Data 605 HW 13
library(knitr)
library(rmdformats)
## Global options
options(max.print="85")
opts_chunk$set(cache=TRUE,
prompt=FALSE,
tidy=TRUE,
comment=NA,
message=FALSE,
warning=FALSE)
opts_knit$set(width=35)
library(stats)#1
Use integration by substitution to solve the integral below.
\[ \begin{equation*} \begin{split} \int 4e^{-7x}dx \end{split} \end{equation*} \]
Ans:
Let u = -7x. Then du = -7dx. We get dx = \(-\frac{1}{7}\) du.
Now, solving for \(\int e^u du\),
By the exponential rule, \(\int e^u du = e^u\)
\[ \begin{multline*} \begin{split} \int 4e^{-7x}dx & = -\frac{4}{7} \int e^u du \\ & = -\frac{4}{7} e^u \\ & = -\frac{4}{7} e^{-7x} + C\\ \end{split} \end{multline*} \]
where C is a constant.
#2
Biologists are treating a pond contaminated with bacteria. The level of contamination is changing at a rate of \(\frac{dN}{dt}=-\frac{3150}{t^4}-220\) bacteria per cubic centimeter per day, where t is the number of days since treatment began. Find a function N(t) to estimate the level of contamination if the level after 1 day was 6530 bacteria per cubic centimeter.
Ans:
dN = \(-\frac{3150}{t^4}-220 \space dt\)
Integrating both sides, we get
\[ \begin{multline*} \begin{split} \int dN &= \int (-\frac{3150}{t^4}- 220) dt \\ N(t) &= \frac{3150}{3t^3} -220t + C \\ N(t) &= \frac{1050}{t^3}-220 t + C \\ When \space t = 1, N(t) = 6530. \\ N(1) &= 1050 - 220 + C = 6530 \\ \therefore C &= 5700 \\ \end{split} \end{multline*} \]
\(N(t) = \frac{1050}{t^3} -220t + 5700\)
#3
Find the total area of the red rectangles in the figure below, where the equation of the line is f(x) = 2x - 9.
Ans:
Total area under the curve is 16.
16 with absolute error < 1.8e-13
#4
Find the area of the region bounded by the graphs of the given equations.
\[ \begin{equation*} \begin{split} y = x^2 -2x - 2, \quad y = x + 2 \\ \end{split} \end{equation*} \]
Ans:
Solving the equations, we get
X2 - 3x -4 = 0
(x+1)(x-4) = 0
x = -1 and x = 4
Area = \(\int x^2 - 2x -2 - (x + 2) dx\)
$$ \[\begin{multline*} \begin{split} & = \int(x^2 -3x - 4) dx \\ & = \frac{x^3}{3}-\frac{3x^2}{2}-4x + C \end{split} \end{multline*}\] $$
Integrate the equation above, we should get what the constant C is.
func_4 <- function(x) {
x^3 * 1/3 - 3/2 * x^2 - 4 * x
}
# abs function to correct the sign resulted from the incorrect sequence in the
# subtractions of the two equations in the beginning of this calc
area_4 <- abs(func_4(4) - func_4(-1))
area_4[1] 20.83333
The area of the region bound by the given equations is 20.83
#5
A beauty supply store expects to sell 110 flat irons during the next year. It costs $3.75 to store one flat iron for one year. There is a fixed cost of $8.25 for each order. Find the lot size and the number of orders per year that will minimize inventory costs.
*Ans*:
Let n be the number of orders per year that attains minimum inventory cost.
Let x be the number of flat irons to order per year and x/2 is the average inventory level.
Storage Cost per year = 3.75 * x/2 = 1.875x
Ordering Cost per year = 8.25 * 110 / x = 907.5 / x
Inventory Cost per year = 1.875x + 907.5 / x
I(x) = 1.875x + 907.5/x
To minimize inventory cost, we take derivative I’(x) and solve for x when I’(x) = 0
\[ 1.875 - 907.5 * x-2 = 0 \\ x = \sqrt(484) \\ x = 22 \]
Orders per year (n) is simply 110 / n = 22. n is then 5. Lot size, which is x, is 22.
#6
Use integration by parts to solve the integral below.
\[ \begin{equation*} \begin{split} \int ln(9x) x^6 dx \end{split} \end{equation*} \]
Ans:
Let u = ln(9x), then du = \(\frac{1}{x}\) dx.
Let v = \(\frac{1}{7}x^7\), then dv = x6 dx
Integration by parts, we get ∫uv’=uv−∫u’v
\[ \begin{multline*} \begin{split} \int ln(9x) x^6 dx & = ln(9x) \frac{1}{7}x^7 - \int\frac{1}{x} \frac{1}{7}x^7dx \\ & = \frac{1}{7}ln(9x)x^7 - \frac{1}{49} x^7 + C \\ & = (\frac{1}{7}ln(9x) - \frac{1}{49})\times x^7 + C \end{split} \end{multline*} \]
#7
Determine whether f(x) is a probability density function on the interval [1,e6]. If not, determine the value of the definite integral.
\[ \begin{multline*} \begin{split} f(x) = \frac{1}{6x} \end{split} \end{multline*} \]
Ans:
To find out if f(x) is a pdf on the interval of [1,e6].
\[ \begin{multline*} \begin{split} \int_{1}^{e^6} \frac{1}{6x}dx &= \frac{1}{6} \int_{1}^{e^6}\frac{1}{x}dx \\ &= \frac{1}{6} (ln (e^6) - ln (1)) \\ &= 1 \end{split} \end{multline*} \]
Apparently, f(x) is a probability density function on the interval [1,e6].