Problem with line 219
table of N obs per months to check to have only summer month
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 480 496 496 480 0 0 0
## First condition for heat wave
for (i in 1:length(villes_s)){
villes_s[[i]]$heat_wave1<-NA
for (r in 3:nrow(villes_s[[i]])){
villes_s[[i]]$heat_wave1[r]<- if (villes_s[[i]]$tempmoy[r] >= trshld975[i] & villes_s[[i]]$tempmoy[r-1] >= trshld975[i] & villes_s[[i]]$tempmoy[r-2] >= trshld975[i] ) 1 else 0
}}
## Second condition for heat wave
for (i in 1:length(villes_s)){
for (r in 3:nrow(villes_s[[i]])){
villes_s[[i]]$heat_wave[r]<- if (villes_s[[i]]$heat_wave1[r] == 1 & (villes_s[[i]]$tempmoy[r] >= trshld995[i] | villes_s[[i]]$tempmoy[r-1] >= trshld995[i] | villes_s[[i]]$tempmoy[r-2] >= trshld995[i])) 1 else 0
}}
Â
Number of Heat Wave for each city:
| Heat wave=0 | Heat wave=1 | |
|---|---|---|
| bordeaux | 1924 | 26 |
| clermont | 1926 | 24 |
| grenoble | 1914 | 36 |
| lehavre | 1927 | 23 |
| lyon | 1918 | 32 |
| marseille | 1915 | 35 |
| montpellier | 1922 | 28 |
| nancy | 1918 | 32 |
| nantes | 1926 | 24 |
| nice | 1924 | 26 |
| paris | 1923 | 27 |
| rennes | 1918 | 32 |
| rouen | 1925 | 25 |
| strasbourg | 1912 | 38 |
| toulouse | 1921 | 29 |
| V1 | V2 |
|---|---|
| bordeaux | 1927 |
| clermont | 1944 |
| grenoble | 1935 |
| lehavre | 1943 |
| lyon | 1950 |
| marseille | 1948 |
| montpellier | 1937 |
| nancy | 1948 |
| nantes | 1950 |
| nice | 1948 |
| paris | 1950 |
| rennes | 1909 |
| rouen | 1950 |
| strasbourg | 1947 |
| toulouse | 1950 |
| city | Temp 25 Perc | Mean Temp | Temp 75 Perc | o3 25 Perc | Mean o3 | o3 75 Perc |
|---|---|---|---|---|---|---|
| bordeaux | 17.95 | 20.29 | 22.30 | 52.44 | 65.02 | 76.18 |
| clermont | 16.35 | 19.00 | 21.50 | 53.17 | 65.23 | 76.07 |
| grenoble | 16.30 | 18.76 | 21.35 | 42.21 | 57.83 | 71.98 |
| lehavre | 15.26 | 16.97 | 18.20 | 51.40 | 60.67 | 68.09 |
| lyon | 18.00 | 20.71 | 23.38 | 46.44 | 61.52 | 75.30 |
| marseille | 21.18 | 23.25 | 25.32 | 59.62 | 70.45 | 80.98 |
| montpellier | 20.70 | 22.62 | 24.60 | 62.50 | 73.17 | 83.70 |
| nancy | 15.70 | 18.20 | 20.76 | 38.84 | 52.01 | 62.28 |
| nantes | 16.33 | 18.42 | 20.23 | 50.22 | 62.75 | 72.59 |
| nice | 21.25 | 22.96 | 24.70 | 66.13 | 77.64 | 89.11 |
| paris | 16.67 | 19.18 | 21.36 | 40.24 | 52.58 | 62.78 |
| rennes | 15.90 | 17.93 | 19.75 | 42.07 | 54.10 | 62.82 |
| rouen | 14.54 | 16.72 | 18.46 | 38.24 | 50.10 | 60.06 |
| strasbourg | 16.30 | 18.79 | 21.35 | 41.52 | 56.51 | 69.95 |
| toulouse | 18.70 | 21.18 | 23.61 | 54.50 | 66.82 | 77.79 |
## Picking joint bandwidth of 0.633
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): famille de
## police introuvable dans la base de données des polices Windows
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): famille de
## police introuvable dans la base de données des polices Windows
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## famille de police introuvable dans la base de données des polices Windows
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## famille de police introuvable dans la base de données des polices Windows
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## famille de police introuvable dans la base de données des polices Windows
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## famille de police introuvable dans la base de données des polices Windows
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## famille de police introuvable dans la base de données des polices Windows
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## famille de police introuvable dans la base de données des polices Windows
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## famille de police introuvable dans la base de données des polices Windows
## Picking joint bandwidth of 3.43
Total number of deaths:
## [1] 450727
## [1] 117047
## [1] 25438
| city | Minimum Nocc | M Nocc | Max Nocc | Minimum Cv | M Cv | Max Cv | Minimum Respi | M Respi | Max Respi |
|---|---|---|---|---|---|---|---|---|---|
| bordeaux | 2 | 11.540242 | 25 | 0 | 3.263019 | 13 | 0 | 0.6649132 | 5 |
| clermont | 0 | 5.166146 | 15 | 0 | 1.464063 | 7 | 0 | 0.2802083 | 3 |
| grenoble | 0 | 7.230121 | 19 | 0 | 2.012638 | 11 | 0 | 0.3522907 | 4 |
| lehavre | 0 | 5.276042 | 14 | 0 | 1.368229 | 8 | 0 | 0.2864583 | 3 |
| lyon | 4 | 16.969239 | 36 | 0 | 4.426486 | 14 | 0 | 0.8868613 | 5 |
| marseille | 7 | 20.089388 | 39 | 0 | 5.595400 | 17 | 0 | 1.2618923 | 7 |
| montpellier | 0 | 5.834468 | 17 | 0 | 1.639078 | 8 | 0 | 0.3163960 | 3 |
| nancy | 0 | 6.288100 | 16 | 0 | 1.663883 | 7 | 0 | 0.4055324 | 4 |
| nantes | 1 | 9.483385 | 23 | 0 | 2.583074 | 11 | 0 | 0.5145379 | 6 |
| nice | 2 | 11.142039 | 24 | 0 | 3.059313 | 10 | 0 | 0.6529657 | 5 |
| paris | 60 | 98.195008 | 286 | 8 | 23.577743 | 56 | 0 | 5.4482579 | 20 |
| rennes | 0 | 3.567625 | 12 | 0 | 1.067093 | 5 | 0 | 0.2358892 | 3 |
| rouen | 1 | 9.028571 | 23 | 0 | 2.489351 | 12 | 0 | 0.4987013 | 5 |
| strasbourg | 1 | 7.862755 | 18 | 0 | 2.211629 | 9 | 0 | 0.4379256 | 6 |
| toulouse | 2 | 11.014055 | 34 | 0 | 2.966684 | 11 | 0 | 0.5637689 | 5 |
| city | Minimum Nocc | M Nocc | Max Nocc | Minimum Cv | M Cv | Max Cv | Minimum Respi | M Respi | Max Respi |
|---|---|---|---|---|---|---|---|---|---|
| bordeaux | 7 | 18.576923 | 36 | 3 | 5.807692 | 12 | 0 | 1.6538462 | 6 |
| clermont | 4 | 8.041667 | 16 | 0 | 2.625000 | 6 | 0 | 0.3750000 | 2 |
| grenoble | 3 | 9.472222 | 16 | 0 | 2.861111 | 8 | 0 | 0.7222222 | 4 |
| lehavre | 2 | 6.956522 | 15 | 0 | 2.000000 | 6 | 0 | 0.5217391 | 2 |
| lyon | 11 | 27.781250 | 75 | 2 | 7.093750 | 22 | 0 | 2.4062500 | 7 |
| marseille | 12 | 24.885714 | 40 | 2 | 6.285714 | 14 | 0 | 1.8857143 | 5 |
| montpellier | 2 | 6.928571 | 14 | 0 | 1.785714 | 7 | 0 | 0.5000000 | 2 |
| nancy | 0 | 9.312500 | 24 | 0 | 2.656250 | 10 | 0 | 0.8437500 | 4 |
| nantes | 7 | 12.875000 | 32 | 0 | 3.541667 | 10 | 0 | 1.0416667 | 4 |
| nice | 4 | 15.269231 | 33 | 0 | 4.076923 | 11 | 0 | 1.0000000 | 3 |
| paris | 100 | 207.518518 | 724 | 13 | 50.481482 | 179 | 2 | 14.5185185 | 52 |
| rennes | 2 | 5.032258 | 9 | 0 | 1.580645 | 6 | 0 | 0.4838710 | 3 |
| rouen | 6 | 13.720000 | 28 | 0 | 3.400000 | 8 | 0 | 0.9600000 | 3 |
| strasbourg | 7 | 12.315789 | 22 | 0 | 3.447368 | 7 | 0 | 0.9473684 | 3 |
| toulouse | 6 | 14.620690 | 24 | 0 | 4.241379 | 9 | 0 | 0.8965517 | 3 |
Code:
# some data management
for (i in 1:length(villes_s)){
villes_s[[i]]$time<-1:nrow(villes_s[[i]]) # Create a new variable for time
}
# start bootstrap
nreps=700 #number of bootstrap reps
results<-matrix(NA,nrow = 15,ncol=11)
colnames(results)<-c("city","NDE","NDE_2.5","NDE_97.5","NIE","NIE_2.5","NIE_97.5","PMM","TE","TE_2.5","TE_97.5")
for (i in (1:length(villes_s))){
boot.nde<- rep(NA,nreps)
boot.nie <- rep(NA,nreps)
boot.pmm <- rep(NA,nreps)
boot.te <- rep(NA,nreps)
for (rep in 1:nreps)
{
dat_resample <- sample(1:nrow(villes_s[[i]]),nrow(villes_s[[i]]),replace=T)
dat_boot <- villes_s[[i]][dat_resample,]
# outcome model - Poisson Regression: Mortality, HW and O3
m.outcome<-glm(nocc_tot~heat_wave+o3+no2moy+ns(time,df=round(3*length(time)/122))+Jours+Vacances+hol+mois,data=dat_boot,family=quasipoisson)
# mediator model - multinomial linear regression
m.mediator<-lm(o3~heat_wave+no2moy+ns(time,df=round(3*length(time)/122))+Jours+Vacances+hol+mois,data=dat_boot)
# save coefficients
theta1<-coef(m.outcome)[2]
theta2<-coef(m.outcome)[3]
beta1<-coef(m.mediator)[2]
# estimate CDE and NIE
boot.nde[rep] <- exp(theta1) #NDE
boot.nie[rep] <-exp(theta2*beta1) #NIE
boot.te[rep] <- boot.nde[rep]*boot.nie[rep] # TE
boot.pmm[rep] <-boot.nde[rep]*(boot.nie[rep]-1)/(boot.nde[rep]*boot.nie[rep]-1) #NIE
} #end bootstrap
results[i,1]<-cities[[i]]
results[i,2]<-median(boot.nde, na.rm=T)
results[i,3]<-quantile(boot.nde, 0.025, na.rm=T)
results[i,4]<-quantile(boot.nde, 0.975, na.rm=T)
results[i,5]<-median(boot.nie, na.rm=T)
results[i,6]<-quantile(boot.nie, 0.025, na.rm=T)
results[i,7]<-quantile(boot.nie, 0.975, na.rm=T)
results[i,8]<-median(boot.pmm, na.rm=T)
results[i,9]<-median(boot.te, na.rm=T)
results[i,10]<-quantile(boot.te, 0.025, na.rm=T)
results[i,11]<-quantile(boot.te, 0.975, na.rm=T)
}
# output CDE and NIE and confidence intervals
Results:
res<-data.frame(results)
for (i in (2:11)){
res[,i]<-as.numeric(as.character(res[,i]))
}
res[,2:11]<-round(res[,2:11],digits = 4)
kable(res)%>%kable_styling()%>%
column_spec(1, bold = T, border_right = T)%>%
column_spec(4, border_right = T)%>%
column_spec(7, border_right = T)%>%
column_spec(8, border_right = T)
| city | NDE | NDE_2.5 | NDE_97.5 | NIE | NIE_2.5 | NIE_97.5 | PMM | TE | TE_2.5 | TE_97.5 |
|---|---|---|---|---|---|---|---|---|---|---|
| bordeaux | 1.4920 | 1.2917 | 1.7223 | 1.0247 | 0.9995 | 1.0529 | 0.0708 | 1.5283 | 1.3259 | 1.7682 |
| clermont | 1.4570 | 1.2084 | 1.7407 | 1.0203 | 0.9917 | 1.0496 | 0.0621 | 1.4814 | 1.2317 | 1.7741 |
| grenoble | 1.1509 | 1.0206 | 1.3147 | 1.0311 | 1.0078 | 1.0572 | 0.1897 | 1.1886 | 1.0528 | 1.3534 |
| lehavre | 1.2710 | 1.0159 | 1.5816 | 1.0329 | 0.9881 | 1.0867 | 0.1375 | 1.3163 | 1.0503 | 1.6311 |
| lyon | 1.3516 | 1.1443 | 1.5884 | 1.0280 | 1.0130 | 1.0462 | 0.0971 | 1.3887 | 1.1783 | 1.6253 |
| marseille | 1.1412 | 1.0566 | 1.2416 | 1.0032 | 0.9976 | 1.0110 | 0.0262 | 1.1454 | 1.0591 | 1.2517 |
| montpellier | 1.1035 | 0.9457 | 1.2826 | 1.0084 | 0.9957 | 1.0256 | 0.0705 | 1.1128 | 0.9582 | 1.2937 |
| nancy | 1.2035 | 1.0317 | 1.4235 | 0.9955 | 0.9723 | 1.0178 | -0.0295 | 1.1970 | 1.0254 | 1.4167 |
| nantes | 1.1933 | 0.9896 | 1.4448 | 1.0753 | 1.0307 | 1.1235 | 0.3158 | 1.2856 | 1.0696 | 1.5410 |
| nice | 1.2162 | 1.0548 | 1.3999 | 1.0040 | 0.9985 | 1.0162 | 0.0222 | 1.2222 | 1.0623 | 1.4041 |
| paris | 1.6504 | 1.3663 | 2.0617 | 1.0353 | 1.0170 | 1.0651 | 0.0839 | 1.7089 | 1.3966 | 2.1337 |
| rennes | 1.3123 | 1.0966 | 1.5479 | 1.0599 | 1.0183 | 1.1154 | 0.2023 | 1.3932 | 1.1550 | 1.6500 |
| rouen | 1.3062 | 1.1121 | 1.5184 | 1.0684 | 1.0346 | 1.1097 | 0.2277 | 1.3972 | 1.1946 | 1.6364 |
| strasbourg | 1.4232 | 1.2833 | 1.5889 | 1.0197 | 0.9966 | 1.0506 | 0.0636 | 1.4534 | 1.3189 | 1.6149 |
| toulouse | 1.2400 | 1.1046 | 1.3737 | 1.0352 | 1.0147 | 1.0610 | 0.1582 | 1.2850 | 1.1447 | 1.4239 |
# write_xlsx(res,"C:/Users/Anna/Dropbox/Heat wave and O3/Meteo France/mortality/nonaccidental/results.xlsx")
Natural Direct Effect
##
## Random-Effects Model (k = 15; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0084 (SE = 0.0066)
## tau (square root of estimated tau^2 value): 0.0918
## I^2 (total heterogeneity / total variability): 50.60%
## H^2 (total variability / sampling variability): 2.02
##
## Test for Heterogeneity:
## Q(df = 14) = 29.1531, p-val = 0.0100
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 1.2722 0.0348 36.5505 <.0001 1.2040 1.3404 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Natural Indirect Effect
##
## Random-Effects Model (k = 15; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0002 (SE = 0.0001)
## tau (square root of estimated tau^2 value): 0.0156
## I^2 (total heterogeneity / total variability): 74.45%
## H^2 (total variability / sampling variability): 3.91
##
## Test for Heterogeneity:
## Q(df = 14) = 46.9917, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 1.0233 0.0052 195.4659 <.0001 1.0131 1.0336 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Results:
| city | NDE | NDE_2.5 | NDE_97.5 | NIE | NIE_2.5 | NIE_97.5 | PMM | TE | TE_2.5 | TE_97.5 |
|---|---|---|---|---|---|---|---|---|---|---|
| bordeaux | 1.5487 | 1.2798 | 1.8886 | 1.0109 | 0.9680 | 1.0610 | 0.0305 | 1.5706 | 1.2933 | 1.9016 |
| clermont | 1.7088 | 1.3208 | 2.2297 | 0.9999 | 0.9520 | 1.0535 | -0.0004 | 1.7070 | 1.3192 | 2.2266 |
| grenoble | 1.2397 | 0.9698 | 1.5638 | 1.0489 | 1.0096 | 1.0994 | 0.1988 | 1.3042 | 1.0150 | 1.6206 |
| lehavre | 1.3145 | 0.8587 | 1.8159 | 1.1347 | 1.0447 | 1.2523 | 0.3537 | 1.4903 | 0.9908 | 2.0300 |
| lyon | 1.3785 | 1.0973 | 1.7082 | 1.0253 | 1.0003 | 1.0558 | 0.0851 | 1.4144 | 1.1229 | 1.7527 |
| marseille | 1.0666 | 0.9242 | 1.2335 | 1.0039 | 0.9975 | 1.0157 | 0.0391 | 1.0725 | 0.9249 | 1.2389 |
| montpellier | 1.0622 | 0.7207 | 1.5311 | 1.0069 | 0.9812 | 1.0392 | 0.0171 | 1.0695 | 0.7213 | 1.5313 |
| nancy | 1.4707 | 1.1122 | 1.9119 | 0.9846 | 0.9402 | 1.0297 | -0.0491 | 1.4551 | 1.1008 | 1.8627 |
| nantes | 1.2334 | 0.9289 | 1.6271 | 1.1022 | 1.0259 | 1.1913 | 0.3547 | 1.3600 | 1.0278 | 1.7720 |
| nice | 1.1176 | 0.8578 | 1.4101 | 1.0064 | 0.9958 | 1.0260 | 0.0410 | 1.1229 | 0.8645 | 1.4200 |
| paris | 1.6794 | 1.3090 | 2.1246 | 1.0367 | 1.0132 | 1.0710 | 0.0863 | 1.7444 | 1.3498 | 2.2396 |
| rennes | 1.4808 | 0.9427 | 2.2680 | 1.0305 | 0.9502 | 1.1274 | 0.0872 | 1.5228 | 0.9633 | 2.3493 |
| rouen | 1.2178 | 0.9138 | 1.5689 | 1.0759 | 1.0054 | 1.1555 | 0.2987 | 1.3085 | 0.9869 | 1.6925 |
| strasbourg | 1.4740 | 1.2141 | 1.7991 | 0.9863 | 0.9446 | 1.0291 | -0.0455 | 1.4567 | 1.1987 | 1.7603 |
| toulouse | 1.2175 | 0.9823 | 1.4776 | 1.0596 | 1.0223 | 1.1008 | 0.2462 | 1.2935 | 1.0347 | 1.5645 |
Natural Direct Effect
##
## Random-Effects Model (k = 15; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0171 (SE = 0.0165)
## tau (square root of estimated tau^2 value): 0.1306
## I^2 (total heterogeneity / total variability): 40.41%
## H^2 (total variability / sampling variability): 1.68
##
## Test for Heterogeneity:
## Q(df = 14) = 23.5839, p-val = 0.0514
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 1.3084 0.0553 23.6593 <.0001 1.2000 1.4168 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Natural Indirect Effect
##
## Random-Effects Model (k = 15; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0003 (SE = 0.0002)
## tau (square root of estimated tau^2 value): 0.0170
## I^2 (total heterogeneity / total variability): 56.78%
## H^2 (total variability / sampling variability): 2.31
##
## Test for Heterogeneity:
## Q(df = 14) = 31.4751, p-val = 0.0048
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 1.0206 0.0068 149.0116 <.0001 1.0072 1.0340 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Results:
| city | NDE | NDE_2.5 | NDE_97.5 | NIE | NIE_2.5 | NIE_97.5 | PMM | TE | TE_2.5 | TE_97.5 |
|---|---|---|---|---|---|---|---|---|---|---|
| bordeaux | 2.0701 | 1.3912 | 3.0560 | 1.0687 | 0.9626 | 1.1876 | 0.1175 | 2.2136 | 1.5239 | 3.1739 |
| clermont | 1.1712 | 0.4799 | 2.5452 | 0.9489 | 0.8339 | 1.0802 | -0.0574 | 1.1064 | 0.4475 | 2.4146 |
| grenoble | 1.4631 | 0.8836 | 2.2347 | 0.9541 | 0.8547 | 1.0514 | -0.1572 | 1.3873 | 0.8533 | 2.1678 |
| lehavre | 2.4045 | 1.0285 | 4.8438 | 0.9202 | 0.7522 | 1.1232 | -0.1600 | 2.2329 | 0.9713 | 4.1275 |
| lyon | 1.9310 | 1.4078 | 2.6515 | 1.0723 | 1.0162 | 1.1509 | 0.1346 | 2.0667 | 1.5161 | 2.9134 |
| marseille | 1.2442 | 0.9120 | 1.6542 | 1.0004 | 0.9898 | 1.0175 | 0.0014 | 1.2419 | 0.9126 | 1.6559 |
| montpellier | 1.1299 | 0.6024 | 1.8070 | 1.0628 | 1.0057 | 1.1494 | 0.1739 | 1.2058 | 0.6294 | 1.9442 |
| nancy | 1.6835 | 0.9571 | 2.8183 | 0.9509 | 0.8580 | 1.0381 | -0.1314 | 1.6193 | 0.9122 | 2.6571 |
| nantes | 1.0418 | 0.6203 | 1.6001 | 1.2743 | 1.0770 | 1.5387 | 0.7115 | 1.3232 | 0.8232 | 1.9946 |
| nice | 1.2142 | 0.7882 | 1.8221 | 1.0068 | 0.9856 | 1.0413 | 0.0230 | 1.2253 | 0.7992 | 1.8317 |
| paris | 1.8864 | 1.4856 | 2.3918 | 1.0431 | 1.0109 | 1.0887 | 0.0847 | 1.9684 | 1.5523 | 2.4632 |
| rennes | 1.7232 | 0.8480 | 3.1175 | 1.1178 | 0.9382 | 1.3619 | 0.2120 | 1.9420 | 0.9232 | 3.4542 |
| rouen | 1.5397 | 0.8882 | 2.5089 | 1.0549 | 0.9070 | 1.2225 | 0.1258 | 1.6166 | 0.9575 | 2.5735 |
| strasbourg | 1.9418 | 1.3059 | 2.8571 | 1.0377 | 0.9350 | 1.1535 | 0.0722 | 2.0199 | 1.4062 | 2.9126 |
| toulouse | 1.4912 | 0.9608 | 2.2915 | 1.0002 | 0.9217 | 1.0903 | 0.0014 | 1.4938 | 0.9646 | 2.2367 |
Natural Direct Effect
##
## Random-Effects Model (k = 15; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0396 (SE = 0.0543)
## tau (square root of estimated tau^2 value): 0.1990
## I^2 (total heterogeneity / total variability): 26.87%
## H^2 (total variability / sampling variability): 1.37
##
## Test for Heterogeneity:
## Q(df = 14) = 16.9650, p-val = 0.2580
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 1.4987 0.1024 14.6329 <.0001 1.2980 1.6995 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Natural Indirect Effect
##
## Random-Effects Model (k = 15; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0003 (SE = 0.0004)
## tau (square root of estimated tau^2 value): 0.0181
## I^2 (total heterogeneity / total variability): 29.81%
## H^2 (total variability / sampling variability): 1.42
##
## Test for Heterogeneity:
## Q(df = 14) = 22.3854, p-val = 0.0710
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 1.0176 0.0102 99.8241 <.0001 0.9976 1.0376 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1