https://note.com/dhjnk/n/ne09e4398093d
library("dplyr")
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library("ggplot2")
library("reshape")
## Warning: package 'reshape' was built under R version 3.6.2
##
## Attaching package: 'reshape'
## The following object is masked from 'package:dplyr':
##
## rename
library("reshape2")
##
## Attaching package: 'reshape2'
## The following objects are masked from 'package:reshape':
##
## colsplit, melt, recast
library("stargazer")
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(zoo)
## Warning: package 'zoo' was built under R version 3.6.3
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(forecast)
## Warning: package 'forecast' was built under R version 3.6.3
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(ggfortify)
## Warning: package 'ggfortify' was built under R version 3.6.3
## Registered S3 methods overwritten by 'ggfortify':
## method from
## autoplot.Arima forecast
## autoplot.acf forecast
## autoplot.ar forecast
## autoplot.bats forecast
## autoplot.decomposed.ts forecast
## autoplot.ets forecast
## autoplot.forecast forecast
## autoplot.stl forecast
## autoplot.ts forecast
## fitted.ar forecast
## fortify.ts forecast
## residuals.ar forecast
library(ggplot2)
library(gridExtra)
## Warning: package 'gridExtra' was built under R version 3.6.2
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
library(vars)
## Warning: package 'vars' was built under R version 3.6.3
## Loading required package: MASS
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
## Loading required package: strucchange
## Warning: package 'strucchange' was built under R version 3.6.3
## Loading required package: sandwich
## Warning: package 'sandwich' was built under R version 3.6.3
## Loading required package: urca
## Warning: package 'urca' was built under R version 3.6.3
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 3.6.3
library(astsa)
## Warning: package 'astsa' was built under R version 3.6.3
##
## Attaching package: 'astsa'
## The following object is masked from 'package:forecast':
##
## gas
library(forecast)
library(tseries)
## Warning: package 'tseries' was built under R version 3.6.3
library(ggthemes) # ver. 2.1.2
## Warning: package 'ggthemes' was built under R version 3.6.2
library(tidyr) # ver. 0.2.0
##
## Attaching package: 'tidyr'
## The following object is masked from 'package:reshape2':
##
## smiths
## The following objects are masked from 'package:reshape':
##
## expand, smiths
library(dplyr) # ver. 0.4.2
library(grid) # ver. 3.2.1
library(compiler) # ver. 3.2.1
library(fGarch)
## Warning: package 'fGarch' was built under R version 3.6.3
## Loading required package: timeDate
## Loading required package: timeSeries
## Warning: package 'timeSeries' was built under R version 3.6.3
##
## Attaching package: 'timeSeries'
## The following object is masked from 'package:zoo':
##
## time<-
## Loading required package: fBasics
## Warning: package 'fBasics' was built under R version 3.6.3
##
## Attaching package: 'fBasics'
## The following object is masked from 'package:astsa':
##
## nyse
library("rugarch")
## Warning: package 'rugarch' was built under R version 3.6.3
## Loading required package: parallel
##
## Attaching package: 'rugarch'
## The following object is masked from 'package:stats':
##
## sigma
library("lattice")
library(openxlsx)
## Warning: package 'openxlsx' was built under R version 3.6.2
library(psych)
## Warning: package 'psych' was built under R version 3.6.2
##
## Attaching package: 'psych'
## The following object is masked from 'package:fBasics':
##
## tr
## The following object is masked from 'package:timeSeries':
##
## outlier
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
library(summarytools)
## Warning: package 'summarytools' was built under R version 3.6.3
## Registered S3 method overwritten by 'pryr':
## method from
## print.bytes Rcpp
## For best results, restart R session and update pander using devtools:: or remotes::install_github('rapporter/pander')
X <- read.xlsx(“浸入石3区-1126.xlsx”)
X <- read.xlsx("ku1127.xlsx")
X121 <- X [is.element(X$kucode,"121"),,drop=F]
X122 <- X [is.element(X$kucode,"122"),,drop=F]
X123 <- X [is.element(X$kucode,"123"),,drop=F]
#hist(X$zaisitu)
summary(X)
## no kankyono kucode dokaburi
## Min. : 1 Length:176250 Min. :107.0 Min. :-99999.00
## 1st Qu.: 44063 Class :character 1st Qu.:121.0 1st Qu.: 127.00
## Median : 88126 Mode :character Median :121.0 Median : 166.00
## Mean : 88126 Mean :121.4 Mean : -52.11
## 3rd Qu.:132188 3rd Qu.:123.0 3rd Qu.: 229.00
## Max. :176250 Max. :123.0 Max. : 99900.00
## NA's :280
## zaisitu danmenc kiso keika
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 1.00
## 1st Qu.: 1.000 1st Qu.: 1.000 1st Qu.: 1.000 1st Qu.:28.00
## Median : 2.000 Median : 1.000 Median : 3.000 Median :32.00
## Mean : 2.357 Mean : 1.138 Mean : 3.062 Mean :31.15
## 3rd Qu.: 2.000 3rd Qu.: 1.000 3rd Qu.: 3.000 3rd Qu.:36.00
## Max. :88.000 Max. :90.000 Max. :88.000 Max. :74.00
## NA's :1 NA's :9012
summary(X121)
## no kankyono kucode dokaburi
## Min. : 1 Length:81198 Min. :121 Min. :-99999.00
## 1st Qu.: 89320 Class :character 1st Qu.:121 1st Qu.: 126.00
## Median :113703 Mode :character Median :121 Median : 169.00
## Mean :108139 Mean :121 Mean : -16.14
## 3rd Qu.:138175 3rd Qu.:121 3rd Qu.: 240.00
## Max. :176250 Max. :121 Max. : 99900.00
## NA's :247
## zaisitu danmenc kiso keika
## Min. : 0.000 Min. : 0.0 Min. : 0.00 Min. : 1.00
## 1st Qu.: 2.000 1st Qu.: 1.0 1st Qu.: 2.00 1st Qu.:27.00
## Median : 2.000 Median : 1.0 Median : 3.00 Median :30.00
## Mean : 2.585 Mean : 1.2 Mean : 3.34 Mean :29.75
## 3rd Qu.: 2.000 3rd Qu.: 1.0 3rd Qu.: 4.00 3rd Qu.:34.00
## Max. :88.000 Max. :90.0 Max. :88.00 Max. :69.00
## NA's :1 NA's :1000
summary(X122)
## no kankyono kucode dokaburi
## Min. : 267 Length:41554 Min. :122 Min. :-99999.0
## 1st Qu.: 39260 Class :character 1st Qu.:122 1st Qu.: 130.0
## Median : 74162 Mode :character Median :122 Median : 166.0
## Mean : 82481 Mean :122 Mean : -114.2
## 3rd Qu.:128807 3rd Qu.:122 3rd Qu.: 223.0
## Max. :176245 Max. :122 Max. : 2600.0
## NA's :4
## zaisitu danmenc kiso keika
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 1.00
## 1st Qu.: 1.000 1st Qu.: 1.000 1st Qu.: 1.000 1st Qu.:29.00
## Median : 2.000 Median : 1.000 Median : 3.000 Median :33.00
## Mean : 2.148 Mean : 1.085 Mean : 2.681 Mean :32.42
## 3rd Qu.: 2.000 3rd Qu.: 1.000 3rd Qu.: 3.000 3rd Qu.:37.00
## Max. :88.000 Max. :21.000 Max. :88.000 Max. :48.00
## NA's :148
summary(X123)
## no kankyono kucode dokaburi
## Min. : 799 Length:46145 Min. :123 Min. :-99999.00
## 1st Qu.: 25652 Class :character 1st Qu.:123 1st Qu.: 128.00
## Median : 50464 Mode :character Median :123 Median : 164.00
## Mean : 62827 Mean :123 Mean : 71.17
## 3rd Qu.: 75917 3rd Qu.:123 3rd Qu.: 217.00
## Max. :170932 Max. :123 Max. : 16968.00
## NA's :13
## zaisitu danmenc kiso keika
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 1.00
## 1st Qu.: 1.000 1st Qu.: 1.000 1st Qu.: 1.000 1st Qu.:30.00
## Median : 2.000 Median : 1.000 Median : 3.000 Median :33.00
## Mean : 2.076 Mean : 1.024 Mean : 2.805 Mean :32.45
## 3rd Qu.: 2.000 3rd Qu.: 1.000 3rd Qu.: 3.000 3rd Qu.:37.00
## Max. :88.000 Max. :90.000 Max. :88.000 Max. :59.00
## NA's :512
tmp<-apply(X121[,c(5,6)], 2, summary)
tmp
## zaisitu danmenc
## Min. 0.000000 0.000000
## 1st Qu. 2.000000 1.000000
## Median 2.000000 1.000000
## Mean 2.585138 1.200251
## 3rd Qu. 2.000000 1.000000
## Max. 88.000000 90.000000
describeBy(X,group = X$kucode)
## Warning in FUN(newX[, i], ...): min の引数に有限な値がありません: Inf を返します
## Warning in FUN(newX[, i], ...): max の引数に有限な値がありません: -Inf を返しま
## す
## Warning in FUN(newX[, i], ...): min の引数に有限な値がありません: Inf を返します
## Warning in FUN(newX[, i], ...): max の引数に有限な値がありません: -Inf を返しま
## す
## Warning in FUN(newX[, i], ...): min の引数に有限な値がありません: Inf を返します
## Warning in FUN(newX[, i], ...): max の引数に有限な値がありません: -Inf を返しま
## す
##
## Descriptive statistics by group
## group: 107
## vars n mean sd median trimmed
## no 1 2328 5.620553e+04 4.790385e+04 4.34505e+04 4.919068e+04
## kankyono* 2 2328 1.523377e+19 1.622244e+18 1.42544e+19 1.520128e+19
## kucode 3 2328 1.070000e+02 0.000000e+00 1.07000e+02 1.070000e+02
## dokaburi 4 2325 -9.695600e+02 1.094307e+04 1.50000e+02 1.596700e+02
## zaisitu 5 2328 2.490000e+00 3.630000e+00 2.00000e+00 2.010000e+00
## danmenc 6 2328 1.450000e+00 2.530000e+00 1.00000e+00 1.000000e+00
## kiso 7 2328 3.710000e+00 1.126000e+01 3.00000e+00 2.180000e+00
## keika 8 0 NaN NA NA NaN
## mad min max range skew kurtosis
## no 3.551865e+04 8.49000e+02 1.739970e+05 1.731480e+05 1.24 0.56
## kankyono* 1.492532e+18 1.22424e+19 1.826329e+19 6.020891e+18 0.32 -1.01
## kucode 0.000000e+00 1.07000e+02 1.070000e+02 0.000000e+00 NaN NaN
## dokaburi 4.596000e+01 -9.99990e+04 4.031000e+03 1.040300e+05 -8.92 77.77
## zaisitu 0.000000e+00 0.00000e+00 8.800000e+01 8.800000e+01 17.40 397.48
## danmenc 0.000000e+00 0.00000e+00 2.000000e+01 2.000000e+01 5.90 34.79
## kiso 1.480000e+00 0.00000e+00 8.800000e+01 8.800000e+01 7.21 51.03
## keika NA Inf -Inf -Inf NA NA
## se
## no 9.928400e+02
## kankyono* 3.362209e+16
## kucode 0.000000e+00
## dokaburi 2.269500e+02
## zaisitu 8.000000e-02
## danmenc 5.000000e-02
## kiso 2.300000e-01
## keika NA
## ------------------------------------------------------------
## group: 108
## vars n mean sd median trimmed
## no 1 1388 6.113540e+04 4.856702e+04 4.71915e+04 5.477364e+04
## kankyono* 2 1388 2.092699e+19 1.749200e+18 2.12711e+19 2.089805e+19
## kucode 3 1388 1.080000e+02 0.000000e+00 1.08000e+02 1.080000e+02
## dokaburi 4 1385 -6.364900e+02 9.297060e+03 1.66000e+02 1.775400e+02
## zaisitu 5 1388 2.940000e+00 3.930000e+00 2.00000e+00 2.450000e+00
## danmenc 6 1388 1.270000e+00 2.890000e+00 1.00000e+00 1.000000e+00
## kiso 7 1388 3.310000e+00 6.640000e+00 3.00000e+00 2.630000e+00
## keika 8 0 NaN NA NA NaN
## mad min max range skew kurtosis
## no 3.240889e+04 1.48600e+03 1.731470e+05 1.716610e+05 1.18 0.25
## kankyono* 1.485568e+18 1.82631e+19 2.727226e+19 9.009154e+18 0.14 -0.74
## kucode 0.000000e+00 1.08000e+02 1.080000e+02 0.000000e+00 NaN NaN
## dokaburi 6.079000e+01 -9.99990e+04 2.909000e+03 1.029080e+05 -10.58 110.04
## zaisitu 0.000000e+00 0.00000e+00 8.800000e+01 8.800000e+01 15.15 314.88
## danmenc 0.000000e+00 1.00000e+00 9.000000e+01 8.900000e+01 22.46 645.75
## kiso 1.480000e+00 0.00000e+00 8.800000e+01 8.800000e+01 11.98 149.89
## keika NA Inf -Inf -Inf NA NA
## se
## no 1.303610e+03
## kankyono* 4.695098e+16
## kucode 0.000000e+00
## dokaburi 2.498200e+02
## zaisitu 1.100000e-01
## danmenc 8.000000e-02
## kiso 1.800000e-01
## keika NA
## ------------------------------------------------------------
## group: 117
## vars n mean sd median trimmed
## no 1 2453 6.063482e+04 4.766250e+04 5.095800e+04 5.461975e+04
## kankyono* 2 2453 8.402108e+18 1.451541e+18 9.181201e+18 8.457852e+18
## kucode 3 2453 1.170000e+02 0.000000e+00 1.170000e+02 1.170000e+02
## dokaburi 4 2444 -2.618700e+02 7.306010e+03 1.580000e+02 1.812300e+02
## zaisitu 5 2453 2.940000e+00 4.060000e+00 2.000000e+00 2.270000e+00
## danmenc 6 2453 1.620000e+00 3.080000e+00 1.000000e+00 1.000000e+00
## kiso 7 2453 4.600000e+00 7.600000e+00 3.000000e+00 4.130000e+00
## keika 8 1 7.400000e+01 NA 7.400000e+01 7.400000e+01
## mad min max range skew kurtosis
## no 3.650161e+04 1.6000e+01 1.738100e+05 1.73794e+05 1.08 0.29
## kankyono* 1.484231e+18 6.1711e+18 1.019328e+19 4.02218e+18 -0.33 -1.27
## kucode 0.000000e+00 1.1700e+02 1.170000e+02 0.00000e+00 NaN NaN
## dokaburi 5.634000e+01 -9.9999e+04 3.089000e+03 1.03088e+05 -13.53 181.74
## zaisitu 0.000000e+00 0.0000e+00 8.800000e+01 8.80000e+01 12.31 237.56
## danmenc 0.000000e+00 0.0000e+00 2.000000e+01 2.00000e+01 5.31 27.13
## kiso 2.970000e+00 0.0000e+00 8.800000e+01 8.80000e+01 9.69 103.68
## keika 0.000000e+00 7.4000e+01 7.400000e+01 0.00000e+00 NA NA
## se
## no 9.623400e+02
## kankyono* 2.930761e+16
## kucode 0.000000e+00
## dokaburi 1.477800e+02
## zaisitu 8.000000e-02
## danmenc 6.000000e-02
## kiso 1.500000e-01
## keika NA
## ------------------------------------------------------------
## group: 118
## vars n mean sd median trimmed
## no 1 1184 5.103333e+04 4.357373e+04 4.12875e+04 4.345116e+04
## kankyono* 2 1184 1.086271e+19 8.945928e+17 1.02142e+19 1.077531e+19
## kucode 3 1184 1.180000e+02 0.000000e+00 1.18000e+02 1.180000e+02
## dokaburi 4 1183 -2.220840e+03 1.551109e+04 1.56000e+02 1.677900e+02
## zaisitu 5 1184 2.770000e+00 2.820000e+00 2.00000e+00 2.270000e+00
## danmenc 6 1184 1.390000e+00 2.280000e+00 1.00000e+00 1.000000e+00
## kiso 7 1184 2.550000e+00 5.380000e+00 2.00000e+00 2.020000e+00
## keika 8 0 NaN NA NA NaN
## mad min max range skew kurtosis
## no 3.525475e+04 4.95000e+02 1.716160e+05 1.711210e+05 1.39 1.32
## kankyono* 3.083497e+16 1.01834e+19 1.224421e+19 2.060805e+18 0.74 -1.31
## kucode 0.000000e+00 1.18000e+02 1.180000e+02 0.000000e+00 NaN NaN
## dokaburi 5.337000e+01 -9.99990e+04 3.813000e+03 1.038120e+05 -6.14 35.71
## zaisitu 1.480000e+00 0.00000e+00 2.100000e+01 2.100000e+01 3.80 20.13
## danmenc 0.000000e+00 0.00000e+00 2.000000e+01 2.000000e+01 6.78 47.84
## kiso 2.970000e+00 0.00000e+00 8.800000e+01 8.800000e+01 13.57 212.66
## keika NA Inf -Inf -Inf NA NA
## se
## no 1.266340e+03
## kankyono* 2.599857e+16
## kucode 0.000000e+00
## dokaburi 4.509700e+02
## zaisitu 8.000000e-02
## danmenc 7.000000e-02
## kiso 1.600000e-01
## keika NA
## ------------------------------------------------------------
## group: 121
## vars n mean sd median trimmed
## no 1 81198 1.081395e+05 4.156579e+04 1.137025e+05 1.117785e+05
## kankyono* 2 81198 5.610505e+18 2.459818e+18 5.261244e+18 5.561024e+18
## kucode 3 81198 1.210000e+02 0.000000e+00 1.210000e+02 1.210000e+02
## dokaburi 4 80951 -1.614000e+01 4.853130e+03 1.690000e+02 1.839700e+02
## zaisitu 5 81198 2.590000e+00 3.480000e+00 2.000000e+00 1.950000e+00
## danmenc 6 81198 1.200000e+00 1.420000e+00 1.000000e+00 1.000000e+00
## kiso 7 81197 3.340000e+00 5.710000e+00 3.000000e+00 2.790000e+00
## keika 8 80198 2.975000e+01 8.450000e+00 3.000000e+01 3.027000e+01
## mad min max range skew kurtosis
## no 3.621621e+04 1.000000e+00 1.762500e+05 1.762490e+05 -0.74 0.09
## kankyono* 2.925110e+18 1.944201e+17 1.224347e+19 1.204905e+19 0.18 -0.31
## kucode 0.000000e+00 1.210000e+02 1.210000e+02 0.000000e+00 NaN NaN
## dokaburi 7.265000e+01 -9.999900e+04 9.990000e+04 1.998990e+05 -20.09 419.80
## zaisitu 0.000000e+00 0.000000e+00 8.800000e+01 8.800000e+01 7.92 114.63
## danmenc 0.000000e+00 0.000000e+00 9.000000e+01 9.000000e+01 9.86 242.40
## kiso 1.480000e+00 0.000000e+00 8.800000e+01 8.800000e+01 13.35 194.78
## keika 5.930000e+00 1.000000e+00 6.900000e+01 6.800000e+01 -0.54 2.82
## se
## no 1.458700e+02
## kankyono* 8.632375e+15
## kucode 0.000000e+00
## dokaburi 1.706000e+01
## zaisitu 1.000000e-02
## danmenc 0.000000e+00
## kiso 2.000000e-02
## keika 3.000000e-02
## ------------------------------------------------------------
## group: 122
## vars n mean sd median trimmed
## no 1 41554 8.248080e+04 5.184836e+04 7.41615e+04 8.125133e+04
## kankyono* 2 41554 1.010565e+19 3.142387e+18 1.02812e+19 1.011458e+19
## kucode 3 41554 1.220000e+02 0.000000e+00 1.22000e+02 1.220000e+02
## dokaburi 4 41550 -1.141600e+02 5.597320e+03 1.66000e+02 1.772900e+02
## zaisitu 5 41554 2.150000e+00 3.000000e+00 2.00000e+00 1.680000e+00
## danmenc 6 41554 1.090000e+00 1.030000e+00 1.00000e+00 1.000000e+00
## kiso 7 41554 2.680000e+00 3.640000e+00 3.00000e+00 2.330000e+00
## keika 8 41406 3.242000e+01 7.680000e+00 3.30000e+01 3.297000e+01
## mad min max range skew kurtosis
## no 6.374735e+04 2.67000e+02 1.762450e+05 1.759780e+05 0.24 -1.19
## kankyono* 2.990048e+18 3.27426e+18 1.729128e+19 1.401702e+19 -0.04 -0.86
## kucode 0.000000e+00 1.22000e+02 1.220000e+02 0.000000e+00 NaN NaN
## dokaburi 6.227000e+01 -9.99990e+04 2.600000e+03 1.025990e+05 -17.78 314.29
## zaisitu 0.000000e+00 0.00000e+00 8.800000e+01 8.800000e+01 14.86 356.23
## danmenc 0.000000e+00 0.00000e+00 2.100000e+01 2.100000e+01 14.28 231.69
## kiso 1.480000e+00 0.00000e+00 8.800000e+01 8.800000e+01 18.11 419.90
## keika 5.930000e+00 1.00000e+00 4.800000e+01 4.700000e+01 -1.19 2.89
## se
## no 2.543500e+02
## kankyono* 1.541534e+16
## kucode 0.000000e+00
## dokaburi 2.746000e+01
## zaisitu 1.000000e-02
## danmenc 1.000000e-02
## kiso 2.000000e-02
## keika 4.000000e-02
## ------------------------------------------------------------
## group: 123
## vars n mean sd median trimmed
## no 1 46145 6.282671e+04 5.048022e+04 5.046400e+04 5.704465e+04
## kankyono* 2 46145 1.911868e+19 3.716198e+18 1.929111e+19 1.906181e+19
## kucode 3 46145 1.230000e+02 0.000000e+00 1.230000e+02 1.230000e+02
## dokaburi 4 46132 7.117000e+01 3.523050e+03 1.640000e+02 1.740300e+02
## zaisitu 5 46145 2.080000e+00 2.000000e+00 2.000000e+00 1.770000e+00
## danmenc 6 46145 1.020000e+00 6.800000e-01 1.000000e+00 1.000000e+00
## kiso 7 46145 2.810000e+00 3.580000e+00 3.000000e+00 2.510000e+00
## keika 8 45633 3.245000e+01 9.030000e+00 3.300000e+01 3.362000e+01
## mad min max range skew kurtosis
## no 3.699532e+04 7.99000e+02 1.70932e+05 1.70133e+05 1.05 -0.05
## kankyono* 3.009969e+18 1.13013e+19 2.83011e+19 1.69998e+19 0.15 -0.51
## kucode 0.000000e+00 1.23000e+02 1.23000e+02 0.00000e+00 NaN NaN
## dokaburi 6.005000e+01 -9.99990e+04 1.69680e+04 1.16967e+05 -28.31 801.31
## zaisitu 0.000000e+00 0.00000e+00 8.80000e+01 8.80000e+01 22.39 900.57
## danmenc 0.000000e+00 0.00000e+00 9.00000e+01 9.00000e+01 102.38 12893.07
## kiso 1.480000e+00 0.00000e+00 8.80000e+01 8.80000e+01 19.57 461.04
## keika 4.450000e+00 1.00000e+00 5.90000e+01 5.80000e+01 -1.35 2.69
## se
## no 2.350000e+02
## kankyono* 1.729962e+16
## kucode 0.000000e+00
## dokaburi 1.640000e+01
## zaisitu 1.000000e-02
## danmenc 0.000000e+00
## kiso 2.000000e-02
## keika 4.000000e-02
stargazer(X[,c(1,2,3,4,5,6,7,8)],type="text",summary = TRUE)
##
## =================================================================================
## Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
## ---------------------------------------------------------------------------------
## no 176,250 88,125.500 50,879.140 1 44,063.2 132,187.8 176,250
## kucode 176,250 121.396 2.308 107 121 123 123
## dokaburi 175,970 -52.111 5,114.316 -99,999.000 127.000 229.000 99,900.000
## zaisitu 176,250 2.357 3.062 0 1 2 88
## danmenc 176,250 1.138 1.274 0 1 1 90
## kiso 176,249 3.062 4.966 0.000 1.000 3.000 88.000
## keika 167,238 31.147 8.538 1.000 28.000 36.000 74.000
## ---------------------------------------------------------------------------------
stargazer(X121[,c(1,2,3,4,5,6,7,8)],type="text",summary = TRUE)
##
## =================================================================================
## Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
## ---------------------------------------------------------------------------------
## no 81,198 108,139.500 41,565.790 1 89,320.2 138,174.8 176,250
## kucode 81,198 121.000 0.000 121 121 121 121
## dokaburi 80,951 -16.145 4,853.131 -99,999.000 126.000 240.000 99,900.000
## zaisitu 81,198 2.585 3.479 0 2 2 88
## danmenc 81,198 1.200 1.416 0 1 1 90
## kiso 81,197 3.340 5.713 0.000 2.000 4.000 88.000
## keika 80,198 29.749 8.449 1.000 27.000 34.000 69.000
## ---------------------------------------------------------------------------------
stargazer(X122[,c(1,2,3,4,5,6,7,8)],type="text",summary = TRUE)
##
## ===============================================================================
## Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
## -------------------------------------------------------------------------------
## no 41,554 82,480.800 51,848.360 267 39,260.2 128,806.8 176,245
## kucode 41,554 122.000 0.000 122 122 122 122
## dokaburi 41,550 -114.161 5,597.315 -99,999.000 130.000 223.000 2,600.000
## zaisitu 41,554 2.148 2.999 0 1 2 88
## danmenc 41,554 1.085 1.031 0 1 1 21
## kiso 41,554 2.681 3.637 0 1 3 88
## keika 41,406 32.417 7.680 1.000 29.000 37.000 48.000
## -------------------------------------------------------------------------------
stargazer(X123[,c(1,2,3,4,5,6,7,8)],type="text",summary = TRUE)
##
## ===============================================================================
## Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
## -------------------------------------------------------------------------------
## no 46,145 62,826.710 50,480.220 799 25,652 75,917 170,932
## kucode 46,145 123.000 0.000 123 123 123 123
## dokaburi 46,132 71.171 3,523.053 -99,999.000 128.000 217.000 16,968.000
## zaisitu 46,145 2.076 1.996 0 1 2 88
## danmenc 46,145 1.024 0.679 0 1 1 90
## kiso 46,145 2.805 3.583 0 1 3 88
## keika 45,633 32.450 9.031 1.000 30.000 37.000 59.000
## -------------------------------------------------------------------------------
stby(data = X,
INDICES = X$kucode,
FUN = descr,
stats = c("mean", "sd", "min", "Q1", "med", "Q3", "max"),
transpose = TRUE)
## Non-numerical variable(s) ignored: kankyono
## Descriptive Statistics
## X
## Group: kucode = 107
## N: 2328
##
## Mean Std.Dev Min Q1 Median Q3 Max
## -------------- ---------- ---------- ----------- ---------- ---------- ---------- -----------
## danmenc 1.45 2.53 0.00 1.00 1.00 1.00 20.00
## dokaburi -969.56 10943.07 -99999.00 122.00 150.00 197.00 4031.00
## keika NaN NaN Inf NA NA NA -Inf
## kiso 3.71 11.26 0.00 1.00 3.00 3.00 88.00
## kucode 107.00 0.00 107.00 107.00 107.00 107.00 107.00
## no 56205.53 47903.85 849.00 21526.50 43450.50 70854.50 173997.00
## zaisitu 2.49 3.63 0.00 2.00 2.00 2.00 88.00
##
## Group: kucode = 108
## N: 1388
##
## Mean Std.Dev Min Q1 Median Q3 Max
## -------------- ---------- ---------- ----------- ---------- ---------- ---------- -----------
## danmenc 1.27 2.89 1.00 1.00 1.00 1.00 90.00
## dokaburi -636.49 9297.06 -99999.00 131.00 166.00 221.00 2909.00
## keika NaN NaN Inf NA NA NA -Inf
## kiso 3.31 6.64 0.00 2.00 3.00 3.00 88.00
## kucode 108.00 0.00 108.00 108.00 108.00 108.00 108.00
## no 61135.40 48567.02 1486.00 27565.00 47191.50 72170.00 173147.00
## zaisitu 2.94 3.93 0.00 2.00 2.00 4.00 88.00
##
## Group: kucode = 117
## N: 2453
##
## Mean Std.Dev Min Q1 Median Q3 Max
## -------------- ---------- ---------- ----------- ---------- ---------- ---------- -----------
## danmenc 1.62 3.08 0.00 1.00 1.00 1.00 20.00
## dokaburi -261.87 7306.01 -99999.00 126.00 158.00 225.50 3089.00
## keika 74.00 NaN 74.00 74.00 74.00 74.00 74.00
## kiso 4.60 7.60 0.00 2.00 3.00 7.00 88.00
## kucode 117.00 0.00 117.00 117.00 117.00 117.00 117.00
## no 60634.82 47662.50 16.00 26189.00 50958.00 75441.00 173810.00
## zaisitu 2.94 4.06 0.00 1.00 2.00 2.00 88.00
##
## Group: kucode = 118
## N: 1184
##
## Mean Std.Dev Min Q1 Median Q3 Max
## -------------- ---------- ---------- ----------- ---------- ---------- ---------- -----------
## danmenc 1.39 2.28 0.00 1.00 1.00 1.00 20.00
## dokaburi -2220.84 15511.09 -99999.00 126.00 156.00 206.00 3813.00
## keika NaN NaN Inf NA NA NA -Inf
## kiso 2.55 5.38 0.00 0.00 2.00 3.00 88.00
## kucode 118.00 0.00 118.00 118.00 118.00 118.00 118.00
## no 51033.33 43573.73 495.00 19029.50 41287.50 66414.50 171616.00
## zaisitu 2.77 2.82 0.00 1.00 2.00 2.00 21.00
##
## Group: kucode = 121
## N: 81198
##
## Mean Std.Dev Min Q1 Median Q3 Max
## -------------- ----------- ---------- ----------- ---------- ----------- ----------- -----------
## danmenc 1.20 1.42 0.00 1.00 1.00 1.00 90.00
## dokaburi -16.14 4853.13 -99999.00 126.00 169.00 240.00 99900.00
## keika 29.75 8.45 1.00 27.00 30.00 34.00 69.00
## kiso 3.34 5.71 0.00 2.00 3.00 4.00 88.00
## kucode 121.00 0.00 121.00 121.00 121.00 121.00 121.00
## no 108139.49 41565.79 1.00 89320.00 113702.50 138175.00 176250.00
## zaisitu 2.59 3.48 0.00 2.00 2.00 2.00 88.00
##
## Group: kucode = 122
## N: 41554
##
## Mean Std.Dev Min Q1 Median Q3 Max
## -------------- ---------- ---------- ----------- ---------- ---------- ----------- -----------
## danmenc 1.09 1.03 0.00 1.00 1.00 1.00 21.00
## dokaburi -114.16 5597.32 -99999.00 130.00 166.00 223.00 2600.00
## keika 32.42 7.68 1.00 29.00 33.00 37.00 48.00
## kiso 2.68 3.64 0.00 1.00 3.00 3.00 88.00
## kucode 122.00 0.00 122.00 122.00 122.00 122.00 122.00
## no 82480.80 51848.36 267.00 39260.00 74161.50 128807.00 176245.00
## zaisitu 2.15 3.00 0.00 1.00 2.00 2.00 88.00
##
## Group: kucode = 123
## N: 46145
##
## Mean Std.Dev Min Q1 Median Q3 Max
## -------------- ---------- ---------- ----------- ---------- ---------- ---------- -----------
## danmenc 1.02 0.68 0.00 1.00 1.00 1.00 90.00
## dokaburi 71.17 3523.05 -99999.00 128.00 164.00 217.00 16968.00
## keika 32.45 9.03 1.00 30.00 33.00 37.00 59.00
## kiso 2.81 3.58 0.00 1.00 3.00 3.00 88.00
## kucode 123.00 0.00 123.00 123.00 123.00 123.00 123.00
## no 62826.71 50480.22 799.00 25652.00 50464.00 75917.00 170932.00
## zaisitu 2.08 2.00 0.00 1.00 2.00 2.00 88.00
plot(x=X$keika,y=X$zaisitu)
hist(X$keika)
hist(X$zaisitu)
q <- read.xlsx("1127.xlsx")
summary(q)
## 整理番号 kucode 管渠区分 kankubun
## Min. :121001 Length:739 Length:739 Min. :1.000
## 1st Qu.:121186 Class :character Class :character 1st Qu.:2.000
## Median :122118 Mode :character Mode :character Median :3.000
## Mean :122139 Mean :2.414
## 3rd Qu.:123079 3rd Qu.:3.000
## Max. :123263 Max. :3.000
##
## 路線番号 管路径φ 侵入石付着程度 調査年
## Length:739 Min. :250.0 Min. :1.000 Min. :2017
## Class :character 1st Qu.:250.0 1st Qu.:2.000 1st Qu.:2017
## Mode :character Median :250.0 Median :2.000 Median :2018
## Mean :304.5 Mean :2.223 Mean :2018
## 3rd Qu.:350.0 3rd Qu.:3.000 3rd Qu.:2019
## Max. :700.0 Max. :4.000 Max. :2019
##
## 町名 番地 経過年数 経過年数区間
## Length:739 Length:739 Min. : 3.00 Length:739
## Class :character Class :character 1st Qu.:28.00 Class :character
## Mode :character Mode :character Median :33.00 Mode :character
## Mean :32.55
## 3rd Qu.:36.00
## Max. :52.00
##
## 経過年数度数 度数分布比 全管きょ別比 管きょ/全管きょ
## Min. : 0.00 Min. :0.0000 Min. :0.0007 Min. :0.0000
## 1st Qu.: 2.25 1st Qu.:0.0030 1st Qu.:0.0126 1st Qu.:0.0892
## Median : 6.00 Median :0.0081 Median :0.0244 Median :0.3211
## Mean : 92.38 Mean :0.1250 Mean :0.1250 Mean :0.5090
## 3rd Qu.: 95.75 3rd Qu.:0.1296 3rd Qu.:0.0933 3rd Qu.:0.7787
## Max. :739.00 Max. :1.0000 Max. :1.0000 Max. :1.5723
## NA's :723 NA's :723 NA's :723 NA's :724
## 上流土被り 上流土被り区分 上流土被り区分個数 管きょ比
## Min. : 93.0 Length:739 Min. : 0.00 Min. :0.0000
## 1st Qu.:142.0 Class :character 1st Qu.: 1.00 1st Qu.:0.0014
## Median :177.0 Mode :character Median : 7.00 Median :0.0075
## Mean :191.4 Mean : 98.27 Mean :0.0714
## 3rd Qu.:225.0 3rd Qu.:108.50 3rd Qu.:0.0909
## Max. :625.0 Max. :737.00 Max. :0.3175
## NA's :2 NA's :724 NA's :725
## 管きょ/全管きょ 管径 管径別個数 管径別個数
## Min. :0.0000 Min. : 250.0 Length:739 Min. : 0.0
## 1st Qu.:0.0052 1st Qu.: 250.0 Class :character 1st Qu.: 13.0
## Median :0.0222 Median : 250.0 Mode :character Median : 39.0
## Mean :0.1333 Mean : 308.2 Mean :134.0
## 3rd Qu.:0.1122 3rd Qu.: 350.0 3rd Qu.: 81.5
## Max. :1.0000 Max. :1200.0 Max. :737.0
## NA's :724 NA's :2 NA's :728
## 管きょ比 全管きょ 管きょ/全管きょ
## Min. :0.0000 Min. :0.0001 Min. :0.0000
## 1st Qu.:0.0170 1st Qu.:0.0321 1st Qu.:0.2434
## Median :0.0434 Median :0.0431 Median :1.0666
## Mean :0.1000 Mean :0.1000 Mean :0.7959
## 3rd Qu.:0.0797 3rd Qu.:0.0945 3rd Qu.:1.2379
## Max. :0.6024 Max. :0.5686 Max. :1.5027
## NA's :729 NA's :729 NA's :729