Data 605 HW 14
library(knitr)
library(rmdformats)
## Global options
options(max.print="85")
opts_chunk$set(cache=TRUE,
prompt=FALSE,
tidy=TRUE,
comment=NA,
message=FALSE,
warning=FALSE)
opts_knit$set(width=35)This week, we’ll work out some Taylor Series expansions of popular functions.
f(x) = \(\frac{1}{1-x}\)
f(x) = ex
f(x) = ln(1+x)
For each function, only consider its valid ranges as indicated in the notes when you are computing the Taylor Series expansion.
#1
f(x) = \(\frac{1}{1-x}\)
Ans:
f(0) = 1
f’(0) = \(\frac{1}{(1-0)^2} = 1\)
f’’(0) = \(-\frac{2}{(0-1)^3} = 2\)
Using the Maclaurin Series (Taylor series centered at 0), we get
\(\sum_{n=0}^{\infty }\frac{f^{(n)}(0)}{n!}(x^n) = f(0)+\frac{f'(0)}{1!}x+…+\frac{f^{(n)}(0)}{n!}x^n\)
\[
\begin{multline*}
\begin{split}
&= 1+ \frac{1}{1!}x+ \frac{2}{2!}x^2 + ... \\ &= 1+ x + x^2 + ... \\
\end{split}
\end{multline*}
\]
The series representation of this function is:
\(\sum_{n=0}^{\infty }x^n\) for |x| < 1
#2
f(x) = ex
Ans:
f(0) = e0 = 1
f’(0) = e0 = 1
f’’(0) = e0 = 1
Using the Maclaurin series (Taylor series at zero):
\(\sum_{n=0}^{\infty }\frac{f^{(n)}(0)}{n!}(x^n) = f(0)+\frac{f'(0)}{1!}x+…+\frac{f^{(n)}(0)}{n!}x^n\)
\[ \begin{multline*} \begin{split} &= 1+ \frac{1}{1!}x+ \frac{1}{2!}x^2 + \frac{1}{3!}x^3 +... \\ &= 1+ x + \frac{x^2}{2}+ \frac{x^3}{6} + ... \\ \end{split} \end{multline*} \]
The series representation of this function is:
\(\sum_{k=0}^{\infty }\frac{x^k}{k!}\)
#3
f(x) = ln(1+x)
Ans:
f(0) = ln(1+0) = ln(1)= 0
f’(0) = \(\frac{1}{1+0} = 1\)
f’’(0) = \(-\frac{1}{(1+0)^2}= -1\)
f’’’(0) = \(\frac{2}{(1+0)^3}=2\)
f(4)(0) = \(-\frac{6}{(1+0)^4} = -6\)
Using the Maclaurin series (Taylor series at zero):
\(\sum_{n=0}^{\infty }\frac{f^{(n)}(0)}{n!}(x^n) = f(0)+\frac{f'(0)}{1!}x+…+\frac{f^{(n)}(0)}{n!}x^n\)
\[ \begin{multline*} \begin{split} &= 0+ \frac{1}{1!}x+ \frac{(-1)}{2!}x^2 + \frac{2}{3!}x^3 + \frac{(-6)}{4!}x^4 +... \\ &= x - \frac{x^2}{2} + \frac{x^3}{3}- \frac{x^4}{4} + ... \\ \end{split} \end{multline*} \]
The series representation of this function is:
\(\sum_{k=1}^{\infty }\frac{(-1)^{k+1}x^k}{k}\)