R Quiz for Batch 1 & 2 Answer the following question and publish in rpubs and share the link
Part 1
Q1) How many data structures does R language have?
Answer:1.Atomic Vector 2.List 3.Array 4.Matrices 5.Data Frame & 6.Factors.
Q2) What is the value of f(5) for the following R code?
b <- 4
f <- function (a)
{
b <- 3
b^3
}
f(5)
## [1] 27
Q3) Fix the error in the code?
printmessage <- function (a) {
if (is.na (a))
print ("a is a missing value!")
else if (a < 0){
print ("a is less than zero")
}
else{
print ("a is greater than or equal to zero")
}
}
printmessage (NA)
## [1] "a is a missing value!"
Q4) What is the difference between data frame and a matrix in R?
Answer:In a data frame the columns contain different types of data.Data frame is more general than a matrix,in that different columns can have different modes(numeric,character,factor etc.).Just like a table in a database or excel sheet.
But,in a matrix all the elements are the same type of data.A matrix in R is like a mathematical matrix,containing all the same type of thing(usually numbers)
Q5) Two vectors X and Y are defined as follows – X <- c(3, 2, 4) and Y <- c(1, 2). What will be output of vector Z that is defined as Z <- X*Y.
X<-c(3,2,4)
Y<-c(1,2)
z<-X*Y
## Warning in X * Y: longer object length is not a multiple of shorter object
## length
z
## [1] 3 4 4
longer object length is not a multiple of shorter object length[1] 3 4 4
Q6) Drop variables v2 & v3 from the below dataframe df<-data.frame(v1=c(1:5),v2=c(2:6),v3=c(3:7),v4=c(4:8))
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
df<-data.frame(v1=c(1:5),v2=c(2:6),v3=c(3:7),v4=c(4:8))
select(df,-v2,-v3)
## v1 v4
## 1 1 4
## 2 2 5
## 3 3 6
## 4 4 7
## 5 5 8
Q7) What will be the output of the following R programming code?
x<-5
if(x%%2==0){
print("X is an even number")
}else{
print("X is an odd number")
}
## [1] "X is an odd number"
Q8) I have a string “contact@boston.in”. Which string function can be used to split the string into two different strings “contact@boston” and “in”?
x<-"contact@boston.in"
strsplit(x,".",fixed=TRUE)
## [[1]]
## [1] "contact@boston" "in"
Q9) Write a R program to find the counts of uniques for the given vector
tt <- c("a", "b", "a", "a", "b", "c", "a1", "a1", "a1")
table(tt)
## tt
## a a1 b c
## 3 3 2 1
Q10) Write a R program to find the cumulative frequency for given vector?
Sales = c(10,2,40,13,34,12,35,67,12,56,14,56,134)
cumsum(Sales)
## [1] 10 12 52 65 99 111 146 213 225 281 295 351 485
Part 2 For the given dataset carrying out following tasks Dataset: ##The dataset is given in the link 1) Find missing value in the dataset 2) Impute missing values in the dataset using missforest package 3) Find summary statistics using dplyr package 4) What is the avg amount spend by Male and Females? 5) Using GGplots library build 5 graphs?
library(missForest)
## Warning: package 'missForest' was built under R version 4.0.3
## Loading required package: randomForest
## Warning: package 'randomForest' was built under R version 4.0.3
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
## combine
## Loading required package: foreach
## Loading required package: itertools
## Warning: package 'itertools' was built under R version 4.0.3
## Loading required package: iterators
Inport the Dataset
german_credit_dataset<-read.csv('C:/Users/MADHURIMA PANDE/Desktop/R/german_credit_data_risk.csv')
Pre analysis of Dataset
View(german_credit_dataset)# View dataset
summary(german_credit_dataset)#Summarise dataset
## X Age Sex Job
## Min. : 0.0 Min. :19.00 Length:1000 Min. :0.000
## 1st Qu.:249.8 1st Qu.:27.00 Class :character 1st Qu.:2.000
## Median :499.5 Median :33.00 Mode :character Median :2.000
## Mean :499.5 Mean :35.55 Mean :1.904
## 3rd Qu.:749.2 3rd Qu.:42.00 3rd Qu.:2.000
## Max. :999.0 Max. :75.00 Max. :3.000
## Housing Saving.accounts Checking.account Credit.amount
## Length:1000 Length:1000 Length:1000 Min. : 250
## Class :character Class :character Class :character 1st Qu.: 1366
## Mode :character Mode :character Mode :character Median : 2320
## Mean : 3271
## 3rd Qu.: 3972
## Max. :18424
## Duration Purpose Risk
## Min. : 4.0 Length:1000 Length:1000
## 1st Qu.:12.0 Class :character Class :character
## Median :18.0 Mode :character Mode :character
## Mean :20.9
## 3rd Qu.:24.0
## Max. :72.0
head(german_credit_dataset)# 1st 6rows of dataset
## X Age Sex Job Housing Saving.accounts Checking.account Credit.amount
## 1 0 67 male 2 own <NA> little 1169
## 2 1 22 female 2 own little moderate 5951
## 3 2 49 male 1 own little <NA> 2096
## 4 3 45 male 2 free little little 7882
## 5 4 53 male 2 free little little 4870
## 6 5 35 male 1 free <NA> <NA> 9055
## Duration Purpose Risk
## 1 6 radio/TV good
## 2 48 radio/TV bad
## 3 12 education good
## 4 42 furniture/equipment good
## 5 24 car bad
## 6 36 education good
tail(german_credit_dataset) # Last 6 rows of dataset
## X Age Sex Job Housing Saving.accounts Checking.account Credit.amount
## 995 994 50 male 2 own <NA> <NA> 2390
## 996 995 31 female 1 own little <NA> 1736
## 997 996 40 male 3 own little little 3857
## 998 997 38 male 2 own little <NA> 804
## 999 998 23 male 2 free little little 1845
## 1000 999 27 male 2 own moderate moderate 4576
## Duration Purpose Risk
## 995 12 car good
## 996 12 furniture/equipment good
## 997 30 car good
## 998 12 radio/TV good
## 999 45 radio/TV bad
## 1000 45 car good
str(german_credit_dataset)
## 'data.frame': 1000 obs. of 11 variables:
## $ X : int 0 1 2 3 4 5 6 7 8 9 ...
## $ Age : int 67 22 49 45 53 35 53 35 61 28 ...
## $ Sex : chr "male" "female" "male" "male" ...
## $ Job : int 2 2 1 2 2 1 2 3 1 3 ...
## $ Housing : chr "own" "own" "own" "free" ...
## $ Saving.accounts : chr NA "little" "little" "little" ...
## $ Checking.account: chr "little" "moderate" NA "little" ...
## $ Credit.amount : int 1169 5951 2096 7882 4870 9055 2835 6948 3059 5234 ...
## $ Duration : int 6 48 12 42 24 36 24 36 12 30 ...
## $ Purpose : chr "radio/TV" "radio/TV" "education" "furniture/equipment" ...
## $ Risk : chr "good" "bad" "good" "good" ...
1.Find missing value in the dataset
sum(is.na(german_credit_dataset)) #Total no. of missing values in the dataset
## [1] 577
colSums(is.na(german_credit_dataset)) # Columnwise missing values
## X Age Sex Job
## 0 0 0 0
## Housing Saving.accounts Checking.account Credit.amount
## 0 183 394 0
## Duration Purpose Risk
## 0 0 0
# Getting the unique count of Checking account
table(german_credit_dataset$Checking.account)
##
## little moderate rich
## 274 269 63
# replacing each levels of Checking.account column with numeric values like replace 'little' wih 1 'moderate' with 2 and 'rich' with 4
german_credit_dataset$Checking.account[german_credit_dataset$Checking.account=='little']<-c(1)
german_credit_dataset$Checking.account[german_credit_dataset$Checking.account=='moderate']<-c(2)
german_credit_dataset$Checking.account[german_credit_dataset$Checking.account=='rich']<-c(3)
class(german_credit_dataset$Checking.account)
## [1] "character"
#convert the datatype of Checking.account from character to numetic
german_credit_dataset$Checking.account<-as.numeric(german_credit_dataset$Checking.account)
class(german_credit_dataset$Checking.account)
## [1] "numeric"
# checking the unique count of Savings account
table(german_credit_dataset$Saving.accounts)
##
## little moderate quite rich rich
## 603 103 63 48
# replacing each levels of Saving.accounts column with numeric values like replace 'little' wih 1 'moderate' with 2, 'quite rich' with 3 and 'rich' with 4
german_credit_dataset$Saving.accounts[german_credit_dataset$Saving.accounts=='little']<-c(1)
german_credit_dataset$Saving.accounts[german_credit_dataset$Saving.accounts=='moderate']<-c(2)
german_credit_dataset$Saving.accounts[german_credit_dataset$Saving.accounts=='quite rich']<-c(3)
german_credit_dataset$Saving.accounts[german_credit_dataset$Saving.accounts=='rich']<-c(4)
class(german_credit_dataset$Saving.accounts)
## [1] "character"
german_credit_dataset$Saving.accounts<-as.numeric(german_credit_dataset$Saving.accounts)
class(german_credit_dataset$Saving.accounts)
## [1] "numeric"
german_credit_dataset_num<-unlist(lapply(german_credit_dataset,is.numeric))
german_credit_dataset_num
## X Age Sex Job
## TRUE TRUE FALSE TRUE
## Housing Saving.accounts Checking.account Credit.amount
## FALSE TRUE TRUE TRUE
## Duration Purpose Risk
## TRUE FALSE FALSE
missForest(german_credit_dataset[,german_credit_dataset_num])
## missForest iteration 1 in progress...
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## done!
## missForest iteration 2 in progress...
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## done!
## missForest iteration 3 in progress...
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## done!
## missForest iteration 4 in progress...
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## done!
## missForest iteration 5 in progress...
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## done!
## missForest iteration 6 in progress...
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## done!
## missForest iteration 7 in progress...
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## done!
## $ximp
## X Age Job Saving.accounts Checking.account Credit.amount Duration
## 1 0 67 2 1.592500 1.000000 1169 6
## 2 1 22 2 1.000000 2.000000 5951 48
## 3 2 49 1 1.000000 1.902312 2096 12
## 4 3 45 2 1.000000 1.000000 7882 42
## 5 4 53 2 1.000000 1.000000 4870 24
## 6 5 35 1 1.190000 1.242692 9055 36
## 7 6 53 2 3.000000 1.650000 2835 24
## 8 7 35 3 1.000000 2.000000 6948 36
## 9 8 61 1 4.000000 1.679444 3059 12
## 10 9 28 3 1.000000 2.000000 5234 30
## 11 10 25 2 1.000000 2.000000 1295 12
## 12 11 24 2 1.000000 1.000000 4308 48
## 13 12 22 2 1.000000 2.000000 1567 12
## 14 13 60 1 1.000000 1.000000 1199 24
## 15 14 28 2 1.000000 1.000000 1403 15
## 16 15 32 1 2.000000 1.000000 1282 24
## 17 16 53 2 2.026667 1.660000 2424 24
## 18 17 25 2 1.742500 1.000000 8072 30
## 19 18 44 3 1.000000 2.000000 12579 24
## 20 19 31 2 3.000000 1.450000 3430 24
## 21 20 48 2 1.000000 1.445690 2134 9
## 22 21 44 2 3.000000 1.000000 2647 6
## 23 22 48 1 1.000000 1.000000 2241 10
## 24 23 44 2 2.000000 2.000000 1804 12
## 25 24 26 2 1.320000 1.708690 2069 10
## 26 25 36 1 1.000000 1.000000 1374 6
## 27 26 39 1 1.000000 1.451645 426 6
## 28 27 42 2 4.000000 3.000000 409 12
## 29 28 34 2 1.000000 2.000000 2415 7
## 30 29 63 2 1.000000 1.000000 6836 60
## 31 30 36 2 4.000000 2.000000 1913 18
## 32 31 27 2 1.000000 1.000000 4020 24
## 33 32 30 2 2.000000 2.000000 5866 18
## 34 33 57 1 2.830000 2.080000 1264 12
## 35 34 33 3 1.000000 3.000000 1474 12
## 36 35 25 1 1.000000 2.000000 4746 45
## 37 36 31 2 1.000000 1.579075 6110 48
## 38 37 37 2 1.000000 3.000000 2100 18
## 39 38 37 2 1.000000 3.000000 1225 10
## 40 39 24 2 1.000000 2.000000 458 9
## 41 40 30 3 3.000000 1.680000 2333 30
## 42 41 26 2 3.000000 2.000000 1158 12
## 43 42 44 1 1.000000 2.000000 6204 18
## 44 43 24 2 2.000000 1.000000 6187 30
## 45 44 58 1 1.000000 1.000000 6143 48
## 46 45 35 3 1.000000 2.318086 1393 11
## 47 46 39 2 3.000000 1.890000 2299 36
## 48 47 23 0 3.000000 1.000000 1352 6
## 49 48 39 1 1.000000 1.818000 7228 11
## 50 49 28 2 2.000000 1.706667 2073 12
## 51 50 29 1 1.765000 2.000000 2333 24
## 52 51 30 3 1.000000 2.000000 5965 27
## 53 52 25 2 1.000000 1.980135 1262 12
## 54 53 31 2 1.991786 1.860000 3378 18
## 55 54 57 2 1.000000 2.000000 2225 36
## 56 55 26 1 1.764333 1.753333 783 6
## 57 56 52 3 1.450208 2.000000 6468 12
## 58 57 31 2 1.000000 1.566508 9566 36
## 59 58 23 3 1.000000 3.000000 1961 18
## 60 59 23 1 1.000000 1.000000 6229 36
## 61 60 27 2 1.000000 2.000000 1391 9
## 62 61 50 2 2.458186 2.000000 1537 15
## 63 62 61 3 1.000000 2.000000 1953 36
## 64 63 25 2 1.000000 2.000000 14421 48
## 65 64 26 2 1.000000 1.574302 3181 24
## 66 65 48 2 1.990000 1.880000 5190 27
## 67 66 29 2 1.000000 1.560510 2171 12
## 68 67 22 2 4.000000 2.000000 1007 12
## 69 68 37 2 1.000000 1.691508 1819 36
## 70 69 25 2 1.340000 1.590000 2394 36
## 71 70 30 2 1.000000 1.644508 8133 36
## 72 71 46 1 1.650000 1.530833 730 7
## 73 72 51 3 1.000000 1.000000 1164 8
## 74 73 41 1 1.000000 2.000000 5954 42
## 75 74 40 3 1.190000 1.000000 1977 36
## 76 75 66 3 1.000000 1.000000 1526 12
## 77 76 34 2 1.000000 1.000000 3965 42
## 78 77 51 2 1.000000 2.000000 4771 11
## 79 78 39 1 1.942500 1.878000 9436 54
## 80 79 22 2 1.000000 2.000000 3832 30
## 81 80 44 2 1.717500 1.850000 5943 24
## 82 81 47 2 3.000000 1.950000 1213 15
## 83 82 24 1 2.000000 1.695667 1568 18
## 84 83 58 1 1.000000 1.000000 1755 24
## 85 84 52 1 1.000000 1.000000 2315 10
## 86 85 29 3 1.000000 1.859738 1412 12
## 87 86 27 2 1.000000 2.000000 1295 18
## 88 87 47 2 2.000000 2.000000 12612 36
## 89 88 30 3 2.000000 1.000000 2249 18
## 90 89 28 2 1.000000 1.000000 1108 12
## 91 90 56 2 1.000000 1.425000 618 12
## 92 91 54 2 1.000000 1.000000 1409 12
## 93 92 33 1 1.370000 1.590000 797 12
## 94 93 20 2 1.660000 3.000000 3617 24
## 95 94 54 2 4.000000 2.000000 1318 12
## 96 95 58 2 1.000000 2.000000 15945 54
## 97 96 61 2 2.360000 1.890000 2012 12
## 98 97 34 2 2.000000 2.000000 2622 18
## 99 98 36 2 1.000000 2.000000 2337 36
## 100 99 36 3 1.603208 2.000000 7057 20
## 101 100 41 1 2.000000 2.038000 1469 24
## 102 101 24 2 1.000000 2.000000 2323 36
## 103 102 24 2 1.000000 1.667500 932 6
## 104 103 35 2 1.000000 2.000000 1919 9
## 105 104 26 2 1.530000 1.790000 2445 12
## 106 105 39 3 1.000000 2.000000 11938 24
## 107 106 39 3 1.000000 1.765452 6458 18
## 108 107 32 2 1.000000 2.000000 6078 12
## 109 108 30 2 1.680000 1.000000 7721 24
## 110 109 35 2 3.000000 2.000000 1410 14
## 111 110 31 2 2.000000 2.000000 1449 6
## 112 111 23 2 1.000000 3.000000 392 15
## 113 112 28 1 1.000000 2.000000 6260 18
## 114 113 25 2 1.000000 1.923651 7855 36
## 115 114 35 2 3.000000 1.000000 1680 12
## 116 115 47 2 2.083333 1.920000 3578 48
## 117 116 30 3 1.220000 1.000000 7174 42
## 118 117 27 2 1.510312 1.000000 2132 10
## 119 118 23 2 3.000000 1.000000 4281 33
## 120 119 36 3 3.000000 2.000000 2366 12
## 121 120 25 2 1.000000 1.000000 1835 21
## 122 121 41 3 1.000000 1.678721 3868 24
## 123 122 24 1 1.000000 1.593167 1768 12
## 124 123 63 2 1.000000 3.000000 781 10
## 125 124 27 2 1.543020 2.000000 1924 18
## 126 125 30 2 1.000000 1.000000 2121 12
## 127 126 40 1 1.000000 1.000000 701 12
## 128 127 30 2 1.000000 2.000000 639 12
## 129 128 34 3 1.000000 2.000000 1860 12
## 130 129 29 2 1.000000 1.000000 3499 12
## 131 130 24 2 1.629167 2.000000 8487 48
## 132 131 29 2 1.000000 1.000000 6887 36
## 133 132 27 1 1.000000 1.425000 2708 15
## 134 133 47 2 1.000000 1.894373 1984 18
## 135 134 21 2 2.000000 1.948333 10144 60
## 136 135 38 2 2.600000 2.140000 1240 12
## 137 136 27 2 4.000000 1.873611 8613 27
## 138 137 66 1 3.000000 2.000000 766 12
## 139 138 35 2 2.129686 2.000000 2728 15
## 140 139 44 1 1.000000 3.000000 1881 12
## 141 140 27 0 4.000000 3.000000 709 6
## 142 141 30 3 1.000000 2.000000 4795 36
## 143 142 27 3 1.000000 1.000000 3416 27
## 144 143 22 2 1.000000 1.000000 2462 18
## 145 144 23 2 1.000000 1.498333 2288 21
## 146 145 30 2 2.000000 2.000000 3566 48
## 147 146 39 2 1.000000 1.000000 860 6
## 148 147 51 2 2.000000 1.600000 682 12
## 149 148 28 2 1.000000 1.000000 5371 36
## 150 149 46 2 4.000000 1.936944 1582 18
## 151 150 42 2 2.000000 1.623333 1346 6
## 152 151 38 2 1.000000 1.947684 1924 10
## 153 152 24 2 1.000000 3.000000 5848 36
## 154 153 29 2 4.000000 2.000000 7758 24
## 155 154 36 3 2.000000 2.000000 6967 24
## 156 155 20 2 1.000000 1.000000 1282 12
## 157 156 48 2 2.000000 1.000000 1288 9
## 158 157 45 1 1.000000 1.000000 339 12
## 159 158 38 2 2.000000 2.000000 3512 24
## 160 159 34 1 2.111000 1.856667 1898 6
## 161 160 36 2 2.000000 2.040000 2872 24
## 162 161 30 2 1.000000 1.379715 1055 18
## 163 162 36 2 3.000000 2.150000 1262 15
## 164 163 70 3 1.000000 2.000000 7308 10
## 165 164 36 2 3.000000 2.243333 909 36
## 166 165 32 2 3.000000 1.718333 2978 6
## 167 166 33 2 1.000000 1.000000 1131 18
## 168 167 20 2 4.000000 2.000000 1577 11
## 169 168 25 2 1.000000 1.731326 3972 24
## 170 169 31 2 1.000000 2.000000 1935 24
## 171 170 33 2 1.000000 1.000000 950 15
## 172 171 26 2 1.000000 1.467962 763 12
## 173 172 34 3 1.000000 2.000000 2064 24
## 174 173 33 2 1.000000 2.000000 1414 8
## 175 174 26 2 1.000000 1.000000 3414 21
## 176 175 53 3 2.040000 1.980000 7485 30
## 177 176 42 2 1.000000 1.000000 2577 12
## 178 177 52 2 3.000000 1.000000 338 6
## 179 178 31 3 1.000000 1.801424 1963 12
## 180 179 65 2 1.000000 1.000000 571 21
## 181 180 28 2 1.000000 1.498484 9572 36
## 182 181 30 3 1.000000 2.000000 4455 36
## 183 182 40 1 1.250000 1.000000 1647 21
## 184 183 50 2 4.000000 1.876944 3777 24
## 185 184 36 2 1.000000 2.000000 884 18
## 186 185 31 2 1.000000 1.424310 1360 15
## 187 186 74 3 1.000000 2.000000 5129 9
## 188 187 68 0 1.000000 2.000000 1175 16
## 189 188 20 2 2.000000 1.000000 674 12
## 190 189 33 2 1.000000 2.000000 3244 18
## 191 190 54 3 4.000000 1.823611 4591 24
## 192 191 34 1 2.000000 2.000000 3844 48
## 193 192 36 2 1.000000 2.000000 3915 27
## 194 193 29 2 1.000000 1.636389 2108 6
## 195 194 21 2 2.000000 2.000000 3031 45
## 196 195 34 3 1.000000 2.000000 1501 9
## 197 196 28 2 1.000000 1.632350 1382 6
## 198 197 27 2 2.000000 2.000000 951 12
## 199 198 36 2 1.798972 2.000000 2760 24
## 200 199 40 3 1.000000 2.000000 4297 18
## 201 200 52 2 3.000000 1.855000 936 9
## 202 201 27 1 1.000000 1.000000 1168 12
## 203 202 26 2 1.000000 2.040801 5117 27
## 204 203 21 2 1.000000 1.000000 902 12
## 205 204 38 1 1.000000 1.509438 1495 12
## 206 205 38 3 1.000000 1.000000 10623 30
## 207 206 43 2 1.000000 1.834350 1935 12
## 208 207 26 2 1.000000 2.000000 1424 12
## 209 208 21 1 1.000000 1.000000 6568 24
## 210 209 55 2 4.000000 2.057500 1413 12
## 211 210 33 2 1.960000 1.823333 3074 9
## 212 211 45 1 1.982222 1.978000 3835 36
## 213 212 50 2 1.000000 1.000000 5293 27
## 214 213 66 3 1.000000 3.000000 1908 30
## 215 214 51 2 1.980556 2.040000 3342 36
## 216 215 39 1 1.882667 2.000000 932 6
## 217 216 31 2 1.000000 1.000000 3104 18
## 218 217 23 2 1.000000 3.000000 3913 36
## 219 218 24 1 1.000000 1.000000 3021 24
## 220 219 64 2 1.000000 1.818184 1364 10
## 221 220 26 1 1.000000 2.000000 625 12
## 222 221 23 2 1.048630 1.000000 1200 12
## 223 222 30 2 1.000000 1.519057 707 12
## 224 223 32 2 2.121071 1.980000 2978 24
## 225 224 30 2 1.000000 1.521746 4657 15
## 226 225 27 2 1.000000 1.569991 2613 36
## 227 226 27 2 4.000000 2.000000 10961 48
## 228 227 53 3 1.000000 1.000000 7865 12
## 229 228 22 2 1.000000 1.760194 1478 9
## 230 229 22 2 1.000000 1.000000 3149 24
## 231 230 26 2 1.000000 3.000000 4210 36
## 232 231 51 1 3.000000 1.865000 2507 9
## 233 232 35 2 2.000000 1.825000 2141 12
## 234 233 25 1 1.000000 2.000000 866 18
## 235 234 42 1 1.000000 1.626333 1544 4
## 236 235 30 3 1.000000 1.000000 1823 24
## 237 236 23 0 1.988000 2.000000 14555 6
## 238 237 61 1 2.000000 2.000000 2767 21
## 239 238 35 2 1.000000 1.563359 1291 12
## 240 239 39 2 1.000000 1.000000 2522 30
## 241 240 29 2 1.140000 1.000000 915 24
## 242 241 51 2 1.000000 1.531389 1595 6
## 243 242 24 2 1.000000 1.000000 4605 48
## 244 243 27 2 1.000000 1.378397 1185 12
## 245 244 35 1 3.000000 1.745000 3447 12
## 246 245 25 2 1.000000 1.848279 1258 24
## 247 246 52 2 1.000000 1.407500 717 12
## 248 247 35 2 2.000000 1.716667 1204 6
## 249 248 26 2 1.000000 3.000000 1925 24
## 250 249 22 2 1.000000 1.926111 433 18
## 251 250 39 1 4.000000 1.000000 666 6
## 252 251 46 1 1.000000 3.000000 2251 12
## 253 252 24 2 1.000000 2.000000 2150 30
## 254 253 35 2 2.000000 1.955000 4151 24
## 255 254 24 2 1.253333 2.000000 2030 9
## 256 255 27 1 1.919405 2.000000 7418 60
## 257 256 35 1 1.000000 1.597684 2684 24
## 258 257 29 2 1.000000 1.000000 2149 12
## 259 258 23 2 2.000000 1.917500 3812 15
## 260 259 57 1 2.000000 2.187500 1154 11
## 261 260 27 2 1.000000 1.000000 1657 12
## 262 261 55 2 1.000000 1.000000 1603 24
## 263 262 36 3 1.000000 1.000000 5302 18
## 264 263 57 1 1.000000 1.526333 2748 12
## 265 264 32 1 1.000000 1.841455 1231 10
## 266 265 37 2 1.000000 2.000000 802 15
## 267 266 36 2 1.920000 2.020000 6304 36
## 268 267 38 2 1.000000 1.486031 1533 24
## 269 268 45 3 1.000000 1.000000 8978 14
## 270 269 25 2 1.015000 1.647962 999 24
## 271 270 32 2 1.850000 1.900000 2662 18
## 272 271 37 2 3.000000 2.330000 1402 12
## 273 272 36 3 1.746875 2.000000 12169 48
## 274 273 28 2 1.000000 2.000000 3060 48
## 275 274 34 1 1.000000 1.000000 11998 30
## 276 275 32 2 1.000000 1.526389 2697 9
## 277 276 26 2 1.000000 1.697984 2404 18
## 278 277 49 1 1.080000 1.000000 1262 12
## 279 278 32 2 1.000000 1.608556 4611 6
## 280 279 29 3 2.000000 2.000000 1901 24
## 281 280 23 2 4.000000 1.675833 3368 15
## 282 281 50 2 1.000000 1.482517 1574 12
## 283 282 49 1 2.161667 3.000000 1445 18
## 284 283 63 2 2.900000 2.116429 1520 15
## 285 284 37 2 2.000000 2.000000 3878 24
## 286 285 35 1 1.000000 1.000000 10722 47
## 287 286 26 2 1.000000 1.000000 4788 48
## 288 287 31 3 2.000000 2.000000 7582 48
## 289 288 49 2 1.000000 2.000000 1092 12
## 290 289 48 2 1.000000 1.000000 1024 24
## 291 290 26 2 1.000000 1.720795 1076 12
## 292 291 28 3 1.000000 2.000000 9398 36
## 293 292 44 3 1.000000 1.000000 6419 24
## 294 293 56 2 1.000000 3.000000 4796 42
## 295 294 46 3 2.130000 2.040000 7629 48
## 296 295 26 2 1.000000 2.000000 9960 48
## 297 296 20 2 2.264028 1.930833 4675 12
## 298 297 45 1 2.410000 2.350000 1287 10
## 299 298 43 2 1.000000 1.545039 2515 18
## 300 299 32 2 4.000000 2.000000 2745 21
## 301 300 54 0 1.000000 1.666455 672 6
## 302 301 42 2 1.000000 2.000000 3804 36
## 303 302 37 1 2.311667 3.000000 1344 24
## 304 303 49 2 1.000000 1.000000 1038 10
## 305 304 44 2 3.000000 1.960000 10127 48
## 306 305 33 2 4.000000 1.825000 1543 6
## 307 306 24 1 1.938667 1.927778 4811 30
## 308 307 33 1 2.000000 1.000000 727 12
## 309 308 24 2 1.000000 2.000000 1237 8
## 310 309 22 1 1.000000 2.000000 276 9
## 311 310 40 0 1.655333 2.000000 5381 48
## 312 311 25 2 2.000000 1.955000 5511 24
## 313 312 26 2 1.000000 3.000000 3749 24
## 314 313 25 1 1.000000 2.000000 685 12
## 315 314 29 1 1.715000 3.000000 1494 4
## 316 315 31 2 1.000000 1.000000 2746 36
## 317 316 38 1 1.000000 1.000000 708 12
## 318 317 48 1 1.442667 2.000000 4351 24
## 319 318 32 2 1.000000 1.396557 701 12
## 320 319 27 1 1.000000 1.000000 3643 15
## 321 320 28 3 1.000000 2.000000 4249 30
## 322 321 32 2 1.000000 1.000000 1938 24
## 323 322 34 3 1.000000 1.000000 2910 24
## 324 323 28 2 4.000000 1.000000 2659 18
## 325 324 36 2 1.000000 1.674564 1028 18
## 326 325 39 1 1.000000 1.000000 3398 8
## 327 326 49 2 1.870000 2.110000 5801 12
## 328 327 34 2 4.000000 1.944444 1525 24
## 329 328 31 2 1.000000 3.000000 4473 36
## 330 329 28 2 1.000000 2.000000 1068 6
## 331 330 75 3 1.000000 1.000000 6615 24
## 332 331 30 2 2.000000 1.870000 1864 18
## 333 332 24 3 2.000000 2.000000 7408 60
## 334 333 24 1 2.000000 1.980000 11590 48
## 335 334 23 2 1.000000 1.000000 4110 24
## 336 335 44 3 1.000000 1.000000 3384 6
## 337 336 23 1 1.000000 2.000000 2101 13
## 338 337 24 2 1.050505 1.000000 1275 15
## 339 338 28 2 1.000000 1.000000 4169 24
## 340 339 31 1 1.000000 2.000000 1521 10
## 341 340 24 2 1.000000 2.000000 5743 24
## 342 341 26 1 1.000000 1.000000 3599 21
## 343 342 25 2 3.000000 2.000000 3213 18
## 344 343 33 3 1.000000 2.000000 4439 18
## 345 344 37 1 1.000000 3.000000 3949 10
## 346 345 43 1 1.000000 1.630238 1459 15
## 347 346 23 2 1.000000 2.000000 882 13
## 348 347 23 0 3.000000 2.000000 3758 24
## 349 348 34 1 2.000000 2.054667 1743 6
## 350 349 32 2 4.000000 2.000000 1136 9
## 351 350 23 2 1.000000 2.007350 1236 9
## 352 351 29 2 1.000000 2.000000 959 9
## 353 352 38 3 1.930000 2.106667 3229 18
## 354 353 28 2 1.000000 1.000000 6199 12
## 355 354 46 2 3.000000 1.937500 727 10
## 356 355 23 1 1.000000 2.000000 1246 24
## 357 356 49 2 1.878333 2.180000 2331 12
## 358 357 26 3 1.000000 1.812904 4463 36
## 359 358 28 2 1.000000 1.489390 776 12
## 360 359 23 2 1.000000 1.000000 2406 30
## 361 360 61 2 2.135000 2.000000 1239 18
## 362 361 37 3 1.548333 3.000000 3399 12
## 363 362 36 2 1.000000 3.000000 2247 12
## 364 363 21 2 1.000000 1.513187 1766 6
## 365 364 25 0 1.000000 1.000000 2473 18
## 366 365 36 2 1.000000 1.646704 1542 12
## 367 366 27 2 1.000000 1.532856 3850 18
## 368 367 22 2 1.000000 1.000000 3650 18
## 369 368 42 2 1.000000 1.000000 3446 36
## 370 369 40 2 1.000000 2.000000 3001 18
## 371 370 36 2 1.994222 2.070000 3079 36
## 372 371 33 2 1.000000 1.800078 6070 18
## 373 372 23 2 1.000000 1.760742 2146 10
## 374 373 63 3 2.073333 1.960000 13756 60
## 375 374 60 3 2.000000 2.000000 14782 60
## 376 375 37 2 1.000000 1.000000 7685 48
## 377 376 34 2 1.000000 2.065918 2320 18
## 378 377 36 2 1.890000 1.866667 846 7
## 379 378 57 3 1.000000 2.000000 14318 36
## 380 379 52 1 2.000000 1.690833 362 6
## 381 380 39 2 1.100192 1.000000 2212 20
## 382 381 38 3 1.000000 2.000000 12976 18
## 383 382 25 2 1.060000 1.313333 1283 22
## 384 383 26 2 1.000000 3.000000 1330 12
## 385 384 26 1 2.000000 1.958000 4272 30
## 386 385 25 2 1.000000 1.645671 2238 18
## 387 386 21 2 1.060000 1.270000 1126 18
## 388 387 40 3 1.000000 2.000000 7374 18
## 389 388 27 2 3.000000 2.000000 2326 15
## 390 389 27 2 1.000000 1.636409 1449 9
## 391 390 30 3 1.000000 1.321196 1820 18
## 392 391 19 1 4.000000 2.000000 983 12
## 393 392 39 3 1.000000 1.000000 3249 36
## 394 393 31 2 1.000000 1.000000 1957 6
## 395 394 31 3 1.000000 1.568800 2406 9
## 396 395 32 2 2.000000 2.000000 11760 39
## 397 396 55 3 1.000000 1.000000 2578 12
## 398 397 46 2 1.000000 1.000000 2348 36
## 399 398 46 2 1.000000 2.000000 1223 12
## 400 399 43 1 4.000000 2.192778 1516 24
## 401 400 39 2 1.000000 1.461226 1473 18
## 402 401 28 2 1.713083 2.000000 1887 18
## 403 402 27 2 1.000000 1.653782 8648 24
## 404 403 27 1 1.000000 1.441667 802 14
## 405 404 43 2 1.275952 2.000000 2899 18
## 406 405 22 2 1.000000 2.000000 2039 24
## 407 406 43 2 2.019286 1.900000 2197 24
## 408 407 27 2 1.000000 1.000000 1053 15
## 409 408 26 3 3.000000 2.010833 3235 24
## 410 409 28 2 3.000000 3.000000 939 12
## 411 410 20 2 1.000000 2.000000 1967 24
## 412 411 35 3 1.000000 1.541034 7253 33
## 413 412 42 3 1.000000 1.668962 2292 12
## 414 413 40 1 3.000000 2.188333 1597 10
## 415 414 35 2 1.084583 1.000000 1381 24
## 416 415 35 2 1.000000 1.431772 5842 36
## 417 416 33 1 1.000000 1.000000 2579 12
## 418 417 23 2 1.030000 1.000000 8471 18
## 419 418 31 3 3.000000 1.870000 2782 21
## 420 419 33 2 1.290667 2.000000 1042 18
## 421 420 20 2 4.000000 1.779167 3186 15
## 422 421 30 2 1.442000 2.000000 2028 12
## 423 422 47 1 1.000000 2.000000 958 12
## 424 423 34 3 2.000000 1.970000 1591 21
## 425 424 25 2 1.378667 2.000000 2762 12
## 426 425 21 2 1.000000 2.000000 2779 18
## 427 426 29 2 1.000000 1.570347 2743 28
## 428 427 46 2 4.000000 2.147500 1149 18
## 429 428 20 2 1.000000 1.881667 1313 9
## 430 429 55 0 1.000000 1.000000 1190 18
## 431 430 74 1 1.000000 1.718000 3448 5
## 432 431 29 3 1.000000 2.000000 11328 24
## 433 432 36 3 1.000000 1.000000 1872 6
## 434 433 33 2 1.000000 1.552307 2058 24
## 435 434 25 2 1.000000 1.000000 2136 9
## 436 435 25 2 1.307714 2.000000 1484 12
## 437 436 23 1 3.000000 1.703333 660 6
## 438 437 37 2 4.000000 2.540000 1287 24
## 439 438 65 0 1.000000 1.000000 3394 42
## 440 439 26 0 1.000000 3.000000 609 12
## 441 440 39 3 1.000000 1.781295 1884 12
## 442 441 30 2 1.000000 1.000000 1620 12
## 443 442 29 2 1.000000 2.000000 2629 20
## 444 443 41 1 1.000000 1.269667 719 12
## 445 444 30 3 1.000000 2.000000 5096 48
## 446 445 41 1 2.106667 2.320000 1244 9
## 447 446 34 2 1.000000 1.000000 1842 36
## 448 447 35 2 1.000000 2.000000 2576 7
## 449 448 55 3 2.118333 3.000000 1424 12
## 450 449 61 2 4.000000 2.000000 1512 15
## 451 450 30 3 1.870000 1.990000 11054 36
## 452 451 29 2 1.000000 1.541795 518 6
## 453 452 34 2 1.000000 1.575245 2759 12
## 454 453 35 3 1.000000 1.495603 2670 24
## 455 454 31 2 1.000000 1.000000 4817 24
## 456 455 29 3 1.000000 1.532403 2679 24
## 457 456 36 2 1.000000 1.000000 3905 11
## 458 457 35 2 1.000000 1.000000 3386 12
## 459 458 27 2 1.000000 1.000000 343 6
## 460 459 32 2 1.000000 1.456552 4594 18
## 461 460 37 2 1.000000 1.000000 3620 36
## 462 461 36 2 1.000000 1.000000 1721 15
## 463 462 34 3 1.000000 2.000000 3017 12
## 464 463 38 2 1.481000 2.000000 754 12
## 465 464 34 2 1.000000 1.691252 1950 18
## 466 465 63 2 1.000000 1.000000 2924 24
## 467 466 29 1 1.000000 1.000000 1659 24
## 468 467 32 2 1.951667 1.970000 7238 48
## 469 468 26 2 1.000000 1.662631 2764 33
## 470 469 35 1 1.000000 1.629222 4679 24
## 471 470 22 2 2.000000 2.000000 3092 24
## 472 471 23 2 1.000000 1.000000 448 6
## 473 472 28 1 1.000000 1.000000 654 9
## 474 473 36 3 1.762538 2.046667 1238 6
## 475 474 33 2 1.000000 2.000000 1245 18
## 476 475 26 2 1.000000 1.000000 3114 18
## 477 476 24 2 3.000000 1.750833 2569 39
## 478 477 25 2 1.000000 3.000000 5152 24
## 479 478 39 1 2.000000 2.000000 1037 12
## 480 479 44 2 1.000000 1.000000 1478 15
## 481 480 23 1 1.000000 2.000000 3573 12
## 482 481 26 2 1.000000 2.000000 1201 24
## 483 482 57 2 4.000000 1.000000 3622 30
## 484 483 30 2 4.000000 2.213333 960 15
## 485 484 44 2 3.000000 2.220000 1163 12
## 486 485 47 3 1.000000 2.000000 1209 6
## 487 486 52 2 1.000000 1.638150 3077 12
## 488 487 62 2 1.000000 1.309076 3757 24
## 489 488 35 1 2.000000 2.228333 1418 10
## 490 489 26 2 1.000000 1.449261 3518 6
## 491 490 26 2 1.000000 1.827922 1934 12
## 492 491 42 3 1.000000 2.000000 8318 27
## 493 492 27 2 2.000000 2.196667 1237 6
## 494 493 38 2 2.316000 2.000000 368 6
## 495 494 39 1 1.000000 1.000000 2122 12
## 496 495 20 2 1.615667 1.000000 2996 24
## 497 496 29 3 2.000000 2.000000 9034 36
## 498 497 40 2 1.000000 1.337948 1585 24
## 499 498 32 1 1.000000 2.000000 1301 18
## 500 499 28 2 2.000000 3.000000 1323 6
## 501 500 27 2 1.000000 1.000000 3123 24
## 502 501 42 2 1.000000 1.000000 5493 36
## 503 502 49 2 2.000000 3.000000 1126 9
## 504 503 38 2 2.000000 2.000000 1216 24
## 505 504 24 2 1.000000 1.000000 1207 24
## 506 505 27 1 1.905000 2.445000 1309 10
## 507 506 36 2 3.000000 3.000000 2360 15
## 508 507 34 3 2.000000 2.000000 6850 15
## 509 508 28 2 1.000000 1.355910 1413 24
## 510 509 45 3 2.000000 1.970000 8588 39
## 511 510 26 2 1.000000 1.000000 759 12
## 512 511 32 3 1.000000 1.652379 4686 36
## 513 512 26 2 1.000000 3.000000 2687 15
## 514 513 20 2 1.000000 2.000000 585 12
## 515 514 54 2 2.415952 2.070000 2255 24
## 516 515 37 2 1.000000 1.000000 609 6
## 517 516 40 1 1.000000 1.000000 1361 6
## 518 517 23 2 1.000000 1.523520 7127 36
## 519 518 43 2 2.000000 1.000000 1203 6
## 520 519 36 2 1.134286 1.224167 700 6
## 521 520 44 2 1.000000 1.482948 5507 24
## 522 521 24 2 1.000000 1.000000 3190 18
## 523 522 53 2 1.000000 1.000000 7119 48
## 524 523 23 2 2.000000 1.867500 3488 24
## 525 524 26 1 1.000000 2.000000 1113 18
## 526 525 30 2 1.000000 2.000000 7966 26
## 527 526 31 2 2.000000 2.020000 1532 15
## 528 527 42 1 1.000000 1.560500 1503 4
## 529 528 31 2 1.000000 1.000000 2302 36
## 530 529 41 1 1.000000 1.000000 662 6
## 531 530 32 2 1.000000 2.000000 2273 36
## 532 531 28 2 2.000000 2.000000 2631 15
## 533 532 41 2 1.000000 1.397537 1503 12
## 534 533 26 2 2.000000 1.929167 1311 24
## 535 534 25 2 1.769937 1.970000 3105 24
## 536 535 33 2 1.000000 3.000000 2319 21
## 537 536 75 3 1.235536 1.000000 1374 6
## 538 537 37 2 1.000000 2.000000 3612 18
## 539 538 42 3 1.000000 1.000000 7763 48
## 540 539 45 1 1.000000 3.000000 3049 18
## 541 540 23 2 1.000000 2.000000 1534 12
## 542 541 60 2 1.000000 1.251576 2032 24
## 543 542 31 2 1.150000 1.000000 6350 30
## 544 543 34 1 1.000000 3.000000 2864 18
## 545 544 61 1 1.000000 1.395738 1255 12
## 546 545 43 2 1.000000 1.000000 1333 24
## 547 546 37 2 1.000000 1.690164 2022 24
## 548 547 32 2 1.000000 1.407472 1552 24
## 549 548 24 1 1.000000 1.000000 626 12
## 550 549 35 2 2.220000 2.010000 8858 48
## 551 550 23 2 1.540000 1.963333 996 12
## 552 551 45 1 3.000000 1.870833 1750 6
## 553 552 34 2 1.000000 1.000000 6999 48
## 554 553 27 2 2.000000 2.000000 1995 12
## 555 554 67 3 1.000000 2.000000 1199 9
## 556 555 22 2 1.000000 2.000000 1331 12
## 557 556 28 2 2.000000 2.000000 2278 18
## 558 557 29 2 1.240000 1.310000 5003 21
## 559 558 27 2 1.000000 1.000000 3552 24
## 560 559 31 1 1.000000 2.000000 1928 18
## 561 560 49 2 1.080417 1.000000 2964 24
## 562 561 24 1 1.000000 1.000000 1546 24
## 563 562 29 2 1.000000 3.000000 683 6
## 564 563 37 2 1.602619 2.000000 12389 36
## 565 564 37 3 1.444375 2.000000 4712 24
## 566 565 23 2 2.000000 2.000000 1553 24
## 567 566 36 2 1.000000 1.000000 1372 12
## 568 567 34 2 4.000000 1.705278 2578 24
## 569 568 41 2 1.499722 2.000000 3979 48
## 570 569 31 2 1.000000 1.000000 6758 48
## 571 570 23 1 1.000000 1.000000 3234 24
## 572 571 38 2 1.000000 1.475796 5954 30
## 573 572 26 3 1.681667 2.020000 5433 24
## 574 573 22 1 1.000000 1.000000 806 15
## 575 574 27 1 1.000000 2.000000 1082 9
## 576 575 24 2 1.000000 1.811333 2788 15
## 577 576 27 2 1.000000 2.000000 2930 12
## 578 577 33 2 1.082500 1.271000 1927 24
## 579 578 27 2 1.000000 2.000000 2820 36
## 580 579 27 1 1.000000 1.612581 937 24
## 581 580 30 2 1.000000 2.000000 1056 18
## 582 581 49 1 1.000000 2.000000 3124 12
## 583 582 26 2 1.000000 1.745370 1388 9
## 584 583 33 1 1.000000 2.000000 2384 36
## 585 584 52 3 1.926667 2.200000 2133 12
## 586 585 20 2 1.000000 1.000000 2039 18
## 587 586 36 2 1.000000 1.000000 2799 9
## 588 587 21 1 1.000000 1.000000 1289 12
## 589 588 47 1 1.000000 1.000000 1217 18
## 590 589 60 2 1.000000 1.000000 2246 12
## 591 590 58 1 1.000000 1.000000 385 12
## 592 591 42 2 1.604286 2.000000 1965 24
## 593 592 36 1 4.000000 2.176047 1572 21
## 594 593 20 1 1.000000 2.000000 2718 24
## 595 594 40 3 1.140000 1.000000 1358 24
## 596 595 32 1 2.000000 2.000000 931 6
## 597 596 23 2 1.000000 1.000000 1442 24
## 598 597 36 1 1.000000 2.000000 4241 24
## 599 598 31 2 1.000000 1.725747 2775 18
## 600 599 32 2 1.000000 1.372138 3863 24
## 601 600 45 2 1.000000 2.000000 2329 7
## 602 601 30 2 1.000000 2.000000 918 9
## 603 602 34 1 1.000000 2.000000 1837 24
## 604 603 28 3 1.000000 1.478237 3349 36
## 605 604 23 2 1.000000 3.000000 1275 10
## 606 605 22 2 3.000000 1.000000 2828 24
## 607 606 74 3 1.000000 1.485654 4526 24
## 608 607 50 2 2.000000 2.000000 2671 36
## 609 608 33 2 1.000000 1.642752 2051 18
## 610 609 45 2 2.780000 2.510000 1300 15
## 611 610 22 2 2.000000 1.000000 741 12
## 612 611 48 1 2.000000 3.000000 1240 10
## 613 612 29 2 4.000000 1.000000 3357 21
## 614 613 22 2 1.000000 1.000000 3632 24
## 615 614 22 2 1.000000 1.139631 1808 18
## 616 615 48 3 1.550208 2.000000 12204 48
## 617 616 27 3 1.596333 2.000000 9157 60
## 618 617 37 2 1.000000 1.000000 3676 6
## 619 618 21 2 2.000000 2.000000 3441 30
## 620 619 49 1 1.000000 1.160000 640 12
## 621 620 27 2 1.000000 2.000000 3652 21
## 622 621 32 2 1.000000 1.363226 1530 18
## 623 622 38 2 2.237500 2.080000 3914 48
## 624 623 22 2 1.000000 1.000000 1858 12
## 625 624 65 2 1.000000 1.000000 2600 18
## 626 625 35 2 1.795000 1.980000 1979 15
## 627 626 41 2 1.000000 3.000000 2116 6
## 628 627 29 2 2.000000 2.000000 1437 9
## 629 628 36 2 3.000000 2.070000 4042 42
## 630 629 64 1 1.550000 2.050000 3832 9
## 631 630 28 2 1.000000 1.000000 3660 24
## 632 631 44 2 1.000000 1.000000 1553 18
## 633 632 23 2 1.610131 2.000000 1444 15
## 634 633 19 2 1.000000 1.626187 1980 9
## 635 634 25 1 1.000000 2.000000 1355 24
## 636 635 47 2 1.000000 1.411870 1393 12
## 637 636 28 2 3.000000 2.116603 1376 24
## 638 637 21 2 1.000000 1.621370 15653 60
## 639 638 34 2 1.000000 1.568370 1493 12
## 640 639 26 2 1.000000 1.000000 4370 42
## 641 640 27 0 1.000000 1.000000 750 18
## 642 641 38 1 1.000000 2.000000 1308 15
## 643 642 40 3 2.000000 2.040000 4623 15
## 644 643 33 2 1.000000 1.576805 1851 24
## 645 644 32 3 1.000000 1.000000 1880 18
## 646 645 27 2 1.870500 1.980000 7980 36
## 647 646 32 2 1.000000 1.000000 4583 30
## 648 647 26 2 3.000000 2.060000 1386 12
## 649 648 38 2 1.000000 3.000000 947 24
## 650 649 40 1 1.000000 1.000000 684 12
## 651 650 50 3 1.000000 1.000000 7476 48
## 652 651 37 1 1.000000 2.000000 1922 12
## 653 652 45 2 1.000000 1.000000 2303 24
## 654 653 42 3 2.000000 2.000000 8086 36
## 655 654 35 2 1.000000 1.755451 2346 24
## 656 655 22 2 1.000000 1.000000 3973 14
## 657 656 41 1 1.000000 2.000000 888 12
## 658 657 37 2 2.112500 2.040000 10222 48
## 659 658 28 2 1.000000 2.000000 4221 30
## 660 659 41 2 1.000000 2.000000 6361 18
## 661 660 23 2 1.000000 3.000000 1297 12
## 662 661 23 2 1.126844 1.000000 900 12
## 663 662 50 2 1.000000 1.835328 2241 21
## 664 663 35 3 1.000000 2.000000 1050 6
## 665 664 50 1 1.000000 3.000000 1047 6
## 666 665 27 3 1.000000 1.632585 6314 24
## 667 666 34 2 4.000000 2.000000 3496 30
## 668 667 27 2 1.000000 1.441865 3609 48
## 669 668 43 2 1.000000 1.000000 4843 12
## 670 669 47 2 1.000000 3.000000 3017 30
## 671 670 27 1 2.000000 1.948000 4139 24
## 672 671 31 2 2.000000 2.030000 5742 36
## 673 672 42 3 1.000000 1.436414 10366 60
## 674 673 24 2 3.000000 1.768333 2080 6
## 675 674 41 1 3.000000 2.148269 2580 21
## 676 675 26 3 1.000000 1.644777 4530 30
## 677 676 33 2 1.000000 1.809908 5150 24
## 678 677 24 2 2.000000 2.000000 5595 72
## 679 678 64 1 1.000000 1.000000 2384 24
## 680 679 26 2 1.000000 1.388138 1453 18
## 681 680 56 2 1.000000 1.760487 1538 6
## 682 681 37 2 2.086667 2.225000 2279 12
## 683 682 33 2 1.000000 1.540678 1478 15
## 684 683 47 2 1.000000 1.740242 5103 24
## 685 684 31 1 2.000000 2.000000 9857 36
## 686 685 34 2 2.205000 1.990000 6527 60
## 687 686 27 2 1.543333 3.000000 1347 10
## 688 687 30 2 2.000000 2.000000 2862 36
## 689 688 35 2 2.000000 1.905000 2753 9
## 690 689 31 2 4.000000 1.000000 3651 12
## 691 690 25 2 1.000000 1.000000 975 15
## 692 691 25 1 2.000000 2.000000 2631 15
## 693 692 29 2 2.000000 2.000000 2896 24
## 694 693 44 1 1.215000 1.000000 4716 6
## 695 694 28 2 1.000000 1.689360 2284 24
## 696 695 50 2 3.000000 1.980000 1236 6
## 697 696 29 2 1.000000 2.000000 1103 12
## 698 697 38 0 1.000000 1.835119 926 12
## 699 698 24 2 1.000000 1.248242 1800 18
## 700 699 40 3 1.000000 3.000000 1905 15
## 701 700 29 1 3.000000 2.210000 1123 12
## 702 701 46 2 1.000000 1.000000 6331 48
## 703 702 47 2 2.000000 3.000000 1377 24
## 704 703 41 2 2.000000 2.000000 2503 30
## 705 704 32 2 1.000000 2.000000 2528 27
## 706 705 35 2 3.000000 1.805000 5324 15
## 707 706 24 2 2.000000 2.000000 6560 48
## 708 707 25 2 1.000000 2.000000 2969 12
## 709 708 25 2 1.000000 2.000000 1206 9
## 710 709 37 1 1.000000 2.000000 2118 9
## 711 710 32 3 3.000000 1.770000 629 18
## 712 711 35 2 1.000000 1.000000 1198 6
## 713 712 46 3 2.195000 2.268269 2476 21
## 714 713 25 1 1.000000 1.000000 1138 9
## 715 714 27 3 1.000000 2.000000 14027 60
## 716 715 63 2 1.460000 1.900000 7596 30
## 717 716 40 2 2.100000 2.117500 3077 30
## 718 717 32 3 1.000000 1.595229 1505 18
## 719 718 31 2 1.720952 3.000000 3148 24
## 720 719 31 2 2.000000 2.000000 6148 20
## 721 720 34 3 1.000000 3.000000 1337 9
## 722 721 24 2 4.000000 2.000000 433 6
## 723 722 24 1 1.000000 1.000000 1228 12
## 724 723 66 1 3.000000 2.000000 790 9
## 725 724 21 2 1.000000 1.439489 2570 27
## 726 725 41 1 4.000000 1.460833 250 6
## 727 726 47 1 3.000000 2.650000 1316 15
## 728 727 25 2 1.000000 1.000000 1882 18
## 729 728 59 2 1.000000 2.000000 6416 48
## 730 729 36 2 4.000000 3.000000 1275 24
## 731 730 33 2 1.000000 2.000000 6403 24
## 732 731 21 1 1.000000 1.000000 1987 24
## 733 732 44 1 1.000000 2.000000 760 8
## 734 733 28 2 4.000000 1.438547 2603 24
## 735 734 37 2 1.000000 1.670642 3380 4
## 736 735 29 0 1.742794 2.000000 3990 36
## 737 736 23 3 1.000000 2.000000 11560 24
## 738 737 35 1 2.000000 1.000000 4380 18
## 739 738 45 3 1.000000 1.571343 6761 6
## 740 739 26 1 2.000000 2.000000 4280 30
## 741 740 32 2 2.000000 1.000000 2325 24
## 742 741 23 1 1.000000 2.000000 1048 10
## 743 742 41 2 2.350000 2.087500 3160 21
## 744 743 22 2 3.000000 1.000000 2483 24
## 745 744 30 3 1.210000 1.000000 14179 39
## 746 745 28 1 1.000000 1.000000 1797 13
## 747 746 23 2 1.000000 1.000000 2511 15
## 748 747 37 1 1.000000 1.000000 1274 12
## 749 748 26 2 1.090000 1.280000 5248 21
## 750 749 33 2 1.000000 1.702333 3029 15
## 751 750 49 2 1.000000 1.000000 428 6
## 752 751 23 1 1.000000 1.000000 976 18
## 753 752 23 1 2.000000 2.000000 841 12
## 754 753 25 2 1.000000 1.617099 5771 30
## 755 754 55 2 4.000000 2.065278 1555 12
## 756 755 32 2 1.316488 1.000000 1285 24
## 757 756 74 0 1.000000 3.000000 1299 6
## 758 757 39 2 2.575000 3.000000 1271 15
## 759 758 31 2 1.000000 1.404243 1393 24
## 760 759 35 2 1.000000 1.000000 691 12
## 761 760 59 2 2.080000 2.050000 5045 15
## 762 761 24 2 1.000000 1.000000 2124 18
## 763 762 24 1 1.000000 1.000000 2214 12
## 764 763 30 3 1.200000 1.210625 12680 21
## 765 764 27 2 2.000000 1.483269 2463 24
## 766 765 40 1 1.000000 2.000000 1155 12
## 767 766 31 1 1.000000 1.000000 3108 30
## 768 767 31 2 1.697500 1.903333 2901 10
## 769 768 28 2 1.000000 2.000000 3617 12
## 770 769 63 1 1.000000 1.457524 1655 12
## 771 770 26 2 1.475655 1.000000 2812 24
## 772 771 25 3 1.000000 1.000000 8065 36
## 773 772 36 3 1.000000 1.488301 3275 21
## 774 773 52 2 2.000000 1.937500 2223 24
## 775 774 66 0 3.000000 3.000000 1480 12
## 776 775 25 2 1.310848 1.000000 1371 24
## 777 776 37 2 1.000000 1.325320 3535 36
## 778 777 25 2 1.000000 1.000000 3509 18
## 779 778 38 3 4.000000 1.948611 5711 36
## 780 779 67 2 1.000000 2.000000 3872 18
## 781 780 25 2 1.000000 2.000000 4933 39
## 782 781 60 2 4.000000 1.912778 1940 24
## 783 782 31 1 1.000000 2.000000 1410 12
## 784 783 23 1 2.000000 2.000000 836 12
## 785 784 60 3 1.456875 2.000000 6468 20
## 786 785 35 1 4.000000 2.000000 1941 18
## 787 786 40 2 3.000000 2.061603 2675 22
## 788 787 38 2 2.427500 2.007500 2751 48
## 789 788 50 2 1.000000 2.000000 6224 48
## 790 789 27 2 1.000000 1.000000 5998 40
## 791 790 39 2 1.000000 2.000000 1188 21
## 792 791 41 3 2.117500 1.980000 6313 24
## 793 792 27 2 1.531667 2.063333 1221 6
## 794 793 51 2 1.000000 3.000000 2892 24
## 795 794 32 2 3.000000 1.603333 3062 24
## 796 795 22 2 2.000000 1.740000 2301 9
## 797 796 51 2 1.140000 1.000000 7511 18
## 798 797 22 1 1.000000 1.402119 1258 12
## 799 798 54 2 2.355952 2.043333 717 24
## 800 799 35 0 1.555000 2.000000 1549 9
## 801 800 54 2 1.000000 1.606576 1597 24
## 802 801 48 1 1.000000 2.000000 1795 18
## 803 802 24 2 1.000000 1.000000 4272 20
## 804 803 35 2 2.460000 2.160000 976 12
## 805 804 24 0 1.602000 2.000000 7472 12
## 806 805 24 2 1.000000 1.000000 9271 36
## 807 806 26 1 1.000000 2.000000 590 6
## 808 807 65 2 2.490000 2.251429 930 12
## 809 808 55 3 1.000000 2.000000 9283 42
## 810 809 26 0 1.000000 2.000000 1778 15
## 811 810 26 2 1.000000 2.000000 907 8
## 812 811 28 1 1.000000 2.000000 484 6
## 813 812 24 2 1.000000 1.000000 9629 36
## 814 813 54 2 1.000000 1.000000 3051 48
## 815 814 46 2 1.000000 1.000000 3931 48
## 816 815 54 2 1.000000 2.000000 7432 36
## 817 816 62 2 3.000000 2.141429 1338 6
## 818 817 24 2 1.000000 1.761076 1554 6
## 819 818 43 3 1.000000 1.000000 15857 36
## 820 819 26 2 1.000000 1.000000 1345 18
## 821 820 27 2 1.000000 1.435962 1101 12
## 822 821 24 2 1.000000 3.000000 3016 12
## 823 822 41 2 1.000000 1.000000 2712 36
## 824 823 47 1 1.000000 1.000000 731 8
## 825 824 35 3 1.000000 1.134957 3780 18
## 826 825 30 2 1.000000 1.000000 1602 21
## 827 826 33 2 1.000000 1.000000 3966 18
## 828 827 36 2 1.000000 1.239485 4165 18
## 829 828 47 2 1.010000 1.000000 8335 36
## 830 829 38 2 1.490000 2.000000 6681 48
## 831 830 44 2 3.000000 1.854103 2375 24
## 832 831 23 2 1.000000 1.000000 1216 18
## 833 832 29 2 1.000000 1.000000 11816 45
## 834 833 42 2 1.455278 2.000000 5084 24
## 835 834 25 1 1.000000 3.000000 2327 15
## 836 835 48 2 1.000000 1.000000 1082 12
## 837 836 21 2 1.670000 1.767500 886 12
## 838 837 23 1 1.000000 1.840571 601 4
## 839 838 63 2 1.000000 1.000000 2957 24
## 840 839 46 2 1.000000 1.173957 2611 24
## 841 840 29 2 1.000000 1.000000 5179 36
## 842 841 28 1 1.000000 1.406667 2993 21
## 843 842 23 2 1.000000 1.212964 1943 18
## 844 843 50 2 1.000000 1.299520 1559 24
## 845 844 47 2 1.000000 1.233068 3422 18
## 846 845 35 2 1.889000 2.000000 3976 21
## 847 846 68 2 2.243333 1.911429 6761 18
## 848 847 28 2 1.000000 1.159684 1249 24
## 849 848 59 2 1.000000 1.000000 1364 9
## 850 849 57 1 1.000000 1.000000 709 12
## 851 850 33 2 1.000000 1.000000 2235 20
## 852 851 43 2 2.183333 1.980000 4042 24
## 853 852 35 2 1.000000 1.153520 1471 15
## 854 853 32 1 1.000000 1.000000 1442 18
## 855 854 45 2 1.000000 1.283217 10875 36
## 856 855 33 2 2.000000 1.585769 1474 24
## 857 856 40 2 2.070000 2.057500 894 10
## 858 857 28 2 1.000000 1.163318 3343 15
## 859 858 29 2 1.000000 1.000000 3959 15
## 860 859 26 2 2.000000 1.830000 3577 9
## 861 860 27 2 4.000000 1.600278 5804 24
## 862 861 28 2 1.000000 1.033520 2169 18
## 863 862 35 2 1.000000 1.000000 2439 24
## 864 863 32 1 4.000000 1.741944 4526 27
## 865 864 25 1 1.000000 1.607333 2210 10
## 866 865 20 2 3.000000 1.650833 2221 15
## 867 866 27 2 1.000000 1.000000 2389 18
## 868 867 42 2 1.000000 1.153041 3331 12
## 869 868 37 2 2.480000 2.030000 7409 36
## 870 869 24 2 1.000000 1.000000 652 12
## 871 870 40 2 3.000000 1.953333 7678 36
## 872 871 46 2 1.000000 3.000000 1343 6
## 873 872 26 2 2.000000 1.000000 1382 24
## 874 873 24 2 2.070000 1.827500 874 15
## 875 874 29 1 1.000000 1.000000 3590 12
## 876 875 40 2 4.000000 2.000000 1322 11
## 877 876 36 3 1.000000 1.000000 1940 18
## 878 877 28 2 1.000000 1.174152 3595 36
## 879 878 27 3 1.000000 1.000000 1422 9
## 880 879 36 2 2.243333 2.010000 6742 30
## 881 880 38 3 1.000000 1.321388 7814 24
## 882 881 48 2 2.223333 2.000000 9277 24
## 883 882 36 2 1.901667 2.000000 2181 30
## 884 883 65 0 1.000000 1.356667 1098 18
## 885 884 43 2 1.000000 2.000000 4057 24
## 886 885 53 2 1.000000 1.000000 795 12
## 887 886 34 2 2.076778 2.000000 2825 24
## 888 887 23 2 1.000000 2.000000 15672 48
## 889 888 34 3 1.000000 1.440499 6614 36
## 890 889 40 2 2.323333 2.030000 7824 28
## 891 890 43 3 1.000000 1.000000 2442 27
## 892 891 46 2 1.000000 1.109520 1829 15
## 893 892 38 1 1.000000 1.000000 2171 12
## 894 893 34 2 1.000000 2.000000 5800 36
## 895 894 29 2 2.310000 1.930000 1169 18
## 896 895 31 3 2.180000 1.960000 8947 36
## 897 896 28 3 1.000000 1.000000 2606 21
## 898 897 35 2 4.000000 1.797778 1592 12
## 899 898 33 1 2.330000 1.890000 2186 15
## 900 899 42 2 1.000000 1.000000 4153 18
## 901 900 43 2 1.000000 1.000000 2625 16
## 902 901 44 2 2.153333 1.990000 3485 20
## 903 902 42 2 2.330000 2.020000 10477 36
## 904 903 40 2 2.690000 2.370000 1386 15
## 905 904 36 3 1.000000 1.267131 1278 24
## 906 905 20 3 1.000000 1.000000 1107 12
## 907 906 24 1 1.190000 1.000000 3763 21
## 908 907 27 2 1.593333 2.000000 3711 36
## 909 908 46 1 1.000000 1.303643 3594 15
## 910 909 33 1 1.571667 2.000000 3195 9
## 911 910 34 2 1.000000 1.545818 4454 36
## 912 911 25 1 1.000000 2.000000 4736 24
## 913 912 25 2 1.744333 2.000000 2991 30
## 914 913 28 2 4.000000 1.723333 2142 11
## 915 914 31 2 1.000000 1.000000 3161 24
## 916 915 32 3 1.000000 2.000000 18424 48
## 917 916 32 2 2.000000 1.833333 2848 10
## 918 917 68 3 1.000000 1.000000 14896 6
## 919 918 33 2 2.000000 1.000000 2359 24
## 920 919 39 3 1.000000 1.000000 3345 24
## 921 920 28 2 1.000000 1.095187 1817 18
## 922 921 37 3 3.000000 1.920000 12749 48
## 923 922 22 2 1.000000 1.000000 1366 9
## 924 923 30 2 1.000000 2.000000 2002 12
## 925 924 55 2 1.000000 1.000000 6872 24
## 926 925 46 2 1.000000 1.000000 697 12
## 927 926 21 2 1.000000 1.000000 1049 18
## 928 927 39 2 1.000000 1.000000 10297 48
## 929 928 58 2 2.519286 2.010000 1867 30
## 930 929 43 1 1.000000 1.000000 1344 12
## 931 930 24 1 1.000000 1.000000 1747 24
## 932 931 22 2 1.000000 2.000000 1670 9
## 933 932 30 2 1.000000 1.949128 1224 9
## 934 933 42 2 3.000000 2.010000 522 12
## 935 934 23 2 1.000000 1.000000 1498 12
## 936 935 30 3 2.000000 2.000000 1919 30
## 937 936 28 1 1.000000 3.000000 745 9
## 938 937 30 3 1.000000 2.000000 2063 6
## 939 938 42 2 1.000000 2.000000 6288 60
## 940 939 46 3 1.030000 1.114407 6842 24
## 941 940 45 3 1.906667 2.100000 3527 12
## 942 941 31 1 1.000000 1.674476 1546 10
## 943 942 31 2 2.025000 1.733333 929 24
## 944 943 42 1 1.000000 1.902643 1455 4
## 945 944 46 2 1.000000 1.000000 1845 15
## 946 945 30 2 3.000000 2.000000 8358 48
## 947 946 30 2 3.000000 1.000000 3349 24
## 948 947 38 3 1.906667 2.135000 2859 12
## 949 948 43 1 1.000000 1.212810 1533 18
## 950 949 31 2 2.000000 1.720000 3621 24
## 951 950 40 0 1.000000 2.000000 3590 18
## 952 951 24 2 1.000000 1.000000 2145 36
## 953 952 28 2 3.000000 2.000000 4113 24
## 954 953 26 3 1.000000 1.282076 10974 36
## 955 954 29 2 1.000000 1.000000 1893 12
## 956 955 57 3 4.000000 1.000000 1231 24
## 957 956 49 1 1.560000 3.000000 3656 30
## 958 957 37 1 1.000000 2.000000 1154 9
## 959 958 45 1 1.000000 1.000000 4006 28
## 960 959 30 2 2.000000 2.000000 3069 24
## 961 960 30 2 1.000000 1.928853 1740 6
## 962 961 47 2 1.000000 2.000000 2353 21
## 963 962 29 2 2.200000 1.980000 3556 15
## 964 963 35 2 3.000000 1.736103 2397 24
## 965 964 22 1 1.000000 2.000000 454 6
## 966 965 26 2 1.942667 2.000000 1715 30
## 967 966 23 1 3.000000 2.000000 2520 27
## 968 967 54 3 1.000000 1.397094 3568 15
## 969 968 29 2 1.836667 2.020000 7166 42
## 970 969 40 1 1.000000 1.000000 3939 11
## 971 970 22 2 2.000000 2.000000 1514 15
## 972 971 43 1 1.000000 1.391062 7393 24
## 973 972 29 0 1.000000 1.000000 1193 24
## 974 973 36 2 1.000000 1.000000 7297 60
## 975 974 33 2 1.000000 1.501068 2831 30
## 976 975 57 1 3.000000 3.000000 1258 24
## 977 976 64 2 1.000000 2.000000 753 6
## 978 977 42 2 1.600000 2.000000 2427 18
## 979 978 47 1 1.000000 1.830365 2538 24
## 980 979 25 2 2.000000 2.000000 1264 15
## 981 980 49 2 1.000000 2.000000 8386 30
## 982 981 33 3 1.000000 1.791332 4844 48
## 983 982 28 3 2.000000 3.000000 2923 21
## 984 983 26 2 1.000000 1.000000 8229 36
## 985 984 30 1 1.000000 1.431365 2028 24
## 986 985 25 2 1.000000 1.000000 1433 15
## 987 986 33 2 1.000000 3.000000 6289 42
## 988 987 64 2 2.000000 2.241429 1409 13
## 989 988 29 3 1.000000 1.000000 6579 24
## 990 989 48 1 1.000000 2.000000 1743 24
## 991 990 37 1 1.946667 2.198000 3565 12
## 992 991 34 1 2.000000 2.008000 1569 15
## 993 992 23 1 1.110000 1.000000 1936 18
## 994 993 30 3 1.000000 1.000000 3959 36
## 995 994 50 2 1.966667 2.130000 2390 12
## 996 995 31 1 1.000000 1.350968 1736 12
## 997 996 40 3 1.000000 1.000000 3857 30
## 998 997 38 2 1.000000 1.302073 804 12
## 999 998 23 2 1.000000 1.000000 1845 45
## 1000 999 27 2 2.000000 2.000000 4576 45
##
## $OOBerror
## NRMSE
## 0.0002453745
##
## attr(,"class")
## [1] "missForest"
library(dplyr)
colSums(is.na(german_credit_dataset))
## X Age Sex Job
## 0 0 0 0
## Housing Saving.accounts Checking.account Credit.amount
## 0 183 394 0
## Duration Purpose Risk
## 0 0 0
german_credit_dataset %>% group_by(Sex) %>% summarise(Min_Age=min(Age),Quantile_1=quantile(Age,prob=c(0.25)),Median_Age=median(Age),Mean_Age=mean(Age),StndDev=sd(Age),Quantile_3=quantile(Age,prob=c(0.75)),Max_Age=max(Age))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 8
## Sex Min_Age Quantile_1 Median_Age Mean_Age StndDev Quantile_3 Max_Age
## <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 female 19 24 29 32.8 11.8 37 75
## 2 male 20 28 35 36.8 11.0 43 75
The above table shows the summary statistics of age column
german_credit_dataset %>% group_by(Sex) %>% summarise(Min_Credit=min(Credit.amount),Quantile_1=quantile(Credit.amount,prob=c(0.25)),Median_Credit=median(Credit.amount),Mean_Credit=mean(Credit.amount),StndDev=sd(Credit.amount),Quantile_3=quantile(Credit.amount,prob=c(0.75)),Max_Credit=max(Credit.amount))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 8
## Sex Min_Credit Quantile_1 Median_Credit Mean_Credit StndDev Quantile_3
## <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 fema~ 250 1248. 1959 2878. 2603. 3606.
## 2 male 276 1442. 2444. 3448. 2900. 4266.
## # ... with 1 more variable: Max_Credit <int>
The above table shows the summary statistics of Credit.amount column
german_credit_dataset %>% group_by(Sex) %>% summarise(Avg_cr_amt=mean(Credit.amount))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 2
## Sex Avg_cr_amt
## <chr> <dbl>
## 1 female 2878.
## 2 male 3448.
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.3
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:randomForest':
##
## margin
ggplot(german_credit_dataset,aes(Sex,Credit.amount))+geom_bar(stat="identity")+theme(axis.text.x=element_text(angle=70,vjust=0.5,color="red"))+xlab("Sex")+ylab("Credit.amount")+ggtitle("Sex Vs Credit amount")
Statistical Age data of male and female
ggplot(german_credit_dataset,aes(Age,Sex,fill=Sex))+ geom_boxplot()+ggtitle("Box plot of statistical age data of male and female")+theme(axis.text.x = element_text(angle=70,vjust=0.5,color="blue"))+xlab("Sex")+ylab("Age")+coord_flip()
In the above box plot, age of maximum female customers lies between 23 to 37 and age of maximum male customers lies between 28 to 43.The outlier of female customers can be considered after 53 and outlier of male customers can be considered after 65.
Ratio Of Housing type
ggplot(german_credit_dataset,aes(x=Housing,fill=factor(Housing)))+geom_bar(width=2)
## Warning: position_stack requires non-overlapping x intervals
From above plot, we can infer that, No of Own house>No of rented house> No of free house
Ratio Of male & female
ggplot(german_credit_dataset, aes(x =factor(1), fill = factor(Sex))) + geom_bar(width = 1) + coord_polar(theta = "y")
Ratio of male is greater than female
Relationship Of Duration & Credit amount
ggplot(german_credit_dataset, aes(Duration,Credit.amount)) + geom_point(aes(color =Purpose)) +
scale_x_continuous("Duration", breaks = seq(0,0.35,0.05))+
scale_y_continuous("Credit.amount", breaks = seq(0,270,by = 30))+
theme_bw() + labs(title="Scatterplot")
The above plot is the relationship between Credit amount & Duration w.r.t Purpose
Relationship between Risk & Age
ggplot(german_credit_dataset, aes(Age, fill = Risk)) + geom_bar()+
labs(title = "Risk Count According to Age", x = "Age", y = "Count of Risk")
We can infer that, Risk factor is going to be lower with increasing of age.