 14.00039 14.28784 15.00408
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$`% PE` groups
## T2         44.93670      a
## T4         14.71663      b
## T1         14.01317      b
## T3         13.05812      b
## 
## attr(,"class")
## [1] "group"

Densidad estomatica de abiertos/totales

ANOVA

y1 <- aov(densidad_estomatica~Trat, data = Muestreo1)
y2 <- aov(densidad_estomatica~Trat, data = Muestreo2)
y3 <- aov(densidad_estomatica~Trat, data = Muestreo3)
y4 <- aov(densidad_estomatica~Trat, data = Muestreo4)
anova(y1)
## Analysis of Variance Table
## 
## Response: densidad_estomatica
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 819.08 273.027  17.571 0.0001093 ***
## Residuals 12 186.46  15.539                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(y2)
## Analysis of Variance Table
## 
## Response: densidad_estomatica
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 457.87 152.624  14.022 0.0003154 ***
## Residuals 12 130.62  10.885                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(y3)
## Analysis of Variance Table
## 
## Response: densidad_estomatica
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 880.50 293.499  40.142 1.559e-06 ***
## Residuals 12  87.74   7.312                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(y4)
## Analysis of Variance Table
## 
## Response: densidad_estomatica
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 2607.25  869.08  23.957 2.356e-05 ***
## Residuals 12  435.32   36.28                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(y1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(y1)
## W = 0.91197, p-value = 0.1252
shapiro.test(resid(y2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(y2)
## W = 0.94194, p-value = 0.3735
shapiro.test(resid(y3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(y3)
## W = 0.96831, p-value = 0.8106
shapiro.test(resid(y4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(y4)
## W = 0.97646, p-value = 0.9292

Homogeneidad de varianzas

library(car)
library(carData)
leveneTest(Muestreo1$densidad_estomatica~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.6954 0.2208
##       12
leveneTest(Muestreo2$densidad_estomatica~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.6494 0.2304
##       12
leveneTest(Muestreo3$densidad_estomatica~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  5.3333 0.01444 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Muestreo4$densidad_estomatica~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.8234 0.5058
##       12

Pueba de tukey

library(agricolae)
library(dplyr)
y1tukey <-HSD.test(Muestreo1$densidad_estomatica,Muestreo1$Trat, 12, 15.539, alpha = 0.05)
y2tukey <-HSD.test(Muestreo2$densidad_estomatica,Muestreo2$Trat, 12, 10.885, alpha = 0.05)
y3tukey <-HSD.test(Muestreo3$densidad_estomatica,Muestreo3$Trat, 12, 7.312, alpha = 0.05)
y4tukey <-HSD.test(Muestreo4$densidad_estomatica,Muestreo4$Trat, 12, 36.28, alpha = 0.05)
y1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    15.539 12 18.21217 21.64461 8.275462
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$densidad_estomatica      std r       Min      Max      Q25
## T1                      27.75198 6.691758 4 18.421053 34.28571 26.03383
## T2                      11.25779 2.259444 4  8.823529 14.28571 10.31399
## T3                      22.48975 2.734203 4 18.421053 24.32432 22.25232
## T4                      11.34916 2.189521 4  8.333333 13.51351 10.65476
##         Q50      Q75
## T1 29.15058 30.86873
## T2 10.96096 11.90476
## T3 23.60681 23.84424
## T4 11.77489 12.46929
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$densidad_estomatica groups
## T1                      27.75198      a
## T3                      22.48975      a
## T4                      11.34916      b
## T2                      11.25779      b
## 
## attr(,"class")
## [1] "group"
y2tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    10.885 12 28.36903 11.62973 6.926199
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$densidad_estomatica      std r      Min      Max      Q25      Q50
## T1                      28.37036 2.055154 4 26.47059 31.25000 27.24265 27.88043
## T2                      20.64160 1.382671 4 18.75000 21.87500 20.07212 20.97070
## T3                      28.70304 2.912797 4 25.64103 32.35294 26.86480 28.40909
## T4                      35.76113 5.377610 4 30.43478 43.24324 33.47076 34.68324
##         Q75
## T1 29.00815
## T2 21.54018
## T3 30.24733
## T4 36.97360
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$densidad_estomatica groups
## T4                      35.76113      a
## T3                      28.70304      b
## T1                      28.37036      b
## T2                      20.64160      c
## 
## attr(,"class")
## [1] "group"
y3tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     7.312 12 34.87078 7.754547 5.676738
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$densidad_estomatica      std r      Min      Max      Q25      Q50
## T1                      41.27510 1.440437 4 39.47368 42.85714 40.55024 41.38478
## T2                      22.23403 4.461596 4 17.85714 27.58621 18.98041 21.74638
## T3                      37.98699 1.905990 4 35.71429 40.00000 36.83555 38.11685
## T4                      37.98699 1.905990 4 35.71429 40.00000 36.83555 38.11685
##         Q75
## T1 42.10963
## T2 25.00000
## T3 39.26829
## T4 39.26829
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$densidad_estomatica groups
## T1                      41.27510      a
## T3                      37.98699      a
## T4                      37.98699      a
## T2                      22.23403      b
## 
## attr(,"class")
## [1] "group"
y4tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     36.28 12 42.28579 14.24424 12.64487
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$densidad_estomatica      std r      Min      Max      Q25      Q50
## T1                      48.07154 8.735282 4 38.77551 59.57447 43.44388 46.96809
## T2                      20.24483 4.014089 4 16.21622 25.80645 18.63739 19.47832
## T3                      50.87002 4.304834 4 47.50000 57.14286 48.50291 49.41860
## T4                      49.95677 5.844472 4 41.30435 54.16667 49.38859 52.17803
##         Q75
## T1 51.59574
## T2 21.08576
## T3 51.78571
## T4 52.74621
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$densidad_estomatica groups
## T3                      50.87002      a
## T4                      49.95677      a
## T1                      48.07154      a
## T2                      20.24483      b
## 
## attr(,"class")
## [1] "group"

DIFERENCIAS ESTADÍSTICA ENTRE MUESTREOS

Temp

Determinación de la variable en los 4 muestreos

ANOVA

g1 <- aov(Temp~muestreo, data = tratamiento1)
g2 <- aov(Temp~muestreo, data = tratamiento2)
g3 <- aov(Temp~muestreo, data = tratamiento3)
g4 <- aov(Temp~muestreo, data = tratamiento4)
anova(g1)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value Pr(>F)
## muestreo   3 5.2319 1.74396  2.3042 0.1288
## Residuals 12 9.0825 0.75687
anova(g2)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 23.913  7.9708    12.1 0.0006118 ***
## Residuals 12  7.905  0.6588                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(g3)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## muestreo   3 9.1425 3.04750  3.6884 0.04322 *
## Residuals 12 9.9150 0.82625                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(g4)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 49.273 16.4242  16.309 0.0001561 ***
## Residuals 12 12.085  1.0071                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(g1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(g1)
## W = 0.96606, p-value = 0.7715
shapiro.test(resid(g2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(g2)
## W = 0.93232, p-value = 0.2652
shapiro.test(resid(g3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(g3)
## W = 0.93695, p-value = 0.3133
shapiro.test(resid(g4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(g4)
## W = 0.95666, p-value = 0.6018

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(tratamiento1$Temp~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.2219 0.3442
##       12
leveneTest(tratamiento2$Temp~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.8676 0.4846
##       12
leveneTest(tratamiento3$Temp~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.4654 0.7117
##       12
leveneTest(tratamiento4$Temp~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  2.3569 0.1231
##       12

Prueba de tukey

library(agricolae)
library(dplyr)
g1tukey <-HSD.test(tratamiento1$Temp,tratamiento1$muestreo, 12, 0.75687, alpha = 0.05)
g2tukey <-HSD.test(tratamiento2$Temp,tratamiento2$muestreo, 12, 0.6588, alpha = 0.05)
g3tukey <-HSD.test(tratamiento3$Temp,tratamiento3$muestreo, 12, 0.82625, alpha = 0.05)
g4tukey <-HSD.test(tratamiento4$Temp,tratamiento4$muestreo, 12, 1.0071, alpha = 0.05)
g1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##   0.75687 12 17.36875 5.008897 1.826381
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$Temp       std r  Min  Max    Q25   Q50    Q75
## M1            18.225 0.6800735 4 17.3 18.9 17.975 18.35 18.600
## M2            17.225 1.2553220 4 16.0 18.9 16.450 17.00 17.775
## M3            17.400 0.4546061 4 16.8 17.9 17.250 17.45 17.600
## M4            16.625 0.8845903 4 15.9 17.9 16.125 16.35 16.850
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$Temp groups
## M1            18.225      a
## M3            17.400      a
## M2            17.225      a
## M4            16.625      a
## 
## attr(,"class")
## [1] "group"
g2tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    0.6588 12 19.8375 4.091569 1.703953
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$Temp       std r  Min  Max    Q25  Q50    Q75
## M1            21.950 0.9882645 4 20.9 23.1 21.275 21.9 22.575
## M2            19.225 0.5188127 4 18.6 19.7 18.900 19.3 19.625
## M3            19.175 0.9464847 4 18.4 20.5 18.550 18.9 19.525
## M4            19.000 0.7023769 4 18.3 19.7 18.450 19.0 19.550
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$Temp groups
## M1            21.950      a
## M2            19.225      b
## M3            19.175      b
## M4            19.000      b
## 
## attr(,"class")
## [1] "group"
g3tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##   0.82625 12 17.3125 5.250443 1.908255
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$Temp       std r  Min  Max    Q25   Q50    Q75
## M1            18.350 0.7416198 4 17.4 19.2 18.075 18.40 18.675
## M2            17.225 0.9215024 4 16.3 18.5 16.825 17.05 17.450
## M3            17.450 0.7767453 4 16.5 18.4 17.175 17.45 17.725
## M4            16.225 1.1412712 4 15.1 17.7 15.475 16.05 16.800
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$Temp groups
## M1            18.350      a
## M3            17.450     ab
## M2            17.225     ab
## M4            16.225      b
## 
## attr(,"class")
## [1] "group"
g4tukey
## $statistics
##   MSerror Df    Mean       CV     MSD
##    1.0071 12 18.1875 5.517766 2.10677
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$Temp       std r  Min  Max    Q25   Q50    Q75
## M1            21.000 1.5253415 4 19.3 22.8 20.050 20.95 21.900
## M2            18.275 0.8015610 4 17.1 18.9 18.150 18.55 18.675
## M3            17.050 0.8185353 4 16.3 17.9 16.375 17.00 17.675
## M4            16.425 0.6238322 4 15.6 17.0 16.125 16.55 16.850
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$Temp groups
## M1            21.000      a
## M2            18.275      b
## M3            17.050      b
## M4            16.425      b
## 
## attr(,"class")
## [1] "group"

ESTMAS ABIERTOS

Determinación de la variable en los 4 muestreos

ANOVA

h1 <- aov(E_Abierto~muestreo, data = tratamiento1)
h2 <- aov(E_Abierto~muestreo, data = tratamiento2)
h3 <- aov(E_Abierto~muestreo, data = tratamiento3)
h4 <- aov(E_Abierto~muestreo, data = tratamiento4)
anova(h1)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3  388.5 129.500  16.984 0.0001287 ***
## Residuals 12   91.5   7.625                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(h2)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value  Pr(>F)   
## muestreo   3  25.25  8.4167    8.08 0.00327 **
## Residuals 12  12.50  1.0417                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(h3)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 579.69 193.229  26.576 1.385e-05 ***
## Residuals 12  87.25   7.271                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(h4)
## Analysis of Variance Table
## 
## Response: E_Abierto
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## muestreo   3 761.19 253.729  54.129 3.02e-07 ***
## Residuals 12  56.25   4.688                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(h1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(h1)
## W = 0.94048, p-value = 0.3549
shapiro.test(resid(h2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(h2)
## W = 0.9698, p-value = 0.8354
shapiro.test(resid(h3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(h3)
## W = 0.96429, p-value = 0.7398
shapiro.test(resid(h4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(h4)
## W = 0.9155, p-value = 0.1428

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(tratamiento1$E_Abierto~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  2.6901 0.09329 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento2$E_Abierto~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.6667 0.5885
##       12
leveneTest(tratamiento3$E_Abierto~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value    Pr(>F)    
## group  3  24.121 2.276e-05 ***
##       12                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento4$E_Abierto~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.8182 0.1975
##       12

Prueba de tukey

library(agricolae)
library(dplyr)
h1tukey <-HSD.test(tratamiento1$E_Abierto,tratamiento1$muestreo, 12, 7.625, alpha = 0.05)
h2tukey <-HSD.test(tratamiento2$E_Abierto,tratamiento2$muestreo, 12, 1.0417, alpha = 0.05)
h3tukey <-HSD.test(tratamiento3$E_Abierto,tratamiento3$muestreo, 12, 7.271, alpha = 0.05)
h4tukey <-HSD.test(tratamiento4$E_Abierto,tratamiento4$muestreo, 12, 4.688, alpha = 0.05)
h1tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##     7.625 12   15 18.40894 5.796965
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$E_Abierto      std r Min Max   Q25  Q50   Q75
## M1                  10.00 2.160247 4   7  12  9.25 10.5 11.25
## M2                  10.75 1.707825 4   9  13  9.75 10.5 11.50
## M3                  17.25 1.500000 4  15  18 17.25 18.0 18.00
## M4                  22.00 4.546061 4  18  28 18.75 21.0 24.25
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$E_Abierto groups
## M4                  22.00      a
## M3                  17.25      a
## M2                  10.75      b
## M1                  10.00      b
## 
## attr(,"class")
## [1] "group"
h2tukey
## $statistics
##   MSerror Df  Mean       CV      MSD
##    1.0417 12 6.125 16.66346 2.142654
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$E_Abierto       std r Min Max  Q25 Q50  Q75
## M1                   4.00 0.8164966 4   3   5 3.75 4.0 4.25
## M2                   6.75 0.9574271 4   6   8 6.00 6.5 7.25
## M3                   6.50 1.2909944 4   5   8 5.75 6.5 7.25
## M4                   7.25 0.9574271 4   6   8 6.75 7.5 8.00
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$E_Abierto groups
## M4                   7.25      a
## M2                   6.75      a
## M3                   6.50      a
## M1                   4.00      b
## 
## attr(,"class")
## [1] "group"
h3tukey
## $statistics
##   MSerror Df    Mean       CV    MSD
##     7.271 12 15.0625 17.90194 5.6608
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$E_Abierto       std r Min Max   Q25  Q50   Q75
## M1                   8.25 0.9574271 4   7   9  7.75  8.5  9.00
## M2                  11.50 1.2909944 4  10  13 10.75 11.5 12.25
## M3                  16.25 1.2583057 4  15  18 15.75 16.0 16.50
## M4                  24.25 4.9916597 4  19  29 20.50 24.5 28.25
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$E_Abierto groups
## M4                  24.25      a
## M3                  16.25      b
## M2                  11.50     bc
## M1                   8.25      c
## 
## attr(,"class")
## [1] "group"
h4tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     4.688 12 14.3125 15.12789 4.545425
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$E_Abierto       std r Min Max   Q25  Q50   Q75
## M1                   4.00 0.8164966 4   3   5  3.75  4.0  4.25
## M2                  13.75 2.6299556 4  10  16 13.00 14.5 15.25
## M3                  16.25 1.2583057 4  15  18 15.75 16.0 16.50
## M4                  23.25 3.0956959 4  19  26 22.00 24.0 25.25
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$E_Abierto groups
## M4                  23.25      a
## M3                  16.25      b
## M2                  13.75      b
## M1                   4.00      c
## 
## attr(,"class")
## [1] "group"

ESTOMAS CERRADOS

Determinación de la variable en los 4 muestreos

ANOVA

i1 <- aov(E_Cerrado~muestreo, data = tratamiento1)
i2 <- aov(E_Cerrado~muestreo, data = tratamiento2)
i3 <- aov(E_Cerrado~muestreo, data = tratamiento3)
i4 <- aov(E_Cerrado~muestreo, data = tratamiento4)
anova(i1)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df  Sum Sq Mean Sq F value Pr(>F)
## muestreo   3  30.687  10.229  0.7085 0.5652
## Residuals 12 173.250  14.438
anova(i2)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## muestreo   3 171.69  57.229  6.1454 0.008957 **
## Residuals 12 111.75   9.312                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(i3)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## muestreo   3   77.5  25.833  2.8311 0.08323 .
## Residuals 12  109.5   9.125                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(i4)
## Analysis of Variance Table
## 
## Response: E_Cerrado
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## muestreo   3  141.5  47.167  3.9719 0.03528 *
## Residuals 12  142.5  11.875                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(i1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(i1)
## W = 0.94964, p-value = 0.484
shapiro.test(resid(i2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(i2)
## W = 0.97047, p-value = 0.8461
shapiro.test(resid(i3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(i3)
## W = 0.96991, p-value = 0.8371
shapiro.test(resid(i4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(i4)
## W = 0.97428, p-value = 0.9023

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(tratamiento1$E_Cerrado~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.4462 0.2783
##       12
leveneTest(tratamiento2$E_Cerrado~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.1049 0.3851
##       12
leveneTest(tratamiento3$E_Cerrado~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.6654  0.227
##       12
leveneTest(tratamiento4$E_Cerrado~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)   
## group  3  8.7868 0.00235 **
##       12                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de tukey

library(agricolae)
library(dplyr)
i1tukey <-HSD.test(tratamiento1$E_Cerrado,tratamiento1$muestreo, 12, 14.438, alpha = 0.05)
i2tukey <-HSD.test(tratamiento2$E_Cerrado,tratamiento2$muestreo, 12, 9.312, alpha = 0.05)
i3tukey <-HSD.test(tratamiento3$E_Cerrado,tratamiento3$muestreo, 12, 9.125, alpha = 0.05)
i4tukey <-HSD.test(tratamiento4$E_Cerrado,tratamiento4$muestreo, 12, 11.875, alpha = 0.05)
i1tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    14.438 12 25.4375 14.93754 7.976902
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$E_Cerrado      std r Min Max   Q25  Q50   Q75
## M1                  26.25 3.403430 4  23  31 24.50 25.5 27.25
## M2                  27.25 4.787136 4  22  33 24.25 27.0 30.00
## M3                  24.50 1.290994 4  23  26 23.75 24.5 25.25
## M4                  23.75 4.645787 4  19  30 21.25 23.0 25.50
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$E_Cerrado groups
## M2                  27.25      a
## M1                  26.25      a
## M3                  24.50      a
## M4                  23.75      a
## 
## attr(,"class")
## [1] "group"
i2tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     9.312 12 27.3125 11.17275 6.406225
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$E_Cerrado      std r Min Max   Q25  Q50   Q75
## M1                  31.50 1.290994 4  30  33 30.75 31.5 32.25
## M2                  26.00 3.741657 4  22  31 24.25 25.5 27.25
## M3                  22.75 1.707825 4  21  25 21.75 22.5 23.50
## M4                  29.00 4.320494 4  23  33 27.50 30.0 31.50
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$E_Cerrado groups
## M1                  31.50      a
## M4                  29.00     ab
## M2                  26.00     ab
## M3                  22.75      b
## 
## attr(,"class")
## [1] "group"
i3tukey
## $statistics
##   MSerror Df  Mean       CV      MSD
##     9.125 12 26.75 11.29257 6.341576
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$E_Cerrado      std r Min Max  Q25  Q50   Q75
## M1                  28.50 2.081666 4  26  31 27.5 28.5 29.50
## M2                  28.75 4.031129 4  23  32 27.5 30.0 31.25
## M3                  26.50 1.000000 4  25  27 26.5 27.0 27.00
## M4                  23.25 3.862210 4  21  29 21.0 21.5 23.75
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$E_Cerrado groups
## M2                  28.75      a
## M1                  28.50      a
## M3                  26.50      a
## M4                  23.25      a
## 
## attr(,"class")
## [1] "group"
i4tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##    11.875 12 26.5 13.00382 7.234317
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$E_Cerrado      std r Min Max   Q25  Q50   Q75
## M1                  31.25 1.707825 4  29  33 30.50 31.5 32.25
## M2                  25.00 6.055301 4  19  32 20.50 24.5 29.00
## M3                  26.50 1.000000 4  25  27 26.50 27.0 27.00
## M4                  23.25 2.629956 4  21  27 21.75 22.5 24.00
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$E_Cerrado groups
## M1                  31.25      a
## M3                  26.50     ab
## M2                  25.00     ab
## M4                  23.25      b
## 
## attr(,"class")
## [1] "group"

ESTOMAS TOTALES

Determinación de la variable en los 4 muestreos

ANOVA

j1 <- aov(E_Total~muestreo, data = tratamiento1)
j2 <- aov(E_Total~muestreo, data = tratamiento2)
j3 <- aov(E_Total~muestreo, data = tratamiento3)
j4 <- aov(E_Total~muestreo, data = tratamiento4)
anova(j1)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## muestreo   3 213.69  71.229  4.4003 0.02627 *
## Residuals 12 194.25  16.188                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(j2)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## muestreo   3 120.69  40.229  3.9168 0.03668 *
## Residuals 12 123.25  10.271                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(j3)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## muestreo   3 245.19  81.729  3.5374 0.04828 *
## Residuals 12 277.25  23.104                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(j4)
## Analysis of Variance Table
## 
## Response: E_Total
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## muestreo   3 285.19  95.063  5.7833 0.01103 *
## Residuals 12 197.25  16.438                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(j1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(j1)
## W = 0.93615, p-value = 0.3045
shapiro.test(resid(j2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(j2)
## W = 0.92068, p-value = 0.173
shapiro.test(resid(j3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(j3)
## W = 0.95597, p-value = 0.5897
shapiro.test(resid(j4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(j4)
## W = 0.9117, p-value = 0.124

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(tratamiento1$E_Total~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.1682 0.06382 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento2$E_Total~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3   1.392 0.2928
##       12
leveneTest(tratamiento3$E_Total~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.8566 0.03829 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento4$E_Total~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)  
## group  3  5.3966 0.0139 *
##       12                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de tukey

library(agricolae)
library(dplyr)
j1tukey <-HSD.test(tratamiento1$E_Total,tratamiento1$muestreo, 12, 16.188, alpha = 0.05)
j2tukey <-HSD.test(tratamiento2$E_Total,tratamiento2$muestreo, 12, 10.271, alpha = 0.05)
j3tukey <-HSD.test(tratamiento3$E_Total,tratamiento3$muestreo, 12, 23.104, alpha = 0.05)
j4tukey <-HSD.test(tratamiento4$E_Total,tratamiento4$muestreo, 12, 16.438, alpha = 0.05)
j1tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    16.188 12 40.4375 9.949753 8.446511
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$E_Total      std r Min Max   Q25  Q50   Q75
## M1                36.25 1.500000 4  35  38 35.00 36.0 37.25
## M2                38.00 6.324555 4  32  46 33.50 37.0 41.50
## M3                41.75 2.629956 4  38  44 41.00 42.5 43.25
## M4                45.75 3.947573 4  40  49 45.25 47.0 47.50
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$E_Total groups
## M4                45.75      a
## M3                41.75     ab
## M2                38.00     ab
## M1                36.25      b
## 
## attr(,"class")
## [1] "group"
j2tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    10.271 12 33.4375 9.584568 6.728017
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$E_Total      std r Min Max   Q25  Q50   Q75
## M1                35.50 1.290994 4  34  37 34.75 35.5 36.25
## M2                32.75 4.573474 4  28  39 31.00 32.0 33.75
## M3                29.25 1.258306 4  28  31 28.75 29.0 29.50
## M4                36.25 4.112988 4  31  41 34.75 36.5 38.00
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$E_Total groups
## M4                36.25      a
## M1                35.50     ab
## M2                32.75     ab
## M3                29.25      b
## 
## attr(,"class")
## [1] "group"
j3tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    23.104 12 41.8125 11.49575 10.09077
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$E_Total      std r Min Max   Q25  Q50   Q75
## M1                36.75 1.892969 4  34  38 36.25 37.5 38.00
## M2                40.25 4.787136 4  34  44 37.75 41.5 44.00
## M3                42.75 1.707825 4  41  45 41.75 42.5 43.50
## M4                47.50 7.937254 4  40  58 42.25 46.0 51.25
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$E_Total groups
## M4                47.50      a
## M3                42.75     ab
## M2                40.25     ab
## M1                36.75      b
## 
## attr(,"class")
## [1] "group"
j4tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    16.438 12 40.8125 9.934163 8.511483
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$E_Total      std r Min Max   Q25  Q50   Q75
## M1                35.25 1.707825 4  33  37 34.50 35.5 36.25
## M2                38.75 7.500000 4  29  46 35.00 40.0 43.75
## M3                42.75 1.707825 4  41  45 41.75 42.5 43.50
## M4                46.50 1.914854 4  44  48 45.50 47.0 48.00
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$E_Total groups
## M4                46.50      a
## M3                42.75     ab
## M2                38.75     ab
## M1                35.25      b
## 
## attr(,"class")
## [1] "group"

CRC

Determinación de la variable en los 4 muestreos

ANOVA

k1 <- aov(CRC~muestreo, data = tratamiento1)
k2 <- aov(CRC~muestreo, data = tratamiento2)
k3 <- aov(CRC~muestreo, data = tratamiento3)
k4 <- aov(CRC~muestreo, data = tratamiento4)
anova(k1)
## Analysis of Variance Table
## 
## Response: CRC
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 285.117  95.039   37.42 2.278e-06 ***
## Residuals 12  30.477   2.540                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(k2)
## Analysis of Variance Table
## 
## Response: CRC
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 108.947  36.316  15.341 0.0002081 ***
## Residuals 12  28.407   2.367                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(k3)
## Analysis of Variance Table
## 
## Response: CRC
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 188.612  62.871  16.838 0.0001341 ***
## Residuals 12  44.805   3.734                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(k4)
## Analysis of Variance Table
## 
## Response: CRC
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 386.73 128.910  82.856 2.742e-08 ***
## Residuals 12  18.67   1.556                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(k1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(k1)
## W = 0.96927, p-value = 0.8267
shapiro.test(resid(k2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(k2)
## W = 0.97525, p-value = 0.9149
shapiro.test(resid(k3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(k3)
## W = 0.97164, p-value = 0.8644
shapiro.test(resid(k4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(k4)
## W = 0.92649, p-value = 0.2144

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(tratamiento1$CRC~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3   2.153 0.1467
##       12
leveneTest(tratamiento2$CRC~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.5488 0.2528
##       12
leveneTest(tratamiento3$CRC~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.3626 0.05502 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tratamiento4$CRC~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.8337 0.1947
##       12

Prueba de tukey

library(agricolae)
library(dplyr)
k1tukey <-HSD.test(tratamiento1$CRC,tratamiento1$muestreo, 12, 2.540, alpha = 0.05)
k2tukey <-HSD.test(tratamiento2$CRC,tratamiento2$muestreo, 12, 2.367, alpha = 0.05)
k3tukey <-HSD.test(tratamiento3$CRC,tratamiento3$muestreo, 12, 3.734, alpha = 0.05)
k4tukey <-HSD.test(tratamiento4$CRC,tratamiento4$muestreo, 12, 1.556, alpha = 0.05)
k1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      2.54 12 35.53125 4.485454 3.345782
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$CRC       std r  Min  Max    Q25   Q50    Q75
## M1           34.750 0.7852813 4 33.8 35.7 34.400 34.75 35.100
## M2           42.250 2.4893105 4 39.7 45.5 40.750 41.90 43.400
## M3           34.550 1.4387495 4 32.9 35.9 33.575 34.70 35.675
## M4           30.575 1.1295279 4 28.9 31.3 30.400 31.05 31.225
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$CRC groups
## M2           42.250      a
## M1           34.750      b
## M3           34.550      b
## M4           30.575      c
## 
## attr(,"class")
## [1] "group"
k2tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     2.367 12 23.46875 6.555551 3.229831
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$CRC       std r  Min  Max    Q25   Q50    Q75
## M1           24.700 0.6683313 4 23.8 25.3 24.400 24.85 25.150
## M2           26.650 2.1455380 4 25.1 29.7 25.175 25.90 27.375
## M3           22.975 1.9362765 4 20.2 24.4 22.375 23.65 24.250
## M4           19.550 0.8185353 4 18.5 20.5 19.325 19.60 19.825
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$CRC groups
## M2           26.650      a
## M1           24.700     ab
## M3           22.975      b
## M4           19.550      c
## 
## attr(,"class")
## [1] "group"
k3tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     3.734 12 33.8375 5.710694 4.056653
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$CRC      std r  Min  Max    Q25   Q50    Q75
## M1           33.475 1.379311 4 31.5 34.6 33.075 33.90 34.300
## M2           38.625 3.017035 4 34.9 41.5 36.850 39.05 40.825
## M3           34.300 1.009950 4 33.0 35.1 33.750 34.55 35.100
## M4           28.950 1.705872 4 27.0 30.9 27.900 28.95 30.000
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$CRC groups
## M2           38.625      a
## M3           34.300      b
## M1           33.475      b
## M4           28.950      c
## 
## attr(,"class")
## [1] "group"
k4tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##     1.556 12 31.3 3.985295 2.618699
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$CRC       std r  Min  Max    Q25   Q50    Q75
## M1           25.825 0.6238322 4 25.2 26.5 25.350 25.80 26.275
## M2           39.025 1.2553220 4 37.5 40.4 38.325 39.10 39.800
## M3           31.675 1.9362765 4 30.1 34.5 30.775 31.05 31.950
## M4           28.675 0.7135592 4 27.9 29.5 28.200 28.65 29.125
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$CRC groups
## M2           39.025      a
## M3           31.675      b
## M4           28.675      c
## M1           25.825      d
## 
## attr(,"class")
## [1] "group"

CRA

Determinación de la variable en los 4 muestreos

ANOVA

l1 <- aov(CRA~muestreo, data = tratamiento1)
l2 <- aov(CRA~muestreo, data = tratamiento2)
l3 <- aov(CRA~muestreo, data = tratamiento3)
l4 <- aov(CRA~muestreo, data = tratamiento4)
anova(l1)
## Analysis of Variance Table
## 
## Response: CRA
##           Df Sum Sq Mean Sq F value Pr(>F)
## muestreo   3  134.3  44.767  2.4767 0.1113
## Residuals 12  216.9  18.075
anova(l2)
## Analysis of Variance Table
## 
## Response: CRA
##           Df Sum Sq Mean Sq F value Pr(>F)
## muestreo   3 143.03  47.676  1.4528 0.2765
## Residuals 12 393.79  32.816
anova(l3)
## Analysis of Variance Table
## 
## Response: CRA
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 415.70 138.567  14.469 0.0002731 ***
## Residuals 12 114.92   9.577                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(l4)
## Analysis of Variance Table
## 
## Response: CRA
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 691.57 230.522  16.631 0.0001422 ***
## Residuals 12 166.34  13.861                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(l1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(l1)
## W = 0.96006, p-value = 0.6628
shapiro.test(resid(l2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(l2)
## W = 0.91781, p-value = 0.1555
shapiro.test(resid(l3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(l3)
## W = 0.97318, p-value = 0.8871
shapiro.test(resid(l4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(l4)
## W = 0.96501, p-value = 0.7527

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(tratamiento1$CRA~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.8046 0.1999
##       12
leveneTest(tratamiento2$CRA~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.9515 0.4467
##       12
leveneTest(tratamiento3$CRA~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.4667  0.273
##       12
leveneTest(tratamiento4$CRA~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.2921 0.8303
##       12

Prueba de tukey

library(agricolae)
library(dplyr)
l1tukey <-HSD.test(tratamiento1$CRA,tratamiento1$muestreo, 12, 18.075, alpha = 0.05)
l2tukey <-HSD.test(tratamiento2$CRA,tratamiento2$muestreo, 12, 32.816, alpha = 0.05)
l3tukey <-HSD.test(tratamiento3$CRA,tratamiento3$muestreo, 12, 9.577, alpha = 0.05)
l4tukey <-HSD.test(tratamiento4$CRA,tratamiento4$muestreo, 12, 13.861, alpha = 0.05)
l1tukey
## $statistics
##   MSerror Df     Mean       CV     MSD
##    18.075 12 88.57787 4.799698 8.92524
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$CRA      std r      Min      Max      Q25      Q50      Q75
## M1         84.20468 3.542397 4 80.47337 87.86127 81.59375 84.24203 86.85296
## M2         88.14420 3.192775 4 85.31469 91.78082 85.54100 87.74065 90.34385
## M3         92.14515 6.904737 4 82.78146 99.31507 89.97017 93.24203 95.41700
## M4         89.81746 1.372111 4 88.46154 91.66667 89.01879 89.57083 90.36950
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$CRA groups
## M3         92.14515      a
## M4         89.81746      a
## M2         88.14420      a
## M1         84.20468      a
## 
## attr(,"class")
## [1] "group"
l2tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    32.816 12 63.27172 9.053847 12.02607
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$CRA      std r      Min      Max      Q25      Q50      Q75
## M1         65.56335 5.423975 4 60.59322 71.42857 61.14134 65.11580 69.53782
## M2         66.88609 4.913944 4 60.91371 72.92818 65.09545 66.85124 68.64188
## M3         60.34528 7.479434 4 54.27350 69.94536 54.47747 58.58114 64.44896
## M4         60.29217 4.664368 4 54.16667 65.21739 58.32840 60.89230 62.85607
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$CRA groups
## M2         66.88609      a
## M1         65.56335      a
## M3         60.34528      a
## M4         60.29217      a
## 
## attr(,"class")
## [1] "group"
l3tukey
## $statistics
##   MSerror Df     Mean      CV     MSD
##     9.577 12 87.10249 3.55291 6.49674
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$CRA      std r      Min      Max      Q25      Q50      Q75
## M1         79.58223 3.087446 4 75.37688 82.60870 78.42755 80.17166 81.32633
## M2         85.32531 3.705073 4 81.76101 89.50617 82.45948 85.01704 87.88287
## M3         91.04734 3.621355 4 88.23529 96.32353 89.02311 89.81527 91.83950
## M4         92.45510 1.390754 4 91.04478 94.26752 91.59681 92.25405 93.11233
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$CRA groups
## M4         92.45510      a
## M3         91.04734     ab
## M2         85.32531     bc
## M1         79.58223      c
## 
## attr(,"class")
## [1] "group"
l4tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    13.861 12 82.80618 4.496085 7.815882
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$CRA      std r      Min      Max      Q25      Q50      Q75
## M1         75.00228 3.163968 4 71.17904 78.57143 73.27945 75.12933 76.85216
## M2         78.73208 4.051680 4 72.95918 82.12291 77.51399 79.92311 81.14119
## M3         85.22032 4.444089 4 80.85106 91.11111 82.45766 84.45956 87.22222
## M4         92.27002 3.044487 4 88.19444 95.52239 91.27938 92.68162 93.67226
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$CRA groups
## M4         92.27002      a
## M3         85.22032     ab
## M2         78.73208     bc
## M1         75.00228      c
## 
## attr(,"class")
## [1] "group"

DENSIDAD DE ESTOMAS ABIERTOS

Determinación de la variable en los 4 muestreos

ANOVA

q1 <- aov(densidad_estomática~muestreo, data = tratamiento1)
q2 <- aov(densidad_estomática~muestreo, data = tratamiento2)
q3 <- aov(densidad_estomática~muestreo, data = tratamiento3)
q4 <- aov(densidad_estomática~muestreo, data = tratamiento4)
anova(q1)
## Analysis of Variance Table
## 
## Response: densidad_estomática
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 1197.00  399.00  12.529 0.0005243 ***
## Residuals 12  382.15   31.85                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(q2)
## Analysis of Variance Table
## 
## Response: densidad_estomática
##           Df Sum Sq Mean Sq F value  Pr(>F)   
## muestreo   3 295.95  98.650  9.1692 0.00198 **
## Residuals 12 129.11  10.759                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(q3)
## Analysis of Variance Table
## 
## Response: densidad_estomática
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 1827.75  609.25  63.922 1.192e-07 ***
## Residuals 12  114.37    9.53                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(q4)
## Analysis of Variance Table
## 
## Response: densidad_estomática
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## muestreo   3 3145.81 1048.60   58.66 1.929e-07 ***
## Residuals 12  214.51   17.88                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(q1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q1)
## W = 0.91952, p-value = 0.1657
shapiro.test(resid(q2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q2)
## W = 0.95362, p-value = 0.5492
shapiro.test(resid(q3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q3)
## W = 0.95935, p-value = 0.65
shapiro.test(resid(q4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q4)
## W = 0.96743, p-value = 0.7954

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(tratamiento1$densidad_estomática~tratamiento1$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  2.2978 0.1295
##       12
leveneTest(tratamiento2$densidad_estomática~tratamiento2$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  2.1112 0.1522
##       12
leveneTest(tratamiento3$densidad_estomática~tratamiento3$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.7489 0.5436
##       12
leveneTest(tratamiento4$densidad_estomática~tratamiento4$muestreo, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.5953 0.2422
##       12

Prueba de tukey

library(agricolae)
library(dplyr)
q1tukey <-HSD.test(tratamiento1$densidad_estomática,tratamiento1$muestreo, 12, 31.85, alpha = 0.05)
q2tukey <-HSD.test(tratamiento2$densidad_estomática,tratamiento2$muestreo, 12, 10.759, alpha = 0.05)
q3tukey <-HSD.test(tratamiento3$densidad_estomática,tratamiento3$muestreo, 12, 9.53, alpha = 0.05)
q4tukey <-HSD.test(tratamiento4$densidad_estomática,tratamiento4$muestreo, 12, 17.88, alpha = 0.05)
q1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     31.85 12 36.36724 15.51831 11.84774
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento1$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento1$densidad_estomática      std r      Min      Max      Q25
## M1                         27.75198 6.691758 4 18.42105 34.28571 26.03383
## M2                         28.37036 2.055154 4 26.47059 31.25000 27.24265
## M3                         41.27510 1.440437 4 39.47368 42.85714 40.55024
## M4                         48.07154 8.735282 4 38.77551 59.57447 43.44388
##         Q50      Q75
## M1 29.15058 30.86873
## M2 27.88043 29.00815
## M3 41.38478 42.10963
## M4 46.96809 51.59574
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento1$densidad_estomática groups
## M4                         48.07154      a
## M3                         41.27510      a
## M2                         28.37036      b
## M1                         27.75198      b
## 
## attr(,"class")
## [1] "group"
q2tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    10.759 12 18.59456 17.64006 6.885995
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento2$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento2$densidad_estomática      std r       Min      Max      Q25
## M1                         11.25779 2.259444 4  8.823529 14.28571 10.31399
## M2                         20.64160 1.382671 4 18.750000 21.87500 20.07212
## M3                         22.23403 4.461596 4 17.857143 27.58621 18.98041
## M4                         20.24483 4.014089 4 16.216216 25.80645 18.63739
##         Q50      Q75
## M1 10.96096 11.90476
## M2 20.97070 21.54018
## M3 21.74638 25.00000
## M4 19.47832 21.08576
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento2$densidad_estomática groups
## M3                         22.23403      a
## M2                         20.64160      a
## M4                         20.24483      a
## M1                         11.25779      b
## 
## attr(,"class")
## [1] "group"
q3tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      9.53 12 35.01245 8.817063 6.480779
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento3$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento3$densidad_estomática      std r      Min      Max      Q25
## M1                         22.48975 2.734203 4 18.42105 24.32432 22.25232
## M2                         28.70304 2.912797 4 25.64103 32.35294 26.86480
## M3                         37.98699 1.905990 4 35.71429 40.00000 36.83555
## M4                         50.87002 4.304834 4 47.50000 57.14286 48.50291
##         Q50      Q75
## M1 23.60681 23.84424
## M2 28.40909 30.24733
## M3 38.11685 39.26829
## M4 49.41860 51.78571
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento3$densidad_estomática groups
## M4                         50.87002      a
## M3                         37.98699      b
## M2                         28.70304      c
## M1                         22.48975      c
## 
## attr(,"class")
## [1] "group"
q4tukey
## $statistics
##   MSerror Df     Mean      CV      MSD
##     17.88 12 33.76351 12.5238 8.876965
## 
## $parameters
##    test                name.t ntr StudentizedRange alpha
##   Tukey tratamiento4$muestreo   4          4.19866  0.05
## 
## $means
##    tratamiento4$densidad_estomática      std r       Min      Max      Q25
## M1                         11.34916 2.189521 4  8.333333 13.51351 10.65476
## M2                         35.76113 5.377610 4 30.434783 43.24324 33.47076
## M3                         37.98699 1.905990 4 35.714286 40.00000 36.83555
## M4                         49.95677 5.844472 4 41.304348 54.16667 49.38859
##         Q50      Q75
## M1 11.77489 12.46929
## M2 34.68324 36.97360
## M3 38.11685 39.26829
## M4 52.17803 52.74621
## 
## $comparison
## NULL
## 
## $groups
##    tratamiento4$densidad_estomática groups
## M4                         49.95677      a
## M3                         37.98699      b
## M2                         35.76113      b
## M1                         11.34916      c
## 
## attr(,"class")
## [1] "group"