# Vector
# List
# Array
# Factor
# Matrix
# DataFrame
b <- 4
f <- function (a)
{
b <- 3
b^3
}
printmessage <- function (a) {
if (is.na (a))
print ("a is a missing value!")
else if (a < 0){
print ("a is less than zero")
}
else{
print ("a is greater than or equal to zero")
}
}
printmessage (NA)
## [1] "a is a missing value!"
Answer:# Matrix is Homogeneous, It’s a m*n array with similar data type. EX: A = matrix (c(11, 22, 33, 44, 55, 66),
nrow = 2, ncol = 3) DataFrames are heterogeneous. It can contain multiple data types in multiple columns called fields. Ex: df <- data.frame( col1 = c(1:3, NA), col2 = c(“this”, NA, “is”, “text”), col3 = c(TRUE, FALSE, TRUE, TRUE), col4 = c(2.5, 4.2, 3.2, NA))
X <- c(3, 2, 4)
Y <- c(1, 2)
Z <- X*Y
## Warning in X * Y: longer object length is not a multiple of shorter object
## length
Z
## [1] 3 4 4
df<-data.frame(v1=c(1:5),v2=c(2:6),v3=c(3:7),v4=c(4:8))
df1 <- df
df1[,c('v2','v3')] <- list(NULL)
df1
## v1 v4
## 1 1 4
## 2 2 5
## 3 3 6
## 4 4 7
## 5 5 8
x<-5
if(x%%2==0) {
print("X is an even number")
} else {
print("X is an odd number")
}
## [1] "X is an odd number"
st <- "contact@boston.in"
strsplit(st,".",fixed = TRUE)
## [[1]]
## [1] "contact@boston" "in"
tt <- c("a", "b", "a", "a", "b", "c", "a1", "a1", "a1")
table(tt)
## tt
## a a1 b c
## 3 3 2 1
Sales = c(10,2,40,13,34,12,35,67,12,56,14,56,134)
freq <- table(Sales)
cumsum(freq)
## 2 10 12 13 14 34 35 40 56 67 134
## 1 2 4 5 6 7 8 9 11 12 13
Dataset: ## The dataset is given in the link ## 1) Find missing value in the dataset ## 2) Impute missing values in the dataset using missforest package ## 3) Find summary statistics using dplyr package ## 4) What is the avg amount spend by Male and Females? ## 5) Using GGplots library build 5 graphs?
# import the dataset
setwd('E:/Data Science/R-programming/R-Test/Test in R/')
german_cr_data <- read.csv('german_credit_data_risk.csv')
#View(german_cr_data)
summary(german_cr_data) # shows the statistical summary of the dataset fields
## X Age Sex Job
## Min. : 0.0 Min. :19.00 Length:1000 Min. :0.000
## 1st Qu.:249.8 1st Qu.:27.00 Class :character 1st Qu.:2.000
## Median :499.5 Median :33.00 Mode :character Median :2.000
## Mean :499.5 Mean :35.55 Mean :1.904
## 3rd Qu.:749.2 3rd Qu.:42.00 3rd Qu.:2.000
## Max. :999.0 Max. :75.00 Max. :3.000
## Housing Saving.accounts Checking.account Credit.amount
## Length:1000 Length:1000 Length:1000 Min. : 250
## Class :character Class :character Class :character 1st Qu.: 1366
## Mode :character Mode :character Mode :character Median : 2320
## Mean : 3271
## 3rd Qu.: 3972
## Max. :18424
## Duration Purpose Risk
## Min. : 4.0 Length:1000 Length:1000
## 1st Qu.:12.0 Class :character Class :character
## Median :18.0 Mode :character Mode :character
## Mean :20.9
## 3rd Qu.:24.0
## Max. :72.0
str(german_cr_data) ## shows the information about the data structure
## 'data.frame': 1000 obs. of 11 variables:
## $ X : int 0 1 2 3 4 5 6 7 8 9 ...
## $ Age : int 67 22 49 45 53 35 53 35 61 28 ...
## $ Sex : chr "male" "female" "male" "male" ...
## $ Job : int 2 2 1 2 2 1 2 3 1 3 ...
## $ Housing : chr "own" "own" "own" "free" ...
## $ Saving.accounts : chr NA "little" "little" "little" ...
## $ Checking.account: chr "little" "moderate" NA "little" ...
## $ Credit.amount : int 1169 5951 2096 7882 4870 9055 2835 6948 3059 5234 ...
## $ Duration : int 6 48 12 42 24 36 24 36 12 30 ...
## $ Purpose : chr "radio/TV" "radio/TV" "education" "furniture/equipment" ...
## $ Risk : chr "good" "bad" "good" "good" ...
head(german_cr_data) ## shows the 1st six records of the dataset
## X Age Sex Job Housing Saving.accounts Checking.account Credit.amount
## 1 0 67 male 2 own <NA> little 1169
## 2 1 22 female 2 own little moderate 5951
## 3 2 49 male 1 own little <NA> 2096
## 4 3 45 male 2 free little little 7882
## 5 4 53 male 2 free little little 4870
## 6 5 35 male 1 free <NA> <NA> 9055
## Duration Purpose Risk
## 1 6 radio/TV good
## 2 48 radio/TV bad
## 3 12 education good
## 4 42 furniture/equipment good
## 5 24 car bad
## 6 36 education good
sum(is.na(german_cr_data)) ## shows the total missing values in the dataset
## [1] 577
colSums(is.na(german_cr_data)) ## shows columnwise missing values
## X Age Sex Job
## 0 0 0 0
## Housing Saving.accounts Checking.account Credit.amount
## 0 183 394 0
## Duration Purpose Risk
## 0 0 0
## replacing each levels of Saving.accounts column with numeric values like replace 'little' wih 1 'moderate' with 2, 'quite rich' with 3 and 'rich' with 4
table(german_cr_data$Saving.accounts)
##
## little moderate quite rich rich
## 603 103 63 48
german_cr_data$Saving.accounts[german_cr_data$Saving.accounts=='little'] <- c(1)
german_cr_data$Saving.accounts[german_cr_data$Saving.accounts=='moderate'] <- c(2)
german_cr_data$Saving.accounts[german_cr_data$Saving.accounts=='quite rich'] <- c(3)
german_cr_data$Saving.accounts[german_cr_data$Saving.accounts=='rich'] <- c(4)
class(german_cr_data$Saving.accounts)
## [1] "character"
#convert the datatype of Saving.accounts from character to numetic
german_cr_data$Saving.accounts <- as.numeric(german_cr_data$Saving.accounts)
class(german_cr_data$Saving.accounts)
## [1] "numeric"
## replacing each levels of Checking.account column with numeric
table(german_cr_data$Checking.account)
##
## little moderate rich
## 274 269 63
german_cr_data$Checking.account[german_cr_data$Checking.account=='little'] <- c(1)
german_cr_data$Checking.account[german_cr_data$Checking.account=='moderate'] <- c(2)
german_cr_data$Checking.account[german_cr_data$Checking.account=='rich'] <- c(4)
class(german_cr_data$Checking.account)
## [1] "character"
#convert the datatype of Checking.account from character to numetic
german_cr_data$Checking.account <- as.numeric(german_cr_data$Checking.account)
class(german_cr_data$Checking.account)
## [1] "numeric"
## selecting only numeric columns from the german_cr_data dataset
german_cr_data_num <- unlist(lapply(german_cr_data, is.numeric))
## impute missing values using missForest package
library(missForest)
## Warning: package 'missForest' was built under R version 4.0.3
## Loading required package: randomForest
## Warning: package 'randomForest' was built under R version 4.0.3
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## Loading required package: foreach
## Loading required package: itertools
## Warning: package 'itertools' was built under R version 4.0.3
## Loading required package: iterators
missForest(german_cr_data[,german_cr_data_num])
## missForest iteration 1 in progress...
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## done!
## missForest iteration 2 in progress...
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## done!
## missForest iteration 3 in progress...
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## done!
## missForest iteration 4 in progress...
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## done!
## missForest iteration 5 in progress...
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## Warning in randomForest.default(x = obsX, y = obsY, ntree = ntree, mtry =
## mtry, : The response has five or fewer unique values. Are you sure you want to
## do regression?
## done!
## $ximp
## X Age Job Saving.accounts Checking.account Credit.amount Duration
## 1 0 67 2 1.838889 1.000000 1169 6
## 2 1 22 2 1.000000 2.000000 5951 48
## 3 2 49 1 1.000000 1.957321 2096 12
## 4 3 45 2 1.000000 1.000000 7882 42
## 5 4 53 2 1.000000 1.000000 4870 24
## 6 5 35 1 1.270000 1.541083 9055 36
## 7 6 53 2 3.000000 1.687000 2835 24
## 8 7 35 3 1.000000 2.000000 6948 36
## 9 8 61 1 4.000000 2.070000 3059 12
## 10 9 28 3 1.000000 2.000000 5234 30
## 11 10 25 2 1.000000 2.000000 1295 12
## 12 11 24 2 1.000000 1.000000 4308 48
## 13 12 22 2 1.000000 2.000000 1567 12
## 14 13 60 1 1.000000 1.000000 1199 24
## 15 14 28 2 1.000000 1.000000 1403 15
## 16 15 32 1 2.000000 1.000000 1282 24
## 17 16 53 2 2.324286 1.810000 2424 24
## 18 17 25 2 1.448333 1.000000 8072 30
## 19 18 44 3 1.000000 2.000000 12579 24
## 20 19 31 2 3.000000 1.562000 3430 24
## 21 20 48 2 1.000000 1.735455 2134 9
## 22 21 44 2 3.000000 1.000000 2647 6
## 23 22 48 1 1.000000 1.000000 2241 10
## 24 23 44 2 2.000000 2.000000 1804 12
## 25 24 26 2 1.530000 1.820000 2069 10
## 26 25 36 1 1.000000 1.000000 1374 6
## 27 26 39 1 1.000000 1.618571 426 6
## 28 27 42 2 4.000000 4.000000 409 12
## 29 28 34 2 1.000000 2.000000 2415 7
## 30 29 63 2 1.000000 1.000000 6836 60
## 31 30 36 2 4.000000 2.000000 1913 18
## 32 31 27 2 1.000000 1.000000 4020 24
## 33 32 30 2 2.000000 2.000000 5866 18
## 34 33 57 1 2.510000 2.547500 1264 12
## 35 34 33 3 1.000000 4.000000 1474 12
## 36 35 25 1 1.000000 2.000000 4746 45
## 37 36 31 2 1.000000 1.599434 6110 48
## 38 37 37 2 1.000000 4.000000 2100 18
## 39 38 37 2 1.000000 4.000000 1225 10
## 40 39 24 2 1.000000 2.000000 458 9
## 41 40 30 3 3.000000 1.575000 2333 30
## 42 41 26 2 3.000000 2.000000 1158 12
## 43 42 44 1 1.000000 2.000000 6204 18
## 44 43 24 2 2.000000 1.000000 6187 30
## 45 44 58 1 1.000000 1.000000 6143 48
## 46 45 35 3 1.000000 2.652020 1393 11
## 47 46 39 2 3.000000 2.057000 2299 36
## 48 47 23 0 3.000000 1.000000 1352 6
## 49 48 39 1 1.000000 2.045655 7228 11
## 50 49 28 2 2.000000 1.830000 2073 12
## 51 50 29 1 1.630000 2.000000 2333 24
## 52 51 30 3 1.000000 2.000000 5965 27
## 53 52 25 2 1.000000 2.033667 1262 12
## 54 53 31 2 1.540000 2.070000 3378 18
## 55 54 57 2 1.000000 2.000000 2225 36
## 56 55 26 1 1.945000 1.942000 783 6
## 57 56 52 3 1.200000 2.000000 6468 12
## 58 57 31 2 1.000000 1.731882 9566 36
## 59 58 23 3 1.000000 4.000000 1961 18
## 60 59 23 1 1.000000 1.000000 6229 36
## 61 60 27 2 1.000000 2.000000 1391 9
## 62 61 50 2 2.482000 2.000000 1537 15
## 63 62 61 3 1.000000 2.000000 1953 36
## 64 63 25 2 1.000000 2.000000 14421 48
## 65 64 26 2 1.000000 1.686685 3181 24
## 66 65 48 2 1.480000 2.003333 5190 27
## 67 66 29 2 1.000000 1.601559 2171 12
## 68 67 22 2 4.000000 2.000000 1007 12
## 69 68 37 2 1.000000 1.792308 1819 36
## 70 69 25 2 1.630000 1.750000 2394 36
## 71 70 30 2 1.000000 1.534549 8133 36
## 72 71 46 1 1.890000 1.656000 730 7
## 73 72 51 3 1.000000 1.000000 1164 8
## 74 73 41 1 1.000000 2.000000 5954 42
## 75 74 40 3 1.160000 1.000000 1977 36
## 76 75 66 3 1.000000 1.000000 1526 12
## 77 76 34 2 1.000000 1.000000 3965 42
## 78 77 51 2 1.000000 2.000000 4771 11
## 79 78 39 1 1.680000 1.950000 9436 54
## 80 79 22 2 1.000000 2.000000 3832 30
## 81 80 44 2 1.135000 1.487727 5943 24
## 82 81 47 2 3.000000 2.177500 1213 15
## 83 82 24 1 2.000000 1.810000 1568 18
## 84 83 58 1 1.000000 1.000000 1755 24
## 85 84 52 1 1.000000 1.000000 2315 10
## 86 85 29 3 1.000000 1.913353 1412 12
## 87 86 27 2 1.000000 2.000000 1295 18
## 88 87 47 2 2.000000 2.000000 12612 36
## 89 88 30 3 2.000000 1.000000 2249 18
## 90 89 28 2 1.000000 1.000000 1108 12
## 91 90 56 2 1.000000 1.756667 618 12
## 92 91 54 2 1.000000 1.000000 1409 12
## 93 92 33 1 1.410000 1.880000 797 12
## 94 93 20 2 1.733750 4.000000 3617 24
## 95 94 54 2 4.000000 2.000000 1318 12
## 96 95 58 2 1.000000 2.000000 15945 54
## 97 96 61 2 2.080000 2.030000 2012 12
## 98 97 34 2 2.000000 2.000000 2622 18
## 99 98 36 2 1.000000 2.000000 2337 36
## 100 99 36 3 1.399143 2.000000 7057 20
## 101 100 41 1 2.000000 2.251000 1469 24
## 102 101 24 2 1.000000 2.000000 2323 36
## 103 102 24 2 1.000000 2.001465 932 6
## 104 103 35 2 1.000000 2.000000 1919 9
## 105 104 26 2 1.570000 1.890000 2445 12
## 106 105 39 3 1.000000 2.000000 11938 24
## 107 106 39 3 1.000000 1.870956 6458 18
## 108 107 32 2 1.000000 2.000000 6078 12
## 109 108 30 2 1.438333 1.000000 7721 24
## 110 109 35 2 3.000000 2.000000 1410 14
## 111 110 31 2 2.000000 2.000000 1449 6
## 112 111 23 2 1.000000 4.000000 392 15
## 113 112 28 1 1.000000 2.000000 6260 18
## 114 113 25 2 1.000000 2.150064 7855 36
## 115 114 35 2 3.000000 1.000000 1680 12
## 116 115 47 2 1.636471 2.050000 3578 48
## 117 116 30 3 1.240000 1.000000 7174 42
## 118 117 27 2 1.382564 1.000000 2132 10
## 119 118 23 2 3.000000 1.000000 4281 33
## 120 119 36 3 3.000000 2.000000 2366 12
## 121 120 25 2 1.000000 1.000000 1835 21
## 122 121 41 3 1.000000 1.973004 3868 24
## 123 122 24 1 1.000000 1.653132 1768 12
## 124 123 63 2 1.000000 4.000000 781 10
## 125 124 27 2 1.362500 2.000000 1924 18
## 126 125 30 2 1.000000 1.000000 2121 12
## 127 126 40 1 1.000000 1.000000 701 12
## 128 127 30 2 1.000000 2.000000 639 12
## 129 128 34 3 1.000000 2.000000 1860 12
## 130 129 29 2 1.000000 1.000000 3499 12
## 131 130 24 2 1.800000 2.000000 8487 48
## 132 131 29 2 1.000000 1.000000 6887 36
## 133 132 27 1 1.000000 1.640750 2708 15
## 134 133 47 2 1.000000 2.151014 1984 18
## 135 134 21 2 2.000000 1.987500 10144 60
## 136 135 38 2 2.130000 2.240833 1240 12
## 137 136 27 2 4.000000 1.850000 8613 27
## 138 137 66 1 3.000000 2.000000 766 12
## 139 138 35 2 2.017500 2.000000 2728 15
## 140 139 44 1 1.000000 4.000000 1881 12
## 141 140 27 0 4.000000 4.000000 709 6
## 142 141 30 3 1.000000 2.000000 4795 36
## 143 142 27 3 1.000000 1.000000 3416 27
## 144 143 22 2 1.000000 1.000000 2462 18
## 145 144 23 2 1.000000 1.574754 2288 21
## 146 145 30 2 2.000000 2.000000 3566 48
## 147 146 39 2 1.000000 1.000000 860 6
## 148 147 51 2 2.000000 1.897500 682 12
## 149 148 28 2 1.000000 1.000000 5371 36
## 150 149 46 2 4.000000 2.093333 1582 18
## 151 150 42 2 2.000000 1.875000 1346 6
## 152 151 38 2 1.000000 2.134457 1924 10
## 153 152 24 2 1.000000 4.000000 5848 36
## 154 153 29 2 4.000000 2.000000 7758 24
## 155 154 36 3 2.000000 2.000000 6967 24
## 156 155 20 2 1.000000 1.000000 1282 12
## 157 156 48 2 2.000000 1.000000 1288 9
## 158 157 45 1 1.000000 1.000000 339 12
## 159 158 38 2 2.000000 2.000000 3512 24
## 160 159 34 1 1.943690 1.886000 1898 6
## 161 160 36 2 2.000000 1.986667 2872 24
## 162 161 30 2 1.000000 1.432305 1055 18
## 163 162 36 2 3.000000 2.457500 1262 15
## 164 163 70 3 1.000000 2.000000 7308 10
## 165 164 36 2 3.000000 2.400000 909 36
## 166 165 32 2 3.000000 1.830000 2978 6
## 167 166 33 2 1.000000 1.000000 1131 18
## 168 167 20 2 4.000000 2.000000 1577 11
## 169 168 25 2 1.000000 2.152283 3972 24
## 170 169 31 2 1.000000 2.000000 1935 24
## 171 170 33 2 1.000000 1.000000 950 15
## 172 171 26 2 1.000000 1.719637 763 12
## 173 172 34 3 1.000000 2.000000 2064 24
## 174 173 33 2 1.000000 2.000000 1414 8
## 175 174 26 2 1.000000 1.000000 3414 21
## 176 175 53 3 1.950000 1.950000 7485 30
## 177 176 42 2 1.000000 1.000000 2577 12
## 178 177 52 2 3.000000 1.000000 338 6
## 179 178 31 3 1.000000 2.009604 1963 12
## 180 179 65 2 1.000000 1.000000 571 21
## 181 180 28 2 1.000000 1.572488 9572 36
## 182 181 30 3 1.000000 2.000000 4455 36
## 183 182 40 1 1.035000 1.000000 1647 21
## 184 183 50 2 4.000000 1.960000 3777 24
## 185 184 36 2 1.000000 2.000000 884 18
## 186 185 31 2 1.000000 1.476029 1360 15
## 187 186 74 3 1.000000 2.000000 5129 9
## 188 187 68 0 1.000000 2.000000 1175 16
## 189 188 20 2 2.000000 1.000000 674 12
## 190 189 33 2 1.000000 2.000000 3244 18
## 191 190 54 3 4.000000 1.800000 4591 24
## 192 191 34 1 2.000000 2.000000 3844 48
## 193 192 36 2 1.000000 2.000000 3915 27
## 194 193 29 2 1.000000 1.622790 2108 6
## 195 194 21 2 2.000000 2.000000 3031 45
## 196 195 34 3 1.000000 2.000000 1501 9
## 197 196 28 2 1.000000 1.659457 1382 6
## 198 197 27 2 2.000000 2.000000 951 12
## 199 198 36 2 1.844167 2.000000 2760 24
## 200 199 40 3 1.000000 2.000000 4297 18
## 201 200 52 2 3.000000 1.850000 936 9
## 202 201 27 1 1.000000 1.000000 1168 12
## 203 202 26 2 1.000000 2.283156 5117 27
## 204 203 21 2 1.000000 1.000000 902 12
## 205 204 38 1 1.000000 1.489712 1495 12
## 206 205 38 3 1.000000 1.000000 10623 30
## 207 206 43 2 1.000000 2.003366 1935 12
## 208 207 26 2 1.000000 2.000000 1424 12
## 209 208 21 1 1.000000 1.000000 6568 24
## 210 209 55 2 4.000000 2.280000 1413 12
## 211 210 33 2 1.905000 1.920000 3074 9
## 212 211 45 1 1.520000 2.160000 3835 36
## 213 212 50 2 1.000000 1.000000 5293 27
## 214 213 66 3 1.000000 4.000000 1908 30
## 215 214 51 2 1.932500 2.130000 3342 36
## 216 215 39 1 1.473333 2.000000 932 6
## 217 216 31 2 1.000000 1.000000 3104 18
## 218 217 23 2 1.000000 4.000000 3913 36
## 219 218 24 1 1.000000 1.000000 3021 24
## 220 219 64 2 1.000000 2.195455 1364 10
## 221 220 26 1 1.000000 2.000000 625 12
## 222 221 23 2 1.030000 1.000000 1200 12
## 223 222 30 2 1.000000 1.708426 707 12
## 224 223 32 2 2.060000 1.923636 2978 24
## 225 224 30 2 1.000000 1.456370 4657 15
## 226 225 27 2 1.000000 1.776712 2613 36
## 227 226 27 2 4.000000 2.000000 10961 48
## 228 227 53 3 1.000000 1.000000 7865 12
## 229 228 22 2 1.000000 1.821230 1478 9
## 230 229 22 2 1.000000 1.000000 3149 24
## 231 230 26 2 1.000000 4.000000 4210 36
## 232 231 51 1 3.000000 2.050000 2507 9
## 233 232 35 2 2.000000 1.860000 2141 12
## 234 233 25 1 1.000000 2.000000 866 18
## 235 234 42 1 1.000000 1.710238 1544 4
## 236 235 30 3 1.000000 1.000000 1823 24
## 237 236 23 0 2.146667 2.000000 14555 6
## 238 237 61 1 2.000000 2.000000 2767 21
## 239 238 35 2 1.000000 1.924842 1291 12
## 240 239 39 2 1.000000 1.000000 2522 30
## 241 240 29 2 1.070000 1.000000 915 24
## 242 241 51 2 1.000000 1.476955 1595 6
## 243 242 24 2 1.000000 1.000000 4605 48
## 244 243 27 2 1.000000 1.526866 1185 12
## 245 244 35 1 3.000000 1.860000 3447 12
## 246 245 25 2 1.000000 2.047917 1258 24
## 247 246 52 2 1.000000 1.643640 717 12
## 248 247 35 2 2.000000 1.783333 1204 6
## 249 248 26 2 1.000000 4.000000 1925 24
## 250 249 22 2 1.000000 2.022952 433 18
## 251 250 39 1 4.000000 1.000000 666 6
## 252 251 46 1 1.000000 4.000000 2251 12
## 253 252 24 2 1.000000 2.000000 2150 30
## 254 253 35 2 2.000000 1.970000 4151 24
## 255 254 24 2 1.167500 2.000000 2030 9
## 256 255 27 1 2.033333 2.000000 7418 60
## 257 256 35 1 1.000000 1.636853 2684 24
## 258 257 29 2 1.000000 1.000000 2149 12
## 259 258 23 2 2.000000 1.970000 3812 15
## 260 259 57 1 2.000000 2.377500 1154 11
## 261 260 27 2 1.000000 1.000000 1657 12
## 262 261 55 2 1.000000 1.000000 1603 24
## 263 262 36 3 1.000000 1.000000 5302 18
## 264 263 57 1 1.000000 1.808571 2748 12
## 265 264 32 1 1.000000 2.034321 1231 10
## 266 265 37 2 1.000000 2.000000 802 15
## 267 266 36 2 1.750000 2.066667 6304 36
## 268 267 38 2 1.000000 1.303441 1533 24
## 269 268 45 3 1.000000 1.000000 8978 14
## 270 269 25 2 1.100000 1.346667 999 24
## 271 270 32 2 2.344000 1.946136 2662 18
## 272 271 37 2 3.000000 2.477500 1402 12
## 273 272 36 3 1.770810 2.000000 12169 48
## 274 273 28 2 1.000000 2.000000 3060 48
## 275 274 34 1 1.000000 1.000000 11998 30
## 276 275 32 2 1.000000 1.608093 2697 9
## 277 276 26 2 1.000000 1.856064 2404 18
## 278 277 49 1 1.070000 1.000000 1262 12
## 279 278 32 2 1.000000 1.560833 4611 6
## 280 279 29 3 2.000000 1.895000 1901 24
## 281 280 23 2 4.000000 1.870000 3368 15
## 282 281 50 2 1.000000 1.533821 1574 12
## 283 282 49 1 2.280000 4.000000 1445 18
## 284 283 63 2 2.900000 2.289500 1520 15
## 285 284 37 2 2.000000 2.000000 3878 24
## 286 285 35 1 1.000000 1.000000 10722 47
## 287 286 26 2 1.000000 1.000000 4788 48
## 288 287 31 3 2.000000 2.000000 7582 48
## 289 288 49 2 1.000000 2.000000 1092 12
## 290 289 48 2 1.000000 1.000000 1024 24
## 291 290 26 2 1.000000 1.975499 1076 12
## 292 291 28 3 1.000000 2.000000 9398 36
## 293 292 44 3 1.000000 1.000000 6419 24
## 294 293 56 2 1.000000 4.000000 4796 42
## 295 294 46 3 1.830000 1.950000 7629 48
## 296 295 26 2 1.000000 2.000000 9960 48
## 297 296 20 2 2.478750 2.085000 4675 12
## 298 297 45 1 2.414000 2.730000 1287 10
## 299 298 43 2 1.000000 1.561139 2515 18
## 300 299 32 2 4.000000 2.000000 2745 21
## 301 300 54 0 1.000000 1.795577 672 6
## 302 301 42 2 1.000000 2.000000 3804 36
## 303 302 37 1 2.375000 4.000000 1344 24
## 304 303 49 2 1.000000 1.000000 1038 10
## 305 304 44 2 3.000000 1.998000 10127 48
## 306 305 33 2 4.000000 2.000000 1543 6
## 307 306 24 1 1.350000 1.960000 4811 30
## 308 307 33 1 2.000000 1.000000 727 12
## 309 308 24 2 1.000000 2.000000 1237 8
## 310 309 22 1 1.000000 2.000000 276 9
## 311 310 40 0 1.590000 2.000000 5381 48
## 312 311 25 2 2.000000 1.948000 5511 24
## 313 312 26 2 1.000000 4.000000 3749 24
## 314 313 25 1 1.000000 2.000000 685 12
## 315 314 29 1 1.665000 4.000000 1494 4
## 316 315 31 2 1.000000 1.000000 2746 36
## 317 316 38 1 1.000000 1.000000 708 12
## 318 317 48 1 1.370000 2.000000 4351 24
## 319 318 32 2 1.000000 1.643919 701 12
## 320 319 27 1 1.000000 1.000000 3643 15
## 321 320 28 3 1.000000 2.000000 4249 30
## 322 321 32 2 1.000000 1.000000 1938 24
## 323 322 34 3 1.000000 1.000000 2910 24
## 324 323 28 2 4.000000 1.000000 2659 18
## 325 324 36 2 1.000000 1.659163 1028 18
## 326 325 39 1 1.000000 1.000000 3398 8
## 327 326 49 2 1.560000 2.380000 5801 12
## 328 327 34 2 4.000000 2.090000 1525 24
## 329 328 31 2 1.000000 4.000000 4473 36
## 330 329 28 2 1.000000 2.000000 1068 6
## 331 330 75 3 1.000000 1.000000 6615 24
## 332 331 30 2 2.000000 1.880000 1864 18
## 333 332 24 3 2.000000 2.000000 7408 60
## 334 333 24 1 2.000000 1.930000 11590 48
## 335 334 23 2 1.000000 1.000000 4110 24
## 336 335 44 3 1.000000 1.000000 3384 6
## 337 336 23 1 1.000000 2.000000 2101 13
## 338 337 24 2 1.060000 1.000000 1275 15
## 339 338 28 2 1.000000 1.000000 4169 24
## 340 339 31 1 1.000000 2.000000 1521 10
## 341 340 24 2 1.000000 2.000000 5743 24
## 342 341 26 1 1.000000 1.000000 3599 21
## 343 342 25 2 3.000000 2.000000 3213 18
## 344 343 33 3 1.000000 2.000000 4439 18
## 345 344 37 1 1.000000 4.000000 3949 10
## 346 345 43 1 1.000000 1.592083 1459 15
## 347 346 23 2 1.000000 2.000000 882 13
## 348 347 23 0 3.000000 2.000000 3758 24
## 349 348 34 1 2.000000 2.026000 1743 6
## 350 349 32 2 4.000000 2.000000 1136 9
## 351 350 23 2 1.000000 2.024286 1236 9
## 352 351 29 2 1.000000 2.000000 959 9
## 353 352 38 3 1.697500 2.210000 3229 18
## 354 353 28 2 1.000000 1.000000 6199 12
## 355 354 46 2 3.000000 2.205000 727 10
## 356 355 23 1 1.000000 2.000000 1246 24
## 357 356 49 2 1.864000 2.410000 2331 12
## 358 357 26 3 1.000000 2.399192 4463 36
## 359 358 28 2 1.000000 1.752378 776 12
## 360 359 23 2 1.000000 1.000000 2406 30
## 361 360 61 2 2.092500 2.000000 1239 18
## 362 361 37 3 1.313667 4.000000 3399 12
## 363 362 36 2 1.000000 4.000000 2247 12
## 364 363 21 2 1.000000 1.515833 1766 6
## 365 364 25 0 1.000000 1.000000 2473 18
## 366 365 36 2 1.000000 2.024842 1542 12
## 367 366 27 2 1.000000 1.599807 3850 18
## 368 367 22 2 1.000000 1.000000 3650 18
## 369 368 42 2 1.000000 1.000000 3446 36
## 370 369 40 2 1.000000 2.000000 3001 18
## 371 370 36 2 1.875500 2.036667 3079 36
## 372 371 33 2 1.000000 1.620182 6070 18
## 373 372 23 2 1.000000 1.991667 2146 10
## 374 373 63 3 1.855667 2.080000 13756 60
## 375 374 60 3 2.000000 2.000000 14782 60
## 376 375 37 2 1.000000 1.000000 7685 48
## 377 376 34 2 1.000000 2.023520 2320 18
## 378 377 36 2 2.042500 2.058333 846 7
## 379 378 57 3 1.000000 2.000000 14318 36
## 380 379 52 1 2.000000 1.796000 362 6
## 381 380 39 2 1.022564 1.000000 2212 20
## 382 381 38 3 1.000000 2.000000 12976 18
## 383 382 25 2 1.110000 1.360000 1283 22
## 384 383 26 2 1.000000 4.000000 1330 12
## 385 384 26 1 2.000000 1.970000 4272 30
## 386 385 25 2 1.000000 1.626905 2238 18
## 387 386 21 2 1.030000 1.295000 1126 18
## 388 387 40 3 1.000000 2.000000 7374 18
## 389 388 27 2 3.000000 2.000000 2326 15
## 390 389 27 2 1.000000 1.724123 1449 9
## 391 390 30 3 1.000000 1.619616 1820 18
## 392 391 19 1 4.000000 2.000000 983 12
## 393 392 39 3 1.000000 1.000000 3249 36
## 394 393 31 2 1.000000 1.000000 1957 6
## 395 394 31 3 1.000000 1.513186 2406 9
## 396 395 32 2 2.000000 2.000000 11760 39
## 397 396 55 3 1.000000 1.000000 2578 12
## 398 397 46 2 1.000000 1.000000 2348 36
## 399 398 46 2 1.000000 2.000000 1223 12
## 400 399 43 1 4.000000 2.498333 1516 24
## 401 400 39 2 1.000000 1.457805 1473 18
## 402 401 28 2 1.600000 2.000000 1887 18
## 403 402 27 2 1.000000 1.598269 8648 24
## 404 403 27 1 1.000000 1.491667 802 14
## 405 404 43 2 1.212500 2.000000 2899 18
## 406 405 22 2 1.000000 2.000000 2039 24
## 407 406 43 2 2.085667 2.040000 2197 24
## 408 407 27 2 1.000000 1.000000 1053 15
## 409 408 26 3 3.000000 2.043000 3235 24
## 410 409 28 2 3.000000 4.000000 939 12
## 411 410 20 2 1.000000 2.000000 1967 24
## 412 411 35 3 1.000000 1.509393 7253 33
## 413 412 42 3 1.000000 1.731520 2292 12
## 414 413 40 1 3.000000 2.420000 1597 10
## 415 414 35 2 1.080000 1.000000 1381 24
## 416 415 35 2 1.000000 1.592000 5842 36
## 417 416 33 1 1.000000 1.000000 2579 12
## 418 417 23 2 1.060000 1.000000 8471 18
## 419 418 31 3 3.000000 1.858000 2782 21
## 420 419 33 2 1.413000 2.000000 1042 18
## 421 420 20 2 4.000000 2.037500 3186 15
## 422 421 30 2 1.400379 2.000000 2028 12
## 423 422 47 1 1.000000 2.000000 958 12
## 424 423 34 3 2.000000 1.945000 1591 21
## 425 424 25 2 1.331500 2.000000 2762 12
## 426 425 21 2 1.000000 2.000000 2779 18
## 427 426 29 2 1.000000 1.463108 2743 28
## 428 427 46 2 4.000000 2.693333 1149 18
## 429 428 20 2 1.000000 1.897262 1313 9
## 430 429 55 0 1.000000 1.000000 1190 18
## 431 430 74 1 1.000000 1.910794 3448 5
## 432 431 29 3 1.000000 2.000000 11328 24
## 433 432 36 3 1.000000 1.000000 1872 6
## 434 433 33 2 1.000000 1.610218 2058 24
## 435 434 25 2 1.000000 1.000000 2136 9
## 436 435 25 2 1.243333 2.000000 1484 12
## 437 436 23 1 3.000000 1.807024 660 6
## 438 437 37 2 4.000000 3.058333 1287 24
## 439 438 65 0 1.000000 1.000000 3394 42
## 440 439 26 0 1.000000 4.000000 609 12
## 441 440 39 3 1.000000 1.863575 1884 12
## 442 441 30 2 1.000000 1.000000 1620 12
## 443 442 29 2 1.000000 2.000000 2629 20
## 444 443 41 1 1.000000 1.307500 719 12
## 445 444 30 3 1.000000 2.000000 5096 48
## 446 445 41 1 2.564000 2.730000 1244 9
## 447 446 34 2 1.000000 1.000000 1842 36
## 448 447 35 2 1.000000 2.000000 2576 7
## 449 448 55 3 1.671667 4.000000 1424 12
## 450 449 61 2 4.000000 2.000000 1512 15
## 451 450 30 3 1.508476 2.210000 11054 36
## 452 451 29 2 1.000000 1.468838 518 6
## 453 452 34 2 1.000000 1.584448 2759 12
## 454 453 35 3 1.000000 1.387838 2670 24
## 455 454 31 2 1.000000 1.000000 4817 24
## 456 455 29 3 1.000000 1.432980 2679 24
## 457 456 36 2 1.000000 1.000000 3905 11
## 458 457 35 2 1.000000 1.000000 3386 12
## 459 458 27 2 1.000000 1.000000 343 6
## 460 459 32 2 1.000000 1.422807 4594 18
## 461 460 37 2 1.000000 1.000000 3620 36
## 462 461 36 2 1.000000 1.000000 1721 15
## 463 462 34 3 1.000000 2.000000 3017 12
## 464 463 38 2 1.445833 2.000000 754 12
## 465 464 34 2 1.000000 1.658210 1950 18
## 466 465 63 2 1.000000 1.000000 2924 24
## 467 466 29 1 1.000000 1.000000 1659 24
## 468 467 32 2 1.863333 1.990000 7238 48
## 469 468 26 2 1.000000 1.852902 2764 33
## 470 469 35 1 1.000000 1.655558 4679 24
## 471 470 22 2 2.000000 2.000000 3092 24
## 472 471 23 2 1.000000 1.000000 448 6
## 473 472 28 1 1.000000 1.000000 654 9
## 474 473 36 3 1.928000 2.275000 1238 6
## 475 474 33 2 1.000000 2.000000 1245 18
## 476 475 26 2 1.000000 1.000000 3114 18
## 477 476 24 2 3.000000 1.742000 2569 39
## 478 477 25 2 1.000000 4.000000 5152 24
## 479 478 39 1 2.000000 2.000000 1037 12
## 480 479 44 2 1.000000 1.000000 1478 15
## 481 480 23 1 1.000000 2.000000 3573 12
## 482 481 26 2 1.000000 2.000000 1201 24
## 483 482 57 2 4.000000 1.000000 3622 30
## 484 483 30 2 4.000000 2.768000 960 15
## 485 484 44 2 3.000000 2.567500 1163 12
## 486 485 47 3 1.000000 2.000000 1209 6
## 487 486 52 2 1.000000 1.666103 3077 12
## 488 487 62 2 1.000000 1.599308 3757 24
## 489 488 35 1 2.000000 2.446000 1418 10
## 490 489 26 2 1.000000 1.538497 3518 6
## 491 490 26 2 1.000000 1.885414 1934 12
## 492 491 42 3 1.000000 2.000000 8318 27
## 493 492 27 2 2.000000 2.816667 1237 6
## 494 493 38 2 1.940000 2.000000 368 6
## 495 494 39 1 1.000000 1.000000 2122 12
## 496 495 20 2 1.431917 1.000000 2996 24
## 497 496 29 3 2.000000 2.000000 9034 36
## 498 497 40 2 1.000000 1.201170 1585 24
## 499 498 32 1 1.000000 2.000000 1301 18
## 500 499 28 2 2.000000 4.000000 1323 6
## 501 500 27 2 1.000000 1.000000 3123 24
## 502 501 42 2 1.000000 1.000000 5493 36
## 503 502 49 2 2.000000 4.000000 1126 9
## 504 503 38 2 2.000000 2.000000 1216 24
## 505 504 24 2 1.000000 1.000000 1207 24
## 506 505 27 1 1.915000 2.837500 1309 10
## 507 506 36 2 3.000000 4.000000 2360 15
## 508 507 34 3 2.000000 2.000000 6850 15
## 509 508 28 2 1.000000 1.322170 1413 24
## 510 509 45 3 2.000000 2.040000 8588 39
## 511 510 26 2 1.000000 1.000000 759 12
## 512 511 32 3 1.000000 1.781838 4686 36
## 513 512 26 2 1.000000 4.000000 2687 15
## 514 513 20 2 1.000000 2.000000 585 12
## 515 514 54 2 2.114000 2.020000 2255 24
## 516 515 37 2 1.000000 1.000000 609 6
## 517 516 40 1 1.000000 1.000000 1361 6
## 518 517 23 2 1.000000 1.639614 7127 36
## 519 518 43 2 2.000000 1.000000 1203 6
## 520 519 36 2 1.530000 1.975000 700 6
## 521 520 44 2 1.000000 1.430974 5507 24
## 522 521 24 2 1.000000 1.000000 3190 18
## 523 522 53 2 1.000000 1.000000 7119 48
## 524 523 23 2 2.000000 1.852500 3488 24
## 525 524 26 1 1.000000 2.000000 1113 18
## 526 525 30 2 1.000000 2.000000 7966 26
## 527 526 31 2 2.000000 2.108636 1532 15
## 528 527 42 1 1.000000 1.643571 1503 4
## 529 528 31 2 1.000000 1.000000 2302 36
## 530 529 41 1 1.000000 1.000000 662 6
## 531 530 32 2 1.000000 2.000000 2273 36
## 532 531 28 2 2.000000 2.000000 2631 15
## 533 532 41 2 1.000000 1.435638 1503 12
## 534 533 26 2 2.000000 2.095000 1311 24
## 535 534 25 2 1.757500 2.022500 3105 24
## 536 535 33 2 1.000000 4.000000 2319 21
## 537 536 75 3 1.157000 1.000000 1374 6
## 538 537 37 2 1.000000 2.000000 3612 18
## 539 538 42 3 1.000000 1.000000 7763 48
## 540 539 45 1 1.000000 4.000000 3049 18
## 541 540 23 2 1.000000 2.000000 1534 12
## 542 541 60 2 1.000000 1.449308 2032 24
## 543 542 31 2 1.069167 1.000000 6350 30
## 544 543 34 1 1.000000 4.000000 2864 18
## 545 544 61 1 1.000000 1.695000 1255 12
## 546 545 43 2 1.000000 1.000000 1333 24
## 547 546 37 2 1.000000 1.743361 2022 24
## 548 547 32 2 1.000000 1.441997 1552 24
## 549 548 24 1 1.000000 1.000000 626 12
## 550 549 35 2 2.080833 1.940000 8858 48
## 551 550 23 2 1.050000 1.152857 996 12
## 552 551 45 1 3.000000 2.090000 1750 6
## 553 552 34 2 1.000000 1.000000 6999 48
## 554 553 27 2 2.000000 2.000000 1995 12
## 555 554 67 3 1.000000 2.000000 1199 9
## 556 555 22 2 1.000000 2.000000 1331 12
## 557 556 28 2 2.000000 2.000000 2278 18
## 558 557 29 2 1.694667 2.005000 5003 21
## 559 558 27 2 1.000000 1.000000 3552 24
## 560 559 31 1 1.000000 2.000000 1928 18
## 561 560 49 2 1.108409 1.000000 2964 24
## 562 561 24 1 1.000000 1.000000 1546 24
## 563 562 29 2 1.000000 4.000000 683 6
## 564 563 37 2 1.714471 2.000000 12389 36
## 565 564 37 3 1.329619 2.000000 4712 24
## 566 565 23 2 2.000000 2.000000 1553 24
## 567 566 36 2 1.000000 1.000000 1372 12
## 568 567 34 2 4.000000 1.862500 2578 24
## 569 568 41 2 1.676471 2.000000 3979 48
## 570 569 31 2 1.000000 1.000000 6758 48
## 571 570 23 1 1.000000 1.000000 3234 24
## 572 571 38 2 1.000000 1.497103 5954 30
## 573 572 26 3 1.400000 1.977667 5433 24
## 574 573 22 1 1.000000 1.000000 806 15
## 575 574 27 1 1.000000 2.000000 1082 9
## 576 575 24 2 1.000000 1.940833 2788 15
## 577 576 27 2 1.000000 2.000000 2930 12
## 578 577 33 2 1.090909 1.537857 1927 24
## 579 578 27 2 1.000000 2.000000 2820 36
## 580 579 27 1 1.000000 1.673808 937 24
## 581 580 30 2 1.000000 2.000000 1056 18
## 582 581 49 1 1.000000 2.000000 3124 12
## 583 582 26 2 1.000000 1.987049 1388 9
## 584 583 33 1 1.000000 2.000000 2384 36
## 585 584 52 3 1.000000 1.517095 2133 12
## 586 585 20 2 1.000000 1.000000 2039 18
## 587 586 36 2 1.000000 1.000000 2799 9
## 588 587 21 1 1.000000 1.000000 1289 12
## 589 588 47 1 1.000000 1.000000 1217 18
## 590 589 60 2 1.000000 1.000000 2246 12
## 591 590 58 1 1.000000 1.000000 385 12
## 592 591 42 2 1.546667 2.000000 1965 24
## 593 592 36 1 4.000000 2.538333 1572 21
## 594 593 20 1 1.000000 2.000000 2718 24
## 595 594 40 3 1.062500 1.000000 1358 24
## 596 595 32 1 2.000000 2.000000 931 6
## 597 596 23 2 1.000000 1.000000 1442 24
## 598 597 36 1 1.000000 2.000000 4241 24
## 599 598 31 2 1.000000 1.753275 2775 18
## 600 599 32 2 1.000000 1.442170 3863 24
## 601 600 45 2 1.000000 2.000000 2329 7
## 602 601 30 2 1.000000 2.000000 918 9
## 603 602 34 1 1.000000 2.000000 1837 24
## 604 603 28 3 1.000000 1.511774 3349 36
## 605 604 23 2 1.000000 4.000000 1275 10
## 606 605 22 2 3.000000 1.000000 2828 24
## 607 606 74 3 1.000000 1.981429 4526 24
## 608 607 50 2 2.000000 2.000000 2671 36
## 609 608 33 2 1.000000 1.950472 2051 18
## 610 609 45 2 2.830000 2.907500 1300 15
## 611 610 22 2 2.000000 1.000000 741 12
## 612 611 48 1 2.000000 4.000000 1240 10
## 613 612 29 2 4.000000 1.000000 3357 21
## 614 613 22 2 1.000000 1.000000 3632 24
## 615 614 22 2 1.000000 1.225476 1808 18
## 616 615 48 3 1.522651 2.000000 12204 48
## 617 616 27 3 1.552976 2.000000 9157 60
## 618 617 37 2 1.000000 1.000000 3676 6
## 619 618 21 2 2.000000 2.000000 3441 30
## 620 619 49 1 1.000000 1.462500 640 12
## 621 620 27 2 1.000000 2.000000 3652 21
## 622 621 32 2 1.000000 1.411195 1530 18
## 623 622 38 2 1.896471 1.985000 3914 48
## 624 623 22 2 1.000000 1.000000 1858 12
## 625 624 65 2 1.000000 1.000000 2600 18
## 626 625 35 2 1.756000 2.130000 1979 15
## 627 626 41 2 1.000000 4.000000 2116 6
## 628 627 29 2 2.000000 2.000000 1437 9
## 629 628 36 2 3.000000 2.031667 4042 42
## 630 629 64 1 1.870000 2.390000 3832 9
## 631 630 28 2 1.000000 1.000000 3660 24
## 632 631 44 2 1.000000 1.000000 1553 18
## 633 632 23 2 1.430000 2.000000 1444 15
## 634 633 19 2 1.000000 1.768810 1980 9
## 635 634 25 1 1.000000 2.000000 1355 24
## 636 635 47 2 1.000000 1.626809 1393 12
## 637 636 28 2 3.000000 2.536667 1376 24
## 638 637 21 2 1.000000 1.571126 15653 60
## 639 638 34 2 1.000000 1.668592 1493 12
## 640 639 26 2 1.000000 1.000000 4370 42
## 641 640 27 0 1.000000 1.000000 750 18
## 642 641 38 1 1.000000 2.000000 1308 15
## 643 642 40 3 2.000000 2.140000 4623 15
## 644 643 33 2 1.000000 1.689504 1851 24
## 645 644 32 3 1.000000 1.000000 1880 18
## 646 645 27 2 1.900000 1.950000 7980 36
## 647 646 32 2 1.000000 1.000000 4583 30
## 648 647 26 2 3.000000 2.167500 1386 12
## 649 648 38 2 1.000000 4.000000 947 24
## 650 649 40 1 1.000000 1.000000 684 12
## 651 650 50 3 1.000000 1.000000 7476 48
## 652 651 37 1 1.000000 2.000000 1922 12
## 653 652 45 2 1.000000 1.000000 2303 24
## 654 653 42 3 2.000000 2.000000 8086 36
## 655 654 35 2 1.000000 1.903965 2346 24
## 656 655 22 2 1.000000 1.000000 3973 14
## 657 656 41 1 1.000000 2.000000 888 12
## 658 657 37 2 1.989804 1.940000 10222 48
## 659 658 28 2 1.000000 2.000000 4221 30
## 660 659 41 2 1.000000 2.000000 6361 18
## 661 660 23 2 1.000000 4.000000 1297 12
## 662 661 23 2 1.096333 1.000000 900 12
## 663 662 50 2 1.000000 1.910269 2241 21
## 664 663 35 3 1.000000 2.000000 1050 6
## 665 664 50 1 1.000000 4.000000 1047 6
## 666 665 27 3 1.000000 1.833488 6314 24
## 667 666 34 2 4.000000 2.000000 3496 30
## 668 667 27 2 1.000000 1.472063 3609 48
## 669 668 43 2 1.000000 1.000000 4843 12
## 670 669 47 2 1.000000 4.000000 3017 30
## 671 670 27 1 2.000000 1.960000 4139 24
## 672 671 31 2 2.000000 2.030000 5742 36
## 673 672 42 3 1.000000 1.577988 10366 60
## 674 673 24 2 3.000000 1.883333 2080 6
## 675 674 41 1 3.000000 2.215000 2580 21
## 676 675 26 3 1.000000 1.915655 4530 30
## 677 676 33 2 1.000000 1.958103 5150 24
## 678 677 24 2 2.000000 2.000000 5595 72
## 679 678 64 1 1.000000 1.000000 2384 24
## 680 679 26 2 1.000000 1.575957 1453 18
## 681 680 56 2 1.000000 2.283048 1538 6
## 682 681 37 2 2.001000 2.580000 2279 12
## 683 682 33 2 1.000000 1.829476 1478 15
## 684 683 47 2 1.000000 1.926103 5103 24
## 685 684 31 1 2.000000 2.000000 9857 36
## 686 685 34 2 1.815000 1.930000 6527 60
## 687 686 27 2 1.356667 4.000000 1347 10
## 688 687 30 2 2.000000 2.000000 2862 36
## 689 688 35 2 2.000000 1.920000 2753 9
## 690 689 31 2 4.000000 1.000000 3651 12
## 691 690 25 2 1.000000 1.000000 975 15
## 692 691 25 1 2.000000 2.000000 2631 15
## 693 692 29 2 2.000000 2.000000 2896 24
## 694 693 44 1 1.282556 1.000000 4716 6
## 695 694 28 2 1.000000 1.700196 2284 24
## 696 695 50 2 3.000000 2.360000 1236 6
## 697 696 29 2 1.000000 2.000000 1103 12
## 698 697 38 0 1.000000 2.198107 926 12
## 699 698 24 2 1.000000 1.495000 1800 18
## 700 699 40 3 1.000000 4.000000 1905 15
## 701 700 29 1 3.000000 2.530000 1123 12
## 702 701 46 2 1.000000 1.000000 6331 48
## 703 702 47 2 2.000000 4.000000 1377 24
## 704 703 41 2 2.000000 2.000000 2503 30
## 705 704 32 2 1.000000 2.000000 2528 27
## 706 705 35 2 3.000000 1.922000 5324 15
## 707 706 24 2 2.000000 2.000000 6560 48
## 708 707 25 2 1.000000 2.000000 2969 12
## 709 708 25 2 1.000000 2.000000 1206 9
## 710 709 37 1 1.000000 2.000000 2118 9
## 711 710 32 3 3.000000 2.028000 629 18
## 712 711 35 2 1.000000 1.000000 1198 6
## 713 712 46 3 1.960000 2.340000 2476 21
## 714 713 25 1 1.000000 1.000000 1138 9
## 715 714 27 3 1.000000 2.000000 14027 60
## 716 715 63 2 1.753333 2.200000 7596 30
## 717 716 40 2 2.225000 2.340000 3077 30
## 718 717 32 3 1.000000 1.598560 1505 18
## 719 718 31 2 1.511667 4.000000 3148 24
## 720 719 31 2 2.000000 2.000000 6148 20
## 721 720 34 3 1.000000 4.000000 1337 9
## 722 721 24 2 4.000000 2.000000 433 6
## 723 722 24 1 1.000000 1.000000 1228 12
## 724 723 66 1 3.000000 2.000000 790 9
## 725 724 21 2 1.000000 1.426529 2570 27
## 726 725 41 1 4.000000 1.850000 250 6
## 727 726 47 1 3.000000 3.315357 1316 15
## 728 727 25 2 1.000000 1.000000 1882 18
## 729 728 59 2 1.000000 2.000000 6416 48
## 730 729 36 2 4.000000 4.000000 1275 24
## 731 730 33 2 1.000000 2.000000 6403 24
## 732 731 21 1 1.000000 1.000000 1987 24
## 733 732 44 1 1.000000 2.000000 760 8
## 734 733 28 2 4.000000 1.557500 2603 24
## 735 734 37 2 1.000000 1.677143 3380 4
## 736 735 29 0 1.807500 2.000000 3990 36
## 737 736 23 3 1.000000 2.000000 11560 24
## 738 737 35 1 2.000000 1.000000 4380 18
## 739 738 45 3 1.000000 1.629643 6761 6
## 740 739 26 1 2.000000 2.000000 4280 30
## 741 740 32 2 2.000000 1.000000 2325 24
## 742 741 23 1 1.000000 2.000000 1048 10
## 743 742 41 2 2.270000 2.035000 3160 21
## 744 743 22 2 3.000000 1.000000 2483 24
## 745 744 30 3 1.080000 1.000000 14179 39
## 746 745 28 1 1.000000 1.000000 1797 13
## 747 746 23 2 1.000000 1.000000 2511 15
## 748 747 37 1 1.000000 1.000000 1274 12
## 749 748 26 2 1.520000 2.030000 5248 21
## 750 749 33 2 1.000000 1.886964 3029 15
## 751 750 49 2 1.000000 1.000000 428 6
## 752 751 23 1 1.000000 1.000000 976 18
## 753 752 23 1 2.000000 2.000000 841 12
## 754 753 25 2 1.000000 1.804714 5771 30
## 755 754 55 2 4.000000 2.290000 1555 12
## 756 755 32 2 1.318333 1.000000 1285 24
## 757 756 74 0 1.000000 4.000000 1299 6
## 758 757 39 2 2.001667 4.000000 1271 15
## 759 758 31 2 1.000000 1.409363 1393 24
## 760 759 35 2 1.000000 1.000000 691 12
## 761 760 59 2 1.780000 2.300000 5045 15
## 762 761 24 2 1.000000 1.000000 2124 18
## 763 762 24 1 1.000000 1.000000 2214 12
## 764 763 30 3 1.420667 1.902857 12680 21
## 765 764 27 2 2.000000 1.522500 2463 24
## 766 765 40 1 1.000000 2.000000 1155 12
## 767 766 31 1 1.000000 1.000000 3108 30
## 768 767 31 2 1.574048 2.110000 2901 10
## 769 768 28 2 1.000000 2.000000 3617 12
## 770 769 63 1 1.000000 1.723750 1655 12
## 771 770 26 2 1.693833 1.000000 2812 24
## 772 771 25 3 1.000000 1.000000 8065 36
## 773 772 36 3 1.000000 1.704036 3275 21
## 774 773 52 2 2.000000 2.240000 2223 24
## 775 774 66 0 3.000000 4.000000 1480 12
## 776 775 25 2 1.289167 1.000000 1371 24
## 777 776 37 2 1.000000 1.369968 3535 36
## 778 777 25 2 1.000000 1.000000 3509 18
## 779 778 38 3 4.000000 2.070000 5711 36
## 780 779 67 2 1.000000 2.000000 3872 18
## 781 780 25 2 1.000000 2.000000 4933 39
## 782 781 60 2 4.000000 2.155000 1940 24
## 783 782 31 1 1.000000 2.000000 1410 12
## 784 783 23 1 2.000000 2.000000 836 12
## 785 784 60 3 1.416429 2.000000 6468 20
## 786 785 35 1 4.000000 2.000000 1941 18
## 787 786 40 2 3.000000 2.167000 2675 22
## 788 787 38 2 2.321429 2.240000 2751 48
## 789 788 50 2 1.000000 2.000000 6224 48
## 790 789 27 2 1.000000 1.000000 5998 40
## 791 790 39 2 1.000000 2.000000 1188 21
## 792 791 41 3 1.710000 2.030000 6313 24
## 793 792 27 2 1.930000 2.485000 1221 6
## 794 793 51 2 1.000000 4.000000 2892 24
## 795 794 32 2 3.000000 1.673500 3062 24
## 796 795 22 2 2.000000 1.873333 2301 9
## 797 796 51 2 1.070000 1.000000 7511 18
## 798 797 22 1 1.000000 1.530736 1258 12
## 799 798 54 2 2.720000 2.460000 717 24
## 800 799 35 0 1.640000 2.000000 1549 9
## 801 800 54 2 1.000000 1.697857 1597 24
## 802 801 48 1 1.000000 2.000000 1795 18
## 803 802 24 2 1.000000 1.000000 4272 20
## 804 803 35 2 2.545000 2.438000 976 12
## 805 804 24 0 1.490833 2.000000 7472 12
## 806 805 24 2 1.000000 1.000000 9271 36
## 807 806 26 1 1.000000 2.000000 590 6
## 808 807 65 2 2.536667 2.670000 930 12
## 809 808 55 3 1.000000 2.000000 9283 42
## 810 809 26 0 1.000000 2.000000 1778 15
## 811 810 26 2 1.000000 2.000000 907 8
## 812 811 28 1 1.000000 2.000000 484 6
## 813 812 24 2 1.000000 1.000000 9629 36
## 814 813 54 2 1.000000 1.000000 3051 48
## 815 814 46 2 1.000000 1.000000 3931 48
## 816 815 54 2 1.000000 2.000000 7432 36
## 817 816 62 2 3.000000 2.432500 1338 6
## 818 817 24 2 1.000000 2.108333 1554 6
## 819 818 43 3 1.000000 1.000000 15857 36
## 820 819 26 2 1.000000 1.000000 1345 18
## 821 820 27 2 1.000000 1.617333 1101 12
## 822 821 24 2 1.000000 4.000000 3016 12
## 823 822 41 2 1.000000 1.000000 2712 36
## 824 823 47 1 1.000000 1.000000 731 8
## 825 824 35 3 1.000000 1.219762 3780 18
## 826 825 30 2 1.000000 1.000000 1602 21
## 827 826 33 2 1.000000 1.000000 3966 18
## 828 827 36 2 1.000000 1.228500 4165 18
## 829 828 47 2 1.020000 1.000000 8335 36
## 830 829 38 2 1.676471 2.000000 6681 48
## 831 830 44 2 3.000000 2.057000 2375 24
## 832 831 23 2 1.000000 1.000000 1216 18
## 833 832 29 2 1.000000 1.000000 11816 45
## 834 833 42 2 1.430000 2.000000 5084 24
## 835 834 25 1 1.000000 4.000000 2327 15
## 836 835 48 2 1.000000 1.000000 1082 12
## 837 836 21 2 1.073333 1.200000 886 12
## 838 837 23 1 1.000000 2.336648 601 4
## 839 838 63 2 1.000000 1.000000 2957 24
## 840 839 46 2 1.000000 1.261307 2611 24
## 841 840 29 2 1.000000 1.000000 5179 36
## 842 841 28 1 1.000000 1.390714 2993 21
## 843 842 23 2 1.000000 1.155714 1943 18
## 844 843 50 2 1.000000 1.426307 1559 24
## 845 844 47 2 1.000000 1.375278 3422 18
## 846 845 35 2 2.077333 2.000000 3976 21
## 847 846 68 2 1.564000 2.200000 6761 18
## 848 847 28 2 1.000000 1.227500 1249 24
## 849 848 59 2 1.000000 1.000000 1364 9
## 850 849 57 1 1.000000 1.000000 709 12
## 851 850 33 2 1.000000 1.000000 2235 20
## 852 851 43 2 1.727500 1.950000 4042 24
## 853 852 35 2 1.000000 1.210000 1471 15
## 854 853 32 1 1.000000 1.000000 1442 18
## 855 854 45 2 1.000000 1.360778 10875 36
## 856 855 33 2 2.000000 1.617500 1474 24
## 857 856 40 2 2.340000 2.333333 894 10
## 858 857 28 2 1.000000 1.163214 3343 15
## 859 858 29 2 1.000000 1.000000 3959 15
## 860 859 26 2 2.000000 1.953333 3577 9
## 861 860 27 2 4.000000 1.802500 5804 24
## 862 861 28 2 1.000000 1.083214 2169 18
## 863 862 35 2 1.000000 1.000000 2439 24
## 864 863 32 1 4.000000 1.799333 4526 27
## 865 864 25 1 1.000000 1.891667 2210 10
## 866 865 20 2 3.000000 1.830000 2221 15
## 867 866 27 2 1.000000 1.000000 2389 18
## 868 867 42 2 1.000000 1.256944 3331 12
## 869 868 37 2 2.193333 2.000000 7409 36
## 870 869 24 2 1.000000 1.000000 652 12
## 871 870 40 2 3.000000 2.028000 7678 36
## 872 871 46 2 1.000000 4.000000 1343 6
## 873 872 26 2 2.000000 1.000000 1382 24
## 874 873 24 2 1.870000 1.807500 874 15
## 875 874 29 1 1.000000 1.000000 3590 12
## 876 875 40 2 4.000000 2.000000 1322 11
## 877 876 36 3 1.000000 1.000000 1940 18
## 878 877 28 2 1.000000 1.175159 3595 36
## 879 878 27 3 1.000000 1.000000 1422 9
## 880 879 36 2 1.995000 1.950000 6742 30
## 881 880 38 3 1.000000 1.331429 7814 24
## 882 881 48 2 1.460000 2.150000 9277 24
## 883 882 36 2 2.171667 2.000000 2181 30
## 884 883 65 0 1.000000 1.641667 1098 18
## 885 884 43 2 1.000000 2.000000 4057 24
## 886 885 53 2 1.000000 1.000000 795 12
## 887 886 34 2 2.192167 2.000000 2825 24
## 888 887 23 2 1.000000 2.000000 15672 48
## 889 888 34 3 1.000000 1.425873 6614 36
## 890 889 40 2 2.226667 1.980000 7824 28
## 891 890 43 3 1.000000 1.000000 2442 27
## 892 891 46 2 1.000000 1.289444 1829 15
## 893 892 38 1 1.000000 1.000000 2171 12
## 894 893 34 2 1.000000 2.000000 5800 36
## 895 894 29 2 1.020000 1.160000 1169 18
## 896 895 31 3 1.790476 2.003333 8947 36
## 897 896 28 3 1.000000 1.000000 2606 21
## 898 897 35 2 4.000000 1.730000 1592 12
## 899 898 33 1 1.702500 1.847857 2186 15
## 900 899 42 2 1.000000 1.000000 4153 18
## 901 900 43 2 1.000000 1.000000 2625 16
## 902 901 44 2 1.854000 2.035000 3485 20
## 903 902 42 2 1.940000 2.040000 10477 36
## 904 903 40 2 2.700000 2.410000 1386 15
## 905 904 36 3 1.000000 1.320000 1278 24
## 906 905 20 3 1.000000 1.000000 1107 12
## 907 906 24 1 1.172000 1.000000 3763 21
## 908 907 27 2 1.711000 2.000000 3711 36
## 909 908 46 1 1.000000 1.349524 3594 15
## 910 909 33 1 1.482500 2.000000 3195 9
## 911 910 34 2 1.000000 1.591444 4454 36
## 912 911 25 1 1.000000 2.000000 4736 24
## 913 912 25 2 1.640500 2.000000 2991 30
## 914 913 28 2 4.000000 1.810000 2142 11
## 915 914 31 2 1.000000 1.000000 3161 24
## 916 915 32 3 1.000000 2.000000 18424 48
## 917 916 32 2 2.000000 1.930000 2848 10
## 918 917 68 3 1.000000 1.000000 14896 6
## 919 918 33 2 2.000000 1.000000 2359 24
## 920 919 39 3 1.000000 1.000000 3345 24
## 921 920 28 2 1.000000 1.132500 1817 18
## 922 921 37 3 3.000000 2.028000 12749 48
## 923 922 22 2 1.000000 1.000000 1366 9
## 924 923 30 2 1.000000 2.000000 2002 12
## 925 924 55 2 1.000000 1.000000 6872 24
## 926 925 46 2 1.000000 1.000000 697 12
## 927 926 21 2 1.000000 1.000000 1049 18
## 928 927 39 2 1.000000 1.000000 10297 48
## 929 928 58 2 1.887500 2.170000 1867 30
## 930 929 43 1 1.000000 1.000000 1344 12
## 931 930 24 1 1.000000 1.000000 1747 24
## 932 931 22 2 1.000000 2.000000 1670 9
## 933 932 30 2 1.000000 2.083333 1224 9
## 934 933 42 2 3.000000 2.338000 522 12
## 935 934 23 2 1.000000 1.000000 1498 12
## 936 935 30 3 2.000000 2.000000 1919 30
## 937 936 28 1 1.000000 4.000000 745 9
## 938 937 30 3 1.000000 2.000000 2063 6
## 939 938 42 2 1.000000 2.000000 6288 60
## 940 939 46 3 1.030000 1.170000 6842 24
## 941 940 45 3 1.497500 2.390000 3527 12
## 942 941 31 1 1.000000 2.055476 1546 10
## 943 942 31 2 2.082500 2.041333 929 24
## 944 943 42 1 1.000000 2.242262 1455 4
## 945 944 46 2 1.000000 1.000000 1845 15
## 946 945 30 2 3.000000 2.000000 8358 48
## 947 946 30 2 3.000000 1.000000 3349 24
## 948 947 38 3 1.720000 2.180000 2859 12
## 949 948 43 1 1.000000 1.245476 1533 18
## 950 949 31 2 2.000000 1.758333 3621 24
## 951 950 40 0 1.000000 2.000000 3590 18
## 952 951 24 2 1.000000 1.000000 2145 36
## 953 952 28 2 3.000000 2.000000 4113 24
## 954 953 26 3 1.000000 1.283206 10974 36
## 955 954 29 2 1.000000 1.000000 1893 12
## 956 955 57 3 4.000000 1.000000 1231 24
## 957 956 49 1 1.440000 4.000000 3656 30
## 958 957 37 1 1.000000 2.000000 1154 9
## 959 958 45 1 1.000000 1.000000 4006 28
## 960 959 30 2 2.000000 2.000000 3069 24
## 961 960 30 2 1.000000 1.913214 1740 6
## 962 961 47 2 1.000000 2.000000 2353 21
## 963 962 29 2 1.880000 2.010000 3556 15
## 964 963 35 2 3.000000 1.862000 2397 24
## 965 964 22 1 1.000000 2.000000 454 6
## 966 965 26 2 1.809167 2.000000 1715 30
## 967 966 23 1 3.000000 2.000000 2520 27
## 968 967 54 3 1.000000 1.468095 3568 15
## 969 968 29 2 2.100000 2.065000 7166 42
## 970 969 40 1 1.000000 1.000000 3939 11
## 971 970 22 2 2.000000 2.000000 1514 15
## 972 971 43 1 1.000000 1.420000 7393 24
## 973 972 29 0 1.000000 1.000000 1193 24
## 974 973 36 2 1.000000 1.000000 7297 60
## 975 974 33 2 1.000000 1.421429 2831 30
## 976 975 57 1 3.000000 4.000000 1258 24
## 977 976 64 2 1.000000 2.000000 753 6
## 978 977 42 2 1.561500 2.000000 2427 18
## 979 978 47 1 1.000000 1.650000 2538 24
## 980 979 25 2 2.000000 2.000000 1264 15
## 981 980 49 2 1.000000 2.000000 8386 30
## 982 981 33 3 1.000000 1.948095 4844 48
## 983 982 28 3 2.000000 4.000000 2923 21
## 984 983 26 2 1.000000 1.000000 8229 36
## 985 984 30 1 1.000000 1.500000 2028 24
## 986 985 25 2 1.000000 1.000000 1433 15
## 987 986 33 2 1.000000 4.000000 6289 42
## 988 987 64 2 2.000000 2.663333 1409 13
## 989 988 29 3 1.000000 1.000000 6579 24
## 990 989 48 1 1.000000 2.000000 1743 24
## 991 990 37 1 1.888333 2.560000 3565 12
## 992 991 34 1 2.000000 2.450000 1569 15
## 993 992 23 1 1.020000 1.000000 1936 18
## 994 993 30 3 1.000000 1.000000 3959 36
## 995 994 50 2 2.000000 2.630000 2390 12
## 996 995 31 1 1.000000 1.592143 1736 12
## 997 996 40 3 1.000000 1.000000 3857 30
## 998 997 38 2 1.000000 1.472500 804 12
## 999 998 23 2 1.000000 1.000000 1845 45
## 1000 999 27 2 2.000000 2.000000 4576 45
##
## $OOBerror
## NRMSE
## 0.0002888457
##
## attr(,"class")
## [1] "missForest"
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:randomForest':
##
## combine
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
german_cr_data %>% group_by(Sex) %>%
summarise(Mean_age=mean(Age),StndDev=sd(Age),Max_age=max(Age),Min_age = min(Age),Quartile_1=quantile(Age,prob=c(0.25)),Median=quantile(Age,prob=c(0.50)),Quartile_3=quantile(Age,prob=c(0.75)))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 8
## Sex Mean_age StndDev Max_age Min_age Quartile_1 Median Quartile_3
## <chr> <dbl> <dbl> <int> <int> <dbl> <dbl> <dbl>
## 1 female 32.8 11.8 75 19 24 29 37
## 2 male 36.8 11.0 75 20 28 35 43
german_cr_data %>% group_by(Sex) %>%
summarise(Mean_age=mean(Credit.amount),StndDev=sd(Credit.amount),Max_credit=max(Credit.amount),Min_credit = min(Credit.amount),Quartile_1=quantile(Credit.amount,prob=c(0.25)),Median=quantile(Credit.amount,prob=c(0.50)),Quartile_3=quantile(Credit.amount,prob=c(0.75)))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 8
## Sex Mean_age StndDev Max_credit Min_credit Quartile_1 Median Quartile_3
## <chr> <dbl> <dbl> <int> <int> <dbl> <dbl> <dbl>
## 1 female 2878. 2603. 18424 250 1248. 1959 3606.
## 2 male 3448. 2900. 15945 276 1442. 2444. 4266.
german_cr_data %>% group_by(Sex) %>%
summarise(Max_cr_amt=max(Credit.amount),Min_cr_amt=min(Credit.amount),Avg_cr_amt=mean(Credit.amount))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 4
## Sex Max_cr_amt Min_cr_amt Avg_cr_amt
## <chr> <int> <int> <dbl>
## 1 female 18424 250 2878.
## 2 male 15945 276 3448.
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:randomForest':
##
## margin
ggplot(german_cr_data, aes(Sex, mean(Credit.amount)))+geom_bar(stat = "identity") + ggtitle("Average credit amount of Male and Female customers") + scale_y_continuous("Average credit", breaks = seq(0,4000,by = 500)) + theme_bw()
library(ggplot2)
ggplot(german_cr_data, aes(Age,Sex,fill=Sex)) +geom_boxplot(outlier.colour="red") +ggtitle("Box Plot showing statistical Age data of Male and Female") + theme(axis.text.x = element_text(angle = 70, vjust = 0.5, colour = "red")) + xlab("Age") + ylab("Sex") + stat_summary(fun.y=mean, geom="point")+ coord_flip()
## Warning: `fun.y` is deprecated. Use `fun` instead.
ggplot(german_cr_data, aes(x = factor(1), fill = factor(Sex))) + geom_bar(width = 1) + coord_polar(theta = "y")
a <- table(german_cr_data$Sex)
pct = round(a / sum(a) * 100)
lbs = paste(c("Female", "Male"), " ", pct, "%", sep = " ")
library(plotrix)
## Warning: package 'plotrix' was built under R version 4.0.3
pie3D(a, labels = lbs,
main = "Pie Chart Showing Ratio of Female and Male")
ggplot(german_cr_data, aes(Sex, fill = Risk)) + geom_bar()+
labs(title = "Risk Count for male and female category", x = "Sex", y = "Count of Risk")
contable1<-table(german_cr_data$Sex,german_cr_data$Risk)
contable1
##
## bad good
## female 109 201
## male 191 499
prop.table(contable1)
##
## bad good
## female 0.109 0.201
## male 0.191 0.499
ggplot(german_cr_data, aes(Duration, Credit.amount)) + geom_point(aes(color = Purpose)) +
scale_x_continuous("Duration", breaks = seq(0,80,10))+
scale_y_continuous("Credit.amount", breaks = seq(200,20000,by = 1000))+
theme_bw() + labs(title="Scatter Plot for Duration and Purpose of Credit")
ggplot(german_cr_data, aes(x = Risk, y=Credit.amount))+ ggtitle("Bar Plot showing Credit Risk for different Purposes")+
geom_bar(
aes(fill = Purpose), stat = "identity", color = "white",
position = position_dodge(0.9)
)+
facet_wrap(~Sex)
ggplot(german_cr_data, aes(Housing, Risk))+
geom_raster(aes(fill = Credit.amount))+
labs(title ="Heat Map showing Risk based on Housing", x = "Housing", y = "Risk")+
scale_fill_continuous(name = "Credit.amount")