This is the eighth course in the HarvardX Professional Certificate in Data Science, a series of courses that prepare you to do data analysis in R, from simple computations to machine learning.
The textbook for the Data Science course series is freely available online.
There are six major sections in this course: introduction to machine learning; machine learning basics; linear regression for prediction, smoothing, and working with matrices; distance, knn, cross validation, and generative models; classification with more than two classes and the caret package; and model fitting and recommendation systems.
Introduction to Machine Learning
In this section, you’ll be introduced to some of the terminology and concepts you’ll need going forward.
Machine Learning Basics
In this section, you’ll learn how to start building a machine learning algorithm using training and test data sets and the importance of conditional probabilities for machine learning.
Linear Regression for Prediction, Smoothing, and Working with Matrices
In this section, you’ll learn why linear regression is a useful baseline approach but is often insufficiently flexible for more complex analyses, how to smooth noisy data, and how to use matrices for machine learning.
Distance, Knn, Cross Validation, and Generative Models
In this section, you’ll learn different types of discriminative and generative approaches for machine learning algorithms.
Classification with More than Two Classes and the Caret Package
In this section, you’ll learn how to overcome the curse of dimensionality using methods that adapt to higher dimensions and how to use the caret package to implement many different machine learning algorithms.
Model Fitting and Recommendation Systems
In this section, you’ll learn how to apply the machine learning algorithms you have learned.
In the Introduction to Machine Learning section, you will be introduced to machine learning.
After completing this section, you will be able to:
This section has one parts: introduction to machine learning.
The textbook for this section is available here
True or False: A key feature of machine learning is that the algorithms are built on data.
A. True
B. False
A. True
B. False
In the Machine Learning Basics section, you will learn the basics of machine learning.
After completing this section, you will be able to:
This section has two parts: basics of evaluating machine learning algorithms and conditional probabilities.
The textbook for this section is available here
## [1] 784
y <- mnist$train$labels.Do the following operations have a practical meaning?
y[5] + y[6]
y[5] > y[6]
A. Yes, because 9 + 2 = 11 and 9 > 2.
B. No, because y is not a numeric vector.
C. No, because 11 is not one digit, it is two digits.
D. No, because these are labels representing a category, not a number. A 9 represents a type of digit, not the number 9.
The following questions all ask you to work with the dataset described below.
The reported_heights and heights datasets were collected from three classes taught in the Departments of Computer Science and Biostatistics, as well as remotely through the Extension School. The Biostatistics class was taught in 2016 along with an online version offered by the Extension School. On 2016-01-25 at 8:15 AM, during one of the lectures, the instructors asked student to fill in the sex and height questionnaire that populated the reported_height dataset. The online students filled out the survey during the next few days, after the lecture was posted online. We can use this insight to define a variable which we will call type, to denote the type of student, inclass or online.
The code below sets up the dataset for you to analyze in the following exercises:
library(dslabs)
library(dplyr)
library(lubridate)
data("reported_heights")
dat <- mutate(reported_heights, date_time = ymd_hms(time_stamp)) %>%
filter(date_time >= make_date(2016, 01, 25) & date_time < make_date(2016, 02, 1)) %>%
mutate(type = ifelse(day(date_time) == 25 & hour(date_time) == 8 & between(minute(date_time), 15, 30), "inclass","online")) %>%
select(sex, type)
y <- factor(dat$sex, c("Female", "Male"))
x <- dat$typeQuestions:
## [1] 0.6333333
## y
## y_hat Female Male
## Female 26 13
## Male 42 69
## [1] 0.3823529
## [1] 0.8414634
## [1] 0.4533333
We will practice building a machine learning algorithm using a new dataset, iris, that provides multiple predictors for us to use to train. To start, we will remove the setosa species and we will focus on the versicolor and virginica iris species using the following code:
The following questions all involve work with this dataset.
set.seed(2)
test_index <- createDataPartition(y,times=1,p=0.5,list=FALSE)
test <- iris[test_index,]
train <- iris[-test_index,]Which code should be used in place of # line of code above?
A. test_index <- createDataPartition(y,times=1,p=0.5)
B. test_index <- sample(2,length(y),replace=FALSE)
C. test_index <- createDataPartition(y,times=1,p=0.5,list=FALSE)
D. test_index <- rep(1,length(y))
Using only the train iris data set, which of the following is the singular feature for which a smart cutoff (simple search) yields the greatest overall accuracy?
A. Sepal.Length
B. Sepal.Width
C. Petal.Length
D. Petal.Width
Note: This sample code can be used to determine that Petal.Length is the most accurate singular feature if you are using R 3.5.1 OR that Petal.Width is the most accurate singular feature if you are using R 3.6.
foo <- function(x){
rangedValues <- seq(range(x)[1],range(x)[2],by=0.1)
sapply(rangedValues,function(i){
y_hat <- ifelse(x>i,'virginica','versicolor')
mean(y_hat==train$Species)
})
}
predictions <- apply(train[,-5],2,foo)
sapply(predictions,max) ## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 0.74 0.64 0.96 0.98
predictions <- foo(train[,3])
rangedValues <- seq(range(train[,3])[1],range(train[,3])[2],by=0.1)
cutoffs <-rangedValues[which(predictions==max(predictions))]
y_hat <- ifelse(test[,3]>cutoffs[1],'virginica','versicolor')
mean(y_hat==test$Species)## [1] 0.9
Given that we know the test data, we can treat it like we did our training data to see if the same feature with a different cutoff will optimize our predictions.
Which feature best optimizes our overall accuracy?
A. Sepal.Length
B. Sepal.Width
C. Petal.Length
D. Petal.Width
Notice that Petal.Length and Petal.Width in combination could potentially be more information than either feature alone.
Optimize the combination of the cutoffs for Petal.Length and Petal.Width in the train data and report the overall accuracy when applied to the test dataset. For simplicity, create a rule that if either the length OR the width is greater than the length cutoff or the width cutoff then virginica or versicolor is called. (Note, the F1 will be similarly high in this example.)
What is the overall accuracy for the test data now?
library(caret)
data(iris)
iris <- iris[-which(iris$Species=='setosa'),]
y <- iris$Species
plot(iris,pch=21,bg=iris$Species)set.seed(2)
test_index <- createDataPartition(y,times=1,p=0.5,list=FALSE)
test <- iris[test_index,]
train <- iris[-test_index,]
petalLengthRange <- seq(range(train$Petal.Length)[1],range(train$Petal.Length)[2],by=0.1)
petalWidthRange <- seq(range(train$Petal.Width)[1],range(train$Petal.Width)[2],by=0.1)
length_predictions <- sapply(petalLengthRange,function(i){
y_hat <- ifelse(train$Petal.Length>i,'virginica','versicolor')
mean(y_hat==train$Species)
})
length_cutoff <- petalLengthRange[which.max(length_predictions)] # 4.7
width_predictions <- sapply(petalWidthRange,function(i){
y_hat <- ifelse(train$Petal.Width>i,'virginica','versicolor')
mean(y_hat==train$Species)
})
width_cutoff <- petalWidthRange[which.max(width_predictions)] # 1.5
y_hat <- ifelse(test$Petal.Length>length_cutoff | test$Petal.Width>width_cutoff,'virginica','versicolor')
mean(y_hat==test$Species)## [1] 0.9
Q1. In a previous module, we covered Bayes’ theorem and the Bayesian paradigm. Conditional probabilities are a fundamental part of this previous covered rule.
\(\ P(A|B) = P(B|A)\frac{P(A)}{P(B)}\)
We first review a simple example to go over conditional probabilities.
Assume a patient comes into the doctor’s office to test whether they have a particular disease.
Using Bayes’ theorem, calculate the probability that you have the disease if the test is positive.
\(\ P(\text{disease} | \text{test}+) = P(\text{test}+ | \text{disease}) \times \frac{P(\text{disease})}{P(\text{test}+)} = \frac{P(\text{test}+ | \text{disease})P(\text{disease})}{P(\text{test}+ | \text{disease})P(\text{disease})+P(\text{test}+ | \text{healthy})P(\text{healthy})]} = \frac{0.85 \times 0.02}{0.85 \times 0.02 + 0.1 \times 0.98} = 0.1478261\)
The following 4 questions (Q2-Q5) all relate to implementing this calculation using R.
We have a hypothetical population of 1 million individuals with the following conditional probabilities as described below:
set.seed(1)
disease <- sample(c(0,1), size=1e6, replace=TRUE, prob=c(0.98,0.02))
test <- rep(NA, 1e6)
test[disease==0] <- sample(c(0,1), size=sum(disease==0), replace=TRUE, prob=c(0.90,0.10))
test[disease==1] <- sample(c(0,1), size=sum(disease==1), replace=TRUE, prob=c(0.15, 0.85))Q2. What is the probability that a test is positive?
## [1] 0.114509
Q3. What is the probability that an individual has the disease if the test is negative?
## [1] 0.003461356
Q4. What is the probability that you have the disease if the test is positive? Remember: calculate the conditional probability the disease is positive assuming a positive test.
## [1] 0.1471762
Q5. If the test is positive, what is the relative risk of having the disease? First calculate the probability of having the disease given a positive test, then normalize it against the disease prevalence.
## [1] 7.389106
Part of the code is provided here:
library(dslabs)
data("heights")
MISSING CODE
qplot(height, p, data =.)
Which of the following blocks of code can be used to replace MISSING CODE to make the correct plot?
heights %>%
group_by(height) %>%
summarize(p = mean(sex == "Male")) %>%
heights %>%
mutate(height = round(height)) %>%
group_by(height) %>%
summarize(p = mean(sex == "Female")) %>%
heights %>%
mutate(height = round(height)) %>%
summarize(p = mean(sex == "Male")) %>%
D.
heights %>%
mutate(height = round(height)) %>%
group_by(height) %>%
summarize(p = mean(sex == "Male")) %>%
library(dslabs)
data("heights")
# With Missing Code:
heights %>%
mutate(height = round(height)) %>%
group_by(height) %>%
summarize(p = mean(sex == "Male")) %>%
qplot(height, p, data =.)cut function to assure each group has the same number of points. Note that for any numeric vector x, you can create groups based on quantiles like this: cut(x, quantile(x, seq(0, 1, 0.1)), include.lowest = TRUE).Part of the code is provided here:
ps <- seq(0, 1, 0.1)
heights %>%
MISSING CODE
group_by(g) %>%
summarize(p = mean(sex == "Male"), height = mean(height)) %>%
qplot(height, p, data =.)
Which of the following lines of code can be used to replace MISSING CODE to make the correct plot?
mutate(g = cut(male, quantile(height, ps), include.lowest = TRUE)) %>%
B.
mutate(g = cut(height, quantile(height, ps), include.lowest = TRUE)) %>%
mutate(g = cut(female, quantile(height, ps), include.lowest = TRUE)) %>%
mutate(g = cut(height, quantile(height, ps))) %>%
ps <- seq(0, 1, 0.1)
heights %>%
# With missing code:
mutate(g = cut(height, quantile(height, ps), include.lowest = TRUE)) %>%
group_by(g) %>%
summarize(p = mean(sex == "Male"), height = mean(height)) %>%
qplot(height, p, data =.)Sigma <- 9*matrix(c(1,0.5,0.5,1), 2, 2)
dat <- MASS::mvrnorm(n = 10000, c(69, 69), Sigma) %>%
data.frame() %>% setNames(c("x", "y"))And make a quick plot using
Using an approach similar to that used in the previous exercise, let’s estimate the conditional expectations and make a plot. Part of the code has been provided for you:
ps <- seq(0, 1, 0.1)
dat %>%
MISSING CODE
qplot(x, y, data =.)
Which of the following blocks of code can be used to replace MISSING CODE to make the correct plot?
A.
mutate(g = cut(x, quantile(x, ps), include.lowest = TRUE)) %>%
group_by(g) %>%
summarize(y = mean(y), x = mean(x)) %>%
mutate(g = cut(x, quantile(x, ps))) %>%
group_by(g) %>%
summarize(y = mean(y), x = mean(x)) %>%
mutate(g = cut(x, quantile(x, ps), include.lowest = TRUE)) %>%
summarize(y = mean(y), x = mean(x)) %>%
mutate(g = cut(x, quantile(x, ps), include.lowest = TRUE)) %>%
group_by(g) %>%
summarize(y =(y), x =(x)) %>%
ps <- seq(0, 1, 0.1)
dat %>%
# With missing code
mutate(g = cut(x, quantile(x, ps), include.lowest = TRUE)) %>%
group_by(g) %>%
summarize(y = mean(y), x = mean(x)) %>%
qplot(x, y, data =.)In the Linear Regression for Prediction, Smoothing, and Working with Matrices Overview section, you will learn why linear regression is a useful baseline approach but is often insufficiently flexible for more complex analyses, how to smooth noisy data, and how to use matrices for machine learning.
After completing this section, you will be able to:
This section has three parts: linear regression for prediction, smoothing, and working with matrices.
set.seed(1)
n <- 100
Sigma <- 9*matrix(c(1.0, 0.5, 0.5, 1.0), 2, 2)
dat <- MASS::mvrnorm(n = 100, c(69, 69), Sigma) %>%
data.frame() %>% setNames(c("x", "y"))We will build 100 linear models using the data above and calculate the mean and standard deviation of the combined models. First, set the seed to 1. Within a replicate loop, (1) partition the dataset into test and training sets of equal size using dat$y to generate your indices, (2) train a linear model predicting y from x, (3) generate predictions on the test set, and (4) calculate the RMSE of that model. Then, report the mean and standard deviation of the RMSEs from all 100 models.
set.seed(1)
rmse <- replicate(100, {
test_index <- createDataPartition(dat$y, times = 1, p = 0.5, list = FALSE)
train_set <- dat %>% slice(-test_index)
test_set <- dat %>% slice(test_index)
fit <- lm(y ~ x, data = train_set)
y_hat <- predict(fit, newdata = test_set)
sqrt(mean((y_hat-test_set$y)^2))
})
mean(rmse)## [1] 2.485441
## [1] 0.1316324
n, then (1) builds a dataset using the code provided in Q1 but with n observations instead of 100 and without the set.seed(1), (2) runs the replicate loop that you wrote to answer Q1, which builds 100 linear models and returns a vector of RMSEs, and (3) calculates the mean and standard deviation. Set the seed to 1 and then use sapply or map to apply this function to n <- c(100, 500, 1000, 5000, 10000).Hint: You only need to set the seed once before running your function; do not set a seed within your function. Also be sure to use sapply or map as you will get different answers running the simulations individually due to setting the seed.
set.seed(1)
n <- c(100, 500, 1000, 5000, 10000)
res <- sapply(n, function(n){
Sigma <- 9*matrix(c(1.0, 0.5, 0.5, 1.0), 2, 2)
dat <- MASS::mvrnorm(n, c(69, 69), Sigma) %>%
data.frame() %>% setNames(c("x", "y"))
rmse <- replicate(100, {
test_index <- createDataPartition(dat$y, times = 1, p = 0.5, list = FALSE)
train_set <- dat %>% slice(-test_index)
test_set <- dat %>% slice(test_index)
fit <- lm(y ~ x, data = train_set)
y_hat <- predict(fit, newdata = test_set)
sqrt(mean((y_hat-test_set$y)^2))
})
c(avg = mean(rmse), sd = sd(rmse))
})
res## [,1] [,2] [,3] [,4] [,5]
## avg 2.4812746 2.56921641 2.6114774 2.52740601 2.57768962
## sd 0.1276984 0.08059855 0.0415685 0.02106627 0.01690299
A. On average, the RMSE does not change much as n gets larger, but the variability of the RMSE decreases.
B. Because of the law of large numbers the RMSE decreases; more data means more precise estimates.
C. n = 10000 is not sufficiently large. To see a decrease in the RMSE we would need to make it larger.
D. The RMSE is not a random variable.
x and y larger, as in the following code:set.seed(1)
n <- 100
Sigma <- 9*matrix(c(1.0, 0.95, 0.95, 1.0), 2, 2)
dat <- MASS::mvrnorm(n = 100, c(69, 69), Sigma) %>%
data.frame() %>% setNames(c("x", "y"))Note what happens to RMSE - set the seed to 1 as before.
set.seed(1)
rmse <- replicate(100, {
test_index <- createDataPartition(dat$y, times = 1, p = 0.5, list = FALSE)
train_set <- dat %>% slice(-test_index)
test_set <- dat %>% slice(test_index)
fit <- lm(y ~ x, data = train_set)
y_hat <- predict(fit, newdata = test_set)
sqrt(mean((y_hat-test_set$y)^2))
})
mean(rmse)## [1] 0.9078124
## [1] 0.05821304
A. It is just luck. If we do it again, it will be larger.
B. The central limit theorem tells us that the RMSE is normal.
C. When we increase the correlation between x and y, x has more predictive power and thus provides a better estimate of y.
D. These are both examples of regression so the RMSE has to be the same.
set.seed(1)
Sigma <- matrix(c(1.0, 0.75, 0.75, 0.75, 1.0, 0.25, 0.75, 0.25, 1.0), 3, 3)
dat <- MASS::mvrnorm(n = 100, c(0, 0, 0), Sigma) %>%
data.frame() %>% setNames(c("y", "x_1", "x_2"))Note that y is correlated with both x_1 and x_2 but the two predictors are independent of each other, as seen by cor(dat).
Use the caret package to partition into a test and training set of equal size. Compare the RMSE when using just x_1, just x_2 and both x_1 and x_2. Train a linear model for each.
Which of the three models performs the best (has the lowest RMSE)?
A. x_1 B. x_2 C. x_1 and x_2
set.seed(1)
test_index <- createDataPartition(dat$y, times = 1, p = 0.5, list = FALSE)
train_set <- dat %>% slice(-test_index)
test_set <- dat %>% slice(test_index)
fit <- lm(y ~ x_1, data = train_set)
y_hat <- predict(fit, newdata = test_set)
sqrt(mean((y_hat-test_set$y)^2))## [1] 0.6175662
fit <- lm(y ~ x_2, data = train_set)
y_hat <- predict(fit, newdata = test_set)
sqrt(mean((y_hat-test_set$y)^2))## [1] 0.5881607
fit <- lm(y ~ x_1 + x_2, data = train_set)
y_hat <- predict(fit, newdata = test_set)
sqrt(mean((y_hat-test_set$y)^2))## [1] 0.3161433
set.seed(1)
Sigma <- matrix(c(1.0, 0.75, 0.75, 0.75, 1.0, 0.95, 0.75, 0.95, 1.0), 3, 3)
dat <- MASS::mvrnorm(n = 100, c(0, 0, 0), Sigma) %>%
data.frame() %>% setNames(c("y", "x_1", "x_2"))
Set the seed to 1, then use the caret package to partition into a test and training set of equal size. Compare the RMSE when using just x_1, just x_2, and both x_1 and x_2.
Compare the results from q6 and q8. What can you conclude?
A. Unless we include all predictors we have no predictive power.
B. Adding extra predictors improves RMSE regardless of whether the added predictors are correlated with other predictors or not.
C. Adding extra predictors results in over fitting. D. Adding extra predictors can improve RMSE substantially, but not when the added predictors are highly correlated with other predictors.
set.seed(1)
test_index <- createDataPartition(dat$y, times = 1, p = 0.5, list = FALSE)
train_set <- dat %>% slice(-test_index)
test_set <- dat %>% slice(test_index)
fit <- lm(y ~ x_1, data = train_set)
y_hat <- predict(fit, newdata = test_set)
sqrt(mean((y_hat-test_set$y)^2))## [1] 0.6175662
fit <- lm(y ~ x_2, data = train_set)
y_hat <- predict(fit, newdata = test_set)
sqrt(mean((y_hat-test_set$y)^2))## [1] 0.5881607
fit <- lm(y ~ x_1 + x_2, data = train_set)
y_hat <- predict(fit, newdata = test_set)
sqrt(mean((y_hat-test_set$y)^2))## [1] 0.3161433
set.seed(2)
make_data <- function(n = 1000, p = 0.5,
mu_0 = 0, mu_1 = 2,
sigma_0 = 1, sigma_1 = 1){
y <- rbinom(n, 1, p)
f_0 <- rnorm(n, mu_0, sigma_0)
f_1 <- rnorm(n, mu_1, sigma_1)
x <- ifelse(y == 1, f_1, f_0)
test_index <- createDataPartition(y, times = 1, p = 0.5, list = FALSE)
list(train = data.frame(x = x, y = as.factor(y)) %>% slice(-test_index),
test = data.frame(x = x, y = as.factor(y)) %>% slice(test_index))
}
dat <- make_data()Note that we have defined a variable x that is predictive of a binary outcome y: dat$train %>% ggplot(aes(x, color = y)) + geom_density().
Set the seed to 1, then use the make_data function defined above to generate 25 different datasets with mu_1 <- seq(0, 3, len=25). Perform logistic regression on each of the 25 different datasets (predict 1 if p>0.5) and plot accuracy (res in the figures) vs mu_1 (delta in the figures).”
Which is the correct plot?
#The correct one:
set.seed(1)
delta <- seq(0, 3, len = 25)
res <- sapply(delta, function(d){
dat <- make_data(mu_1 = d)
fit_glm <- dat$train %>% glm(y ~ x, family = "binomial", data = .)
y_hat_glm <- ifelse(predict(fit_glm, dat$test) > 0.5, 1, 0) %>% factor(levels = c(0, 1))
mean(y_hat_glm == dat$test$y)
})
qplot(delta, res)library(tidyverse)
library(lubridate)
library(purrr)
library(pdftools)
fn <- system.file("extdata", "RD-Mortality-Report_2015-18-180531.pdf", package="dslabs")
dat <- map_df(str_split(pdf_text(fn), "\n"), function(s){
s <- str_trim(s)
header_index <- str_which(s, "2015")[1]
tmp <- str_split(s[header_index], "\\s+", simplify = TRUE)
month <- tmp[1]
header <- tmp[-1]
tail_index <- str_which(s, "Total")
n <- str_count(s, "\\d+")
out <- c(1:header_index, which(n==1), which(n>=28), tail_index:length(s))
s[-out] %>%
str_remove_all("[^\\d\\s]") %>%
str_trim() %>%
str_split_fixed("\\s+", n = 6) %>%
.[,1:5] %>%
as_data_frame() %>%
setNames(c("day", header)) %>%
mutate(month = month,
day = as.numeric(day)) %>%
gather(year, deaths, -c(day, month)) %>%
mutate(deaths = as.numeric(deaths))
}) %>%
mutate(month = recode(month, "JAN" = 1, "FEB" = 2, "MAR" = 3, "APR" = 4, "MAY" = 5, "JUN" = 6,
"JUL" = 7, "AGO" = 8, "SEP" = 9, "OCT" = 10, "NOV" = 11, "DEC" = 12)) %>%
mutate(date = make_date(year, month, day)) %>%
filter(date <= "2018-05-01")Use the loess function to obtain a smooth estimate of the expected number of deaths as a function of date. Plot this resulting smooth function. Make the span about two months long.
Which of the following plots is correct?
span <- 60 / as.numeric(diff(range(dat$date)))
fit <- dat %>% mutate(x = as.numeric(date)) %>% loess(deaths ~ x, data = ., span = span, degree = 1)
dat %>% mutate(smooth = predict(fit, as.numeric(date))) %>%
ggplot() +
geom_point(aes(date, deaths)) +
geom_line(aes(date, smooth), lwd = 2, col = 2)Which code produces the desired plot?
span <- 60 / as.numeric(diff(range(dat$date)))
fit <- dat %>% mutate(x = as.numeric(date)) %>% loess(deaths ~ x, data = ., span = span, degree = 1)
dat %>%
mutate(smooth = predict(fit, as.numeric(date)), day = yday(date), year = as.character(year(date))) %>%
ggplot(aes(day, smooth, col = year)) +
geom_line(lwd = 2)dat %>%
mutate(smooth = predict(fit), day = yday(date), year = as.character(year(date))) %>%
ggplot(aes(day, smooth, col = year)) +
geom_line(lwd = 2)
dat %>%
mutate(smooth = predict(fit, as.numeric(date)), day = mday(date), year = as.character(year(date))) %>%
ggplot(aes(day, smooth, col = year)) +
geom_line(lwd = 2)
dat %>%
mutate(smooth = predict(fit, as.numeric(date)), day = yday(date), year = as.character(year(date))) %>%
ggplot(aes(day, smooth)) +
geom_line(lwd = 2)
D.
dat %>%
mutate(smooth = predict(fit, as.numeric(date)), day = yday(date), year = as.character(year(date))) %>%
ggplot(aes(day, smooth, col = year)) +
geom_line(lwd = 2)
mnist_27 dataset with just the second covariate. Can we do this? On first inspection it appears the data does not have much predictive power.In fact, if we fit a regular logistic regression the coefficient for x_2 is not significant!
This can be seen using this code:
library(broom)
library(dslabs)
data(mnist_27)
mnist_27$train %>% glm(y ~ x_2, family = "binomial", data = .) %>% tidy()Plotting a scatterplot here is not useful since y is binary:
Fit a loess line to the data above and plot the results. What do you observe?
A. There is no predictive power and the conditional probability is linear.
B. There is no predictive power and the conditional probability is non-linear.
C. There is predictive power and the conditional probability is linear.
D. There is predictive power and the conditional probability is non-linear.
#Note that there is indeed predictive power, but that the conditional probability is non-linear.
#The loess line can be plotted using the following code:
mnist_27$train %>%
mutate(y = ifelse(y=="7", 1, 0)) %>%
ggplot(aes(x_2, y)) +
geom_smooth(method = "loess")x?A. x <- matrix(rnorm(1000), 100, 100)
B. x <- matrix(rnorm(100*10), 100, 10)
C. x <- matrix(rnorm(100*10), 10, 10)
D. x <- matrix(rnorm(100*10), 10, 100)
x that you generated in q1. Do not include any spaces in your line of code.Dimension of x.
dim(x)
Number of rows of x.
nrow(x)
Number of columns of x.
ncol(x)
x?A. x <- x + seq(nrow(x))
B. x <- 1:nrow(x)
C. x <- sweep(x, 2, 1:nrow(x),"+")
D. x <- sweep(x, 1, 1:nrow(x),"+")
x?A. x <- 1:ncol(x)
B. x <- 1:col(x)
C. x <- sweep(x, 2, 1:ncol(x), FUN = "+")
D. x <- -x
x?A. mean(x)
B. rowMedians(x)
C. sapply(x,mean)
D. rowSums(x)
E. rowMeans(x)
x?A. mean(x)
B. sapply(x,mean)
C. colMeans(x)
D. colMedians(x)
E. colSums(x)
What proportion of pixels are in the grey area overall, defined as values between 50 and 205?
- 0.06183703
#The matrix and plot can be calculated using the following code:
mnist <- read_mnist()
y <- rowMeans(mnist$train$images>50 & mnist$train$images<205)
qplot(as.factor(mnist$train$labels), y, geom = "boxplot")## [1] 0.06183703
In the Distance, kNN, Cross Validation, and Generative Models section, you will learn about different types of discriminative and generative approaches for machine learning algorithms.
After completing this section, you will be able to:
This section has three parts: nearest neighbors, cross-validation, and generative models.
This dataset includes a matrix x:
## [1] 189 500
This matrix has the gene expression levels of 500 genes from 189 biological samples representing seven different tissues. The tissue type is stored in y:
##
## cerebellum colon endometrium hippocampus kidney liver
## 38 34 15 31 39 26
## placenta
## 6
Which of the following lines of code computes the Euclidean distance between each observation and stores it in the object d?
A. d <- dist(tissue_gene_expression$x, distance='maximum')
B. d <- dist(tissue_gene_expression)
C. d <- dist(tissue_gene_expression$x)
D. d <- cor(tissue_gene_expression$x)
Distance-wise, are samples from tissues of the same type closer to each other?
A. No, the samples from the same tissue type are not necessarily closer.
B. The two colon samples are closest to each other, but the samples from the other two tissues are not.
C. The two cerebellum samples are closest to each other, but the samples from the other two tissues are not.
D. Yes, the samples from the same tissue type are closest to each other.
## cerebellum_1 cerebellum_2 colon_1 colon_2 endometrium_1
## cerebellum_1 0.000000 7.005922 22.694801 22.699755 21.12763
## cerebellum_2 7.005922 0.000000 22.384821 22.069557 20.87910
## colon_1 22.694801 22.384821 0.000000 8.191935 14.99672
## colon_2 22.699755 22.069557 8.191935 0.000000 14.80355
## endometrium_1 21.127629 20.879099 14.996715 14.803545 0.00000
## endometrium_2 21.780792 20.674802 18.089213 17.004456 14.29405
## endometrium_2
## cerebellum_1 21.78079
## cerebellum_2 20.67480
## colon_1 18.08921
## colon_2 17.00446
## endometrium_1 14.29405
## endometrium_2 0.00000
image function to see if the pattern you observed in Q2 is general.Which code would correctly make the desired plot?
A. image(d)
B. image(as.matrix(d))
C. d
D. image()
sapply function to perform knn with k values of seq(1, 101, 3) and calculate F_1 scores.F_1? 0.60194k does the max occur? 46library(dslabs)
library(tidyverse)
library(caret)
data("heights")
set.seed(1)
test_index <- createDataPartition(heights$sex, times = 1, p = 0.5, list = FALSE)
test_set <- heights[test_index, ]
train_set <- heights[-test_index, ]
ks <- seq(1, 101, 3)
F_1 <- sapply(ks, function(k){
fit <- knn3(sex ~ height, data = train_set, k = k)
y_hat <- predict(fit, test_set, type = "class") %>%
factor(levels = levels(train_set$sex))
F_meas(data = y_hat, reference = test_set$sex)
})
plot(ks, F_1)## [1] 0.619469
## [1] 40
Split the data into training and test sets, and report the accuracy you obtain. Try it for k = 1, 3, 5, 7, 9, 11. Set the seed to 1.
set.seed(1)
library(caret)
y <- tissue_gene_expression$y
x <- tissue_gene_expression$x
train_index <- createDataPartition(y, list = FALSE)
sapply(seq(1, 11, 2), function(k){
fit <- knn3(x[train_index,], y[train_index], k = k)
y_hat <- predict(fit, newdata = data.frame(x=x[-train_index,]),
type = "class")
mean(y_hat == y[-train_index])
})## [1] 1.0000000 0.9892473 1.0000000 0.9462366 0.9247312 0.9354839
library(dbplyr)
library(dslabs)
library(tidyverse)
library(caret)
set.seed(1996)
n <- 1000
p <- 10000
x <- matrix(rnorm(n*p), n, p)
colnames(x) <- paste("x", 1:ncol(x), sep = "_")
y <- rbinom(n, 1, 0.5) %>% factor()
x_subset <- x[ ,sample(p, 100)]Because x and y are completely independent, you should not be able to predict y using x with accuracy greater than 0.5. Confirm this by running cross-validation using logistic regression to fit the model. Because we have so many predictors, we selected a random sample x_subset. Use the subset when training the model.
Which code correctly performs this cross-validation?
fit <- train(x_subset, y)
fit$results
fit <- train(x_subset, y, method = "glm")
fit$results [X]
fit <- train(y, x_subset, method = "glm")
fit$results
fit <- test(x_subset, y, method = "glm")
fit$results
Which of the following lines of code correctly creates a vector of the p-values called pvals?
A. pvals <- tt$dm
B. pvals <- tt$statistic
C. pvals <- tt
D. pvals <- tt$p.value
ind with the column numbers of the predictors that were “statistically significantly” associated with y. Use a p-value cutoff of 0.01 to define “statistically significantly.”How many predictors survive this cutoff? - 108
## [1] 108
x_subset to be the subset of x defined by the columns showing “statistically significant” association with y.What is the accuracy now?
- 0.754
k = seq(101, 301, 25) of tuning parameters. Make a plot of the resulting accuracies.Which code is correct?
A.
fit <- train(x_subset, y, method = "knn", tuneGrid = data.frame(k = seq(101, 301, 25)))
ggplot(fit)
fit <- train(x_subset, y, method = "knn")
ggplot(fit)
fit <- train(x_subset, y, method = "knn", tuneGrid = data.frame(k = seq(103, 301, 25)))
ggplot(fit)
fit <- train(x_subset, y, method = "knn", tuneGrid = data.frame(k = seq(101, 301, 5)))
ggplot(fit)
x and y are completely independent, we were able to predict y with accuracy higher than 70%. We must be doing something wrong then.What is it?
A. The function train estimates accuracy on the same data it uses to train the algorithm.
B. We are overfitting the model by including 100 predictors.
C. We used the entire dataset to select the columns used in the model.
D. The high accuracy is just due to random variability.
Explanation: Because we used the entire dataset to select the columns in the model, the accuracy is too high. The selection step needs to be included as part of the cross-validation algorithm, and then the cross-validation itself is performed after the column selection step.
As a follow-up exercise, try to re-do the cross-validation, this time including the selection step in the cross-validation algorithm. The accuracy should now be close to 50%.
train function to predict tissue from gene expression in the tissue_gene_expression dataset. Use kNN.What value of k works best? - 1
data("tissue_gene_expression")
fit <- with(tissue_gene_expression, train(x, y, method = "knn", tuneGrid = data.frame( k = seq(1, 7, 2))))
ggplot(fit)createResample function can be used to create bootstrap samples. For example, we can create 10 bootstrap samples for the mnist_27 dataset like this:How many times do 3, 4, and 7 appear in the first resampled index?
## [1] 1
## [1] 2
## [1] 1
What is the total number of times that 3 appears in all of the resampled indexes? - 11
## [1] 12
Estimate the 75th quantile, which we know is qnorm(0.75), with the sample quantile: quantile(y, 0.75).
Run a Monte Carlo simulation with 10,000 repetitions to learn the expected value and standard error of this random variable. Set the seed to 1.
## [1] 0.6656107
## [1] 0.1353809
set.seed(1)
y <- rnorm(100, 0, 1)
Set the seed to 1 again after generating y and use 10 bootstrap samples to estimate the expected value and standard error of the 75th quantile.
set.seed(1)
indexes <- createResample(y, 10)
q_75_star <- sapply(indexes, function(ind){
y_star <- y[ind]
quantile(y_star, 0.75)
})
mean(q_75_star)## [1] 0.6712146
## [1] 0.07858009
set.seed(1)
indexes <- createResample(y, 10000)
q_75_star <- sapply(indexes, function(ind){
y_star <- y[ind]
quantile(y_star, 0.75)
})
mean(q_75_star)## [1] 0.6739372
## [1] 0.09259491
What do you observe?
A. The SD is substantially lower with 10,000 bootstrap samples than with 10.
B. The SD is roughly the same in both cases.
C. The SD is substantially higher with 10,000 bootstrap samples than with 10.
In the following exercises, we are going to apply LDA and QDA to the tissue_gene_expression dataset. We will start with simple examples based on this dataset and then develop a realistic example.
library(dslabs)
library(caret)
data("tissue_gene_expression")
set.seed(1993, sample.kind = "Rounding") # use this line of code if you are using R 3.6 or later
#set.seed(1993) # use this line of code if you are using R 3.5 or earlier
ind <- which(tissue_gene_expression$y %in% c("cerebellum", "hippocampus"))
y <- droplevels(tissue_gene_expression$y[ind])
x <- tissue_gene_expression$x[ind, ]
x <- x[, sample(ncol(x), 10)]Use the train function to estimate the accuracy of LDA.
What is the accuracy? - 0.8946508
finalModel component of the result of train. Notice there is a component called means that includes the estimated means of both distributions. Plot the mean vectors against each other and determine which predictors (genes) appear to be driving the algorithm.Which TWO genes appear to be driving the algorithm?
A. PLCB1
B. RAB1B
C. MSH4
D. OAZ2
E. SPI1
F. SAPCD1
G. HEMK1
t(fit_lda$finalModel$means) %>% data.frame() %>%
mutate(predictor_name = rownames(.)) %>%
ggplot(aes(cerebellum, hippocampus, label = predictor_name)) +
geom_point() +
geom_text() +
geom_abline()Create a dataset of samples from just cerebellum and hippocampus, two parts of the brain, and a predictor matrix with 10 randomly selected columns using the following code:
library(dslabs)
library(caret)
data("tissue_gene_expression")
set.seed(1993, sample.kind = "Rounding") # use this line of code if you are using R 3.6 or later
#set.seed(1993) # use this line of code if you are using R 3.5 or earlier
ind <- which(tissue_gene_expression$y %in% c("cerebellum", "hippocampus"))
y <- droplevels(tissue_gene_expression$y[ind])
x <- tissue_gene_expression$x[ind, ]
x <- x[, sample(ncol(x), 10)]Use the train function to estimate the accuracy of QDA. For this question, use the entire tissue_gene_expression dataset: do not split it into training and test sets (understand this can lead to overfitting).
What is the accuracy? - 0.8147954
A. PLCB1
B. RAB1B
C. MSH4
D. OAZ2
E. SPI1
F. SAPCD1
G. HEMK1
t(fit_qda$finalModel$means) %>% data.frame() %>%
mutate(predictor_name = rownames(.)) %>%
ggplot(aes(cerebellum, hippocampus, label = predictor_name)) +
geom_point() +
geom_text() +
geom_abline()colMeans(x) is not informative or useful for prediction and often for purposes of interpretation, it is useful to center or scale each column. This can be achieved with the preProcessing argument in train. Re-run LDA with preProcessing = "scale". Note that accuracy does not change, but it is now easier to identify the predictors that differ more between groups than based on the plot made in Q2.Which TWO genes drive the algorithm after performing the scaling?
A. C21orf62
B. PLCB1
C. RAB1B
D. MSH4
E. OAZ2
F. SPI1
G. SAPCD1
H. IL18R1
t(fit_lda$finalModel$means) %>% data.frame() %>%
mutate(predictor_name = rownames(.)) %>%
ggplot(aes(predictor_name, hippocampus)) +
geom_point() +
coord_flip()d <- apply(fit_lda$finalModel$means, 2, diff)
ind <- order(abs(d), decreasing = TRUE)[1:2]
plot(x[, ind], col = y)library(dslabs)
library(caret)
data("tissue_gene_expression")
set.seed(1993, sample.kind = "Rounding") # use this line of code if you are using R 3.6 or later
#set.seed(1993) # use this line of code if you are using R 3.5 or earlier
y <- tissue_gene_expression$y
x <- tissue_gene_expression$x
x <- x[, sample(ncol(x), 10)]What is the accuracy using LDA? - 0.8194837
In the Classification with More than Two Classes and the Caret Package section, you will learn how to overcome the curse of dimensionality using methods that adapt to higher dimensions and how to use the caret package to implement many different machine learning algorithms.
After completing this section, you will be able to:
This section has two parts: classification with more than two classes and caret package.
library(rpart)
library(dplyr)
library(ggplot2)
n <- 1000
sigma <- 0.25
set.seed(1)
x <- rnorm(n, 0, 1)
y <- 0.75 * x + rnorm(n, 0, sigma)
dat <- data.frame(x = x, y = y)Which code correctly uses rpart to fit a regression tree and saves the result to fit?
A. fit <- rpart(y ~ .)
B. fit <- rpart(y, ., data = dat)
C. fit <- rpart(x ~ ., data = dat)
D. fit <- rpart(y ~ ., data = dat)
y versus x along with the predicted values based on the fit.dat %>%
mutate(y_hat = predict(fit)) %>%
ggplot() +
geom_point(aes(x, y)) +
geom_step(aes(x, y_hat), col=2) #BLANKWhich line of code should be used to replace #BLANK in the code above?
A. geom_step(aes(x, y_hat), col=2)
B. geom_smooth(aes(y_hat, x), col=2)
C. geom_quantile(aes(x, y_hat), col=2)
D. geom_step(aes(y_hat, x), col=2)
__randomForest__ package, and remake the scatterplot with the prediction line. Part of the code is provided for you below.library(randomForest)
#fit <- #BLANK
fit <- randomForest(y ~ x, data = dat)
dat %>%
mutate(y_hat = predict(fit)) %>%
ggplot() +
geom_point(aes(x, y)) +
geom_step(aes(x, y_hat), col = 2)What code should replace #BLANK in the provided code?
A. randomForest(y ~ x, data = dat)
B. randomForest(x ~ y, data = dat)
C. randomForest(y ~ x, data = data)
D. randomForest(x ~ y)
Part of the code is provided for you below.
library(randomForest)
#fit <- #BLANK
fit <- randomForest(y ~ x, data = dat, nodesize = 50, maxnodes = 25)
dat %>%
mutate(y_hat = predict(fit)) %>%
ggplot() +
geom_point(aes(x, y)) +
geom_step(aes(x, y_hat), col = 2)What code should replace #BLANK in the provided code?
A. randomForest(y ~ x, data = dat, nodesize = 25, maxnodes = 25)
B. randomForest(y ~ x, data = dat, nodes = 50, max = 25)
C. randomForest(x ~ y, data = dat, nodes = 50, max = 25)
D. randomForest(y ~ x, data = dat, nodesize = 50, maxnodes = 25)
E. randomForest(x ~ y, data = dat, nodesize = 50, maxnodes = 25)
The exercises in Q1 and Q2 continue the analysis you began in the last set of assessments.
Q1. In the exercise in Q6 from Comprehension Check: Trees and Random Forests, we saw that changing nodesize to 50 and setting maxnodes to 25 yielded smoother results. Let’s use the train function to help us pick what the values of nodesize and maxnodes should be.
From the caret description of methods, we see that we can’t tune the maxnodes parameter or the nodesize argument with randomForests. So we will use the __Rborist__ package and tune the minNode argument. Use the train function to try values minNode <- seq(25, 100, 25). Set the seed to 1.
Which value minimizes the estimated RMSE? - 50
set.seed(1)
library(caret)
library(Rborist)
fit <- train(y ~ ., method = "Rborist",
tuneGrid = data.frame(predFixed = 1,
minNode = seq(25, 100, 25)),
data = dat)
ggplot(fit)Q2. Part of the code to make a scatterplot along with the prediction from the best fitted model is provided below.
library(caret)
dat %>%
mutate(y_hat = predict(fit)) %>%
ggplot() +
geom_point(aes(x, y)) +
#BLANK
geom_step(aes(x, y_hat), col = 2)Which code correctly can be used to replace #BLANK in the code above?
A. geom_step(aes(y_hat, x), col = 2)
B. geom_step(aes(x, y_hat), col = 2)
C. geom_step(aes(x, y), col = 2)
D. geom_step(aes(x_hat, y_hat), col = 2)
E. geom_smooth(aes(x, y_hat), col = 2)
F. geom_smooth(aes(y_hat, x), col = 2)
Q3. Use the rpart function to fit a classification tree to the tissue_gene_expression dataset. Use the train function to estimate the accuracy. Try out cp values of seq(0, 0.1, 0.01). Plot the accuracies to report the results of the best model. Set the seed to 1991.
Which value of cp gives the highest accuracy? - 0
library(caret)
library(dslabs)
set.seed(1991)
data("tissue_gene_expression")
fit <- with(tissue_gene_expression,
train(x, y, method = "rpart",
tuneGrid = data.frame(cp = seq(0, 0.1, 0.01))))
ggplot(fit) Q4. Study the confusion matrix for the best fitting classification tree from the exercise in Q3.
What do you observe happening for the placenta samples?
A. Placenta samples are all accurately classified.
B. Placenta samples are being classified as two similar tissues.
C. Placenta samples are being classified somewhat evenly across tissues.
D. Placenta samples not being classified into any of the classes.
Explanation: confusionMatrix(fit) will show the confusion matrix for the classification tree from the tissue gene expression dataset. Looking at the confusion matrix, you can see that placenta is classified somewhat evenly across different tissue types, and in fact, placentas are called endometriums more frequently than they are called placentas.
Q5. Note that there are only 6 placentas in the dataset. By default, rpart requires 20 observations before splitting a node. That means that it is difficult to have a node in which placentas are the majority. Rerun the analysis you did in the exercise in Q3, but this time, allow rpart to split any node by using the argument control = rpart.control(minsplit = 0). Look at the confusion matrix again to determine whether the accuracy increases. Again, set the seed to 1991.
What is the accuracy now? - 0.9141
set.seed(1991)
data("tissue_gene_expression")
fit_rpart <- with(tissue_gene_expression,
train(x, y, method = "rpart",
tuneGrid = data.frame(cp = seq(0, 0.10, 0.01)),
control = rpart.control(minsplit = 0)))
ggplot(fit_rpart)## Bootstrapped (25 reps) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction cerebellum colon endometrium hippocampus kidney liver
## cerebellum 19.5 0.0 0.2 0.9 0.4 0.0
## colon 0.3 16.5 0.1 0.0 0.1 0.0
## endometrium 0.1 0.2 6.4 0.1 0.9 0.1
## hippocampus 0.2 0.0 0.0 15.6 0.1 0.0
## kidney 0.3 0.3 0.9 0.1 19.1 0.5
## liver 0.0 0.0 0.3 0.0 0.3 12.6
## placenta 0.1 0.1 0.5 0.0 0.6 0.1
## Reference
## Prediction placenta
## cerebellum 0.1
## colon 0.1
## endometrium 0.5
## hippocampus 0.0
## kidney 0.3
## liver 0.2
## placenta 1.8
##
## Accuracy (average) : 0.9141
Which gene is at the first split?
A. B3GNT4
B. CAPN3
C. CES2
D. CFHR4
E. CLIP3
F. GPA33
G. HRH1
Note: This exercise will take some time to run. If you want to test out your code first, try using smaller values with ntree. Set the seed to 1991 again.
What value of mtry maximizes accuracy? - 100
set.seed(1991)
library(randomForest)
fit <- with(tissue_gene_expression,
train(x, y, method = "rf",
nodesize = 1,
tuneGrid = data.frame(mtry = seq(50, 200, 25))))
ggplot(fit)## rf variable importance
##
## only 20 most important variables shown (out of 500)
##
## Overall
## GPA33 100.00
## BIN1 64.65
## GPM6B 62.35
## KIF2C 62.15
## CLIP3 52.09
## COLGALT2 46.48
## CFHR4 35.03
## SHANK2 34.90
## TFR2 33.61
## GALNT11 30.70
## CEP55 30.49
## TCN2 27.96
## CAPN3 27.52
## CYP4F11 25.74
## GTF2IRD1 24.89
## KCTD2 24.34
## FCN3 22.68
## SUSD6 22.24
## DOCK4 22.02
## RARRES2 21.53
What should replace #BLANK in the code above?
rpart model we ran above produced a tree that used just seven predictors. Extracting the predictor names is not straightforward, but can be done. If the output of the call to train was fit_rpart, we can extract the names like this:tree_terms <- as.character(unique(fit_rpart$finalModel$frame$var[!(fit_rpart$finalModel$frame$var == "<leaf>")]))
tree_terms## [1] "GPA33" "CLIP3" "CAPN3" "CFHR4" "CES2" "HRH1" "B3GNT4"
Calculate the variable importance in the Random Forest call for these seven predictors and examine where they rank.
What is the importance of the CFHR4 gene in the Random Forest call? - 35
What is the rank of the CFHR4 gene in the Random Forest call? - 7
data_frame(term = rownames(imp$importance),
importance = imp$importance$Overall) %>%
mutate(rank = rank(-importance)) %>% arrange(desc(importance)) %>%
filter(term %in% tree_terms)In the Model Fitting and Recommendation Systems section, you will learn how to apply the machine learning algorithms you have learned.
After completing this section, you will be able to:
This section has three parts: case study: MNIST, recommendation systems, and regularization.
For these exercises we are going to build several machine learning models for the mnist_27 dataset and then build an ensemble. Each of the exercises in this comprehension check builds on the last.
Use the training set to build a model with several of the models available from the caret package. We will test out all of the following models in this exercise:
models <- c("glm", "lda", "naive_bayes", "svmLinear",
"gamboost", "gamLoess", "qda",
"knn", "kknn", "loclda", "gam",
"rf", "ranger", "wsrf", "Rborist",
"avNNet", "mlp", "monmlp",
"adaboost", "gbm",
"svmRadial", "svmRadialCost", "svmRadialSigma")We have not explained many of these, but apply them anyway using train with all the default parameters. You will likely need to install some packages. Keep in mind that you will probably get some warnings. Also, it will probably take a while to train all of the models - be patient!
Run the following code to train the various models:
library(caret)
library(dslabs)
set.seed(1)
data("mnist_27")
fits <- lapply(models, function(model){
print(model)
train(y ~ ., method = model, data = mnist_27$train)
}) ## [1] "glm"
## [1] "lda"
## [1] "naive_bayes"
## [1] "svmLinear"
## [1] "gamboost"
## [1] "gamLoess"
## [1] "qda"
## [1] "knn"
## [1] "kknn"
## [1] "loclda"
## [1] "gam"
## [1] "rf"
## note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 .
##
## [1] "ranger"
## note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 .
##
## [1] "wsrf"
## note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 .
##
## [1] "Rborist"
## note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 .
##
## [1] "avNNet"
## Fitting Repeat 1
##
## # weights: 7
## initial value 403.533539
## iter 10 value 218.513879
## iter 20 value 210.777587
## iter 30 value 210.383660
## iter 40 value 210.364859
## iter 50 value 210.360071
## final value 210.359975
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 399.175450
## iter 10 value 270.235782
## iter 20 value 210.474135
## iter 30 value 210.414166
## iter 40 value 210.367478
## iter 50 value 210.364399
## iter 60 value 210.361999
## final value 210.360762
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 400.129360
## iter 10 value 288.051653
## iter 20 value 275.606213
## iter 30 value 243.152388
## iter 40 value 227.361612
## iter 50 value 211.690758
## iter 60 value 210.609944
## iter 70 value 210.408370
## iter 80 value 210.403145
## final value 210.403004
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 412.929173
## iter 10 value 329.943178
## iter 20 value 211.256887
## iter 30 value 210.456666
## iter 40 value 210.373368
## iter 50 value 210.361964
## iter 60 value 210.361105
## iter 70 value 210.359921
## final value 210.359886
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 429.265327
## iter 10 value 340.706678
## iter 20 value 214.736322
## iter 30 value 210.422929
## iter 40 value 210.397071
## iter 50 value 210.362408
## iter 50 value 210.362406
## iter 60 value 210.361780
## iter 70 value 210.360275
## final value 210.360271
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 409.557688
## iter 10 value 270.620722
## iter 20 value 210.861150
## iter 30 value 210.416305
## iter 40 value 210.410010
## iter 50 value 210.397060
## iter 60 value 210.392276
## iter 70 value 210.379826
## iter 80 value 210.373205
## iter 90 value 210.372118
## iter 100 value 210.368982
## final value 210.368982
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 418.111453
## iter 10 value 334.033257
## iter 20 value 201.556361
## iter 30 value 160.430395
## iter 40 value 160.139076
## iter 50 value 159.701634
## iter 60 value 159.535226
## iter 70 value 159.501538
## iter 80 value 159.499649
## iter 90 value 159.441300
## iter 100 value 159.369560
## final value 159.369560
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 411.998071
## iter 10 value 220.285446
## iter 20 value 210.722638
## iter 30 value 210.400479
## iter 40 value 210.358731
## iter 50 value 209.410786
## iter 60 value 179.620373
## iter 70 value 168.006438
## iter 80 value 162.562318
## iter 90 value 161.694279
## iter 100 value 161.307734
## final value 161.307734
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 434.393495
## iter 10 value 231.547655
## iter 20 value 214.413805
## iter 30 value 209.857730
## iter 40 value 209.621086
## iter 50 value 208.949462
## iter 60 value 208.817087
## iter 70 value 208.287210
## iter 80 value 206.595663
## iter 90 value 205.768454
## iter 100 value 192.461647
## final value 192.461647
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 449.965148
## iter 10 value 314.695358
## iter 20 value 225.974089
## iter 30 value 210.879783
## iter 40 value 210.453540
## iter 50 value 210.417538
## iter 60 value 210.402497
## iter 70 value 210.393509
## iter 80 value 210.390960
## iter 90 value 210.385210
## iter 100 value 210.369880
## final value 210.369880
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 440.337273
## iter 10 value 296.286539
## iter 20 value 274.131511
## iter 30 value 239.536066
## iter 40 value 232.106630
## iter 50 value 214.596241
## iter 60 value 210.608684
## iter 70 value 210.112858
## iter 80 value 194.943289
## iter 90 value 176.425689
## iter 100 value 161.339530
## final value 161.339530
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 501.103587
## iter 10 value 303.351022
## iter 20 value 216.173904
## iter 30 value 209.557432
## iter 40 value 172.596784
## iter 50 value 162.884735
## iter 60 value 161.263587
## iter 70 value 159.893613
## iter 80 value 159.087298
## iter 90 value 158.613992
## iter 100 value 158.073939
## final value 158.073939
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 397.836520
## iter 10 value 224.071164
## iter 20 value 208.586101
## iter 30 value 172.620319
## iter 40 value 160.770659
## iter 50 value 158.811165
## iter 60 value 157.781747
## iter 70 value 157.292851
## iter 80 value 157.104609
## iter 90 value 156.910712
## iter 100 value 155.552672
## final value 155.552672
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 422.145808
## iter 10 value 264.646487
## iter 20 value 213.159856
## iter 30 value 210.495789
## iter 40 value 210.347105
## iter 50 value 210.331976
## iter 60 value 210.313194
## iter 70 value 210.291446
## iter 80 value 210.215266
## iter 90 value 209.835396
## iter 100 value 207.763011
## final value 207.763011
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 403.196973
## iter 10 value 239.197553
## iter 20 value 196.071975
## iter 30 value 174.982666
## iter 40 value 161.239803
## iter 50 value 159.857205
## iter 60 value 159.579776
## iter 70 value 158.945222
## iter 80 value 158.594489
## iter 90 value 158.276733
## iter 100 value 158.070362
## final value 158.070362
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 431.672959
## iter 10 value 347.699259
## iter 20 value 244.149146
## final value 243.821792
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 409.854803
## iter 10 value 262.690840
## iter 20 value 243.823691
## final value 243.821792
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 420.676692
## iter 10 value 358.529025
## iter 20 value 243.892322
## iter 30 value 243.821798
## final value 243.821792
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 410.475616
## iter 10 value 356.552748
## iter 20 value 244.515557
## iter 30 value 243.821850
## final value 243.821792
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 400.822323
## iter 10 value 305.876119
## iter 20 value 243.873193
## final value 243.821792
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 413.931065
## iter 10 value 251.679702
## iter 20 value 240.295026
## iter 30 value 239.845864
## iter 40 value 239.813517
## iter 50 value 239.808781
## iter 60 value 239.800120
## final value 239.799987
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 421.859293
## iter 10 value 349.290697
## iter 20 value 249.416970
## iter 30 value 245.499531
## iter 40 value 242.941103
## iter 50 value 240.363629
## iter 60 value 239.950029
## iter 70 value 239.833379
## iter 80 value 239.823204
## iter 90 value 239.801505
## final value 239.799987
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 446.956227
## iter 10 value 302.545398
## iter 20 value 252.845455
## iter 30 value 245.809660
## iter 40 value 243.835249
## iter 50 value 241.698733
## iter 60 value 239.999529
## iter 70 value 239.808173
## iter 80 value 239.800593
## iter 90 value 239.800232
## final value 239.799987
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 412.535246
## iter 10 value 289.701675
## iter 20 value 243.915665
## iter 30 value 241.075162
## iter 40 value 239.927142
## iter 50 value 239.887889
## iter 60 value 239.858744
## iter 70 value 239.802939
## final value 239.800048
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 417.492587
## iter 10 value 279.041680
## iter 20 value 240.112431
## iter 30 value 239.903246
## iter 40 value 239.888282
## iter 50 value 239.887702
## iter 60 value 239.884598
## final value 239.883704
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 423.724322
## iter 10 value 259.038313
## iter 20 value 241.810383
## iter 30 value 240.104706
## iter 40 value 239.856810
## iter 50 value 239.802812
## iter 60 value 239.709260
## iter 70 value 239.627780
## iter 80 value 239.571584
## iter 90 value 239.559555
## iter 100 value 239.555032
## final value 239.555032
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 411.298634
## iter 10 value 284.482458
## iter 20 value 247.914377
## iter 30 value 241.752683
## iter 40 value 240.563076
## iter 50 value 240.395552
## iter 60 value 239.946610
## iter 70 value 239.619774
## iter 80 value 239.598101
## iter 90 value 239.592728
## iter 100 value 239.589107
## final value 239.589107
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 415.253543
## iter 10 value 269.221581
## iter 20 value 241.523168
## iter 30 value 240.234834
## iter 40 value 239.955956
## iter 50 value 239.889454
## iter 60 value 239.813849
## iter 70 value 239.704839
## iter 80 value 239.573675
## iter 90 value 239.563852
## iter 100 value 239.556738
## final value 239.556738
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 409.758337
## iter 10 value 265.866977
## iter 20 value 240.995549
## iter 30 value 239.890806
## iter 40 value 239.762134
## iter 50 value 239.732250
## iter 60 value 239.636534
## iter 70 value 239.598717
## iter 80 value 239.570013
## iter 90 value 239.560878
## iter 100 value 239.554263
## final value 239.554263
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 416.112955
## iter 10 value 280.928644
## iter 20 value 240.845794
## iter 30 value 240.081083
## iter 40 value 239.795406
## iter 50 value 239.678196
## iter 60 value 239.642767
## iter 70 value 239.604484
## iter 80 value 239.592131
## iter 90 value 239.586621
## iter 100 value 239.583478
## final value 239.583478
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 415.096263
## iter 10 value 226.586215
## iter 20 value 210.483167
## iter 30 value 210.437309
## iter 40 value 210.414663
## iter 50 value 210.410646
## final value 210.409605
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 422.738055
## iter 10 value 273.183361
## iter 20 value 210.760057
## iter 30 value 210.464956
## iter 40 value 210.415062
## iter 40 value 210.415062
## iter 40 value 210.415062
## final value 210.415062
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 432.774841
## iter 10 value 291.337627
## iter 20 value 219.135353
## iter 30 value 211.636359
## iter 40 value 210.414098
## final value 210.404771
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 417.511126
## iter 10 value 230.974043
## iter 20 value 210.595361
## iter 30 value 210.466439
## iter 40 value 210.412967
## iter 50 value 210.410387
## final value 210.409555
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 432.312798
## iter 10 value 244.721634
## iter 20 value 210.778939
## iter 30 value 210.503394
## iter 40 value 210.424869
## iter 50 value 210.410447
## iter 60 value 210.410162
## final value 210.409567
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 429.500647
## iter 10 value 224.157968
## iter 20 value 185.365746
## iter 30 value 163.263843
## iter 40 value 161.141640
## iter 50 value 160.438531
## iter 60 value 160.363082
## iter 70 value 160.132490
## iter 80 value 159.756574
## iter 90 value 159.548297
## iter 100 value 159.445945
## final value 159.445945
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 402.739117
## iter 10 value 230.200270
## iter 20 value 211.335020
## iter 30 value 209.947487
## iter 40 value 199.256903
## iter 50 value 177.882563
## iter 60 value 167.583863
## iter 70 value 162.027491
## iter 80 value 160.551665
## iter 90 value 160.356891
## iter 100 value 160.216989
## final value 160.216989
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 398.800281
## iter 10 value 216.398483
## iter 20 value 210.646555
## iter 30 value 210.369518
## iter 40 value 209.568394
## iter 50 value 180.698957
## iter 60 value 166.792511
## iter 70 value 162.906658
## iter 80 value 161.033838
## iter 90 value 160.197767
## iter 100 value 159.950741
## final value 159.950741
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 424.530933
## iter 10 value 312.508747
## iter 20 value 299.036333
## iter 30 value 288.299078
## iter 40 value 287.674665
## iter 50 value 285.436711
## iter 60 value 279.084316
## iter 70 value 242.066935
## iter 80 value 239.670748
## iter 90 value 215.085851
## iter 100 value 213.009478
## final value 213.009478
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 399.553826
## iter 10 value 270.287737
## iter 20 value 210.406266
## iter 30 value 210.078077
## iter 40 value 191.273387
## iter 50 value 166.375161
## iter 60 value 162.751324
## iter 70 value 162.219954
## iter 80 value 161.367078
## iter 90 value 160.294637
## iter 100 value 160.015328
## final value 160.015328
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 400.114153
## iter 10 value 216.855040
## iter 20 value 166.544682
## iter 30 value 161.230150
## iter 40 value 160.437724
## iter 50 value 159.942031
## iter 60 value 159.895047
## iter 70 value 159.708500
## iter 80 value 159.472953
## iter 90 value 159.067347
## iter 100 value 158.853348
## final value 158.853348
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 421.239170
## iter 10 value 332.355254
## iter 20 value 210.511194
## iter 30 value 200.112854
## iter 40 value 168.901120
## iter 50 value 160.916759
## iter 60 value 159.696564
## iter 70 value 159.411608
## iter 80 value 159.308382
## iter 90 value 159.225282
## iter 100 value 158.876466
## final value 158.876466
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 411.635238
## iter 10 value 236.110572
## iter 20 value 218.730687
## iter 30 value 210.944716
## iter 40 value 210.526420
## iter 50 value 210.513131
## iter 60 value 210.435031
## iter 70 value 209.136386
## iter 80 value 173.539487
## iter 90 value 162.550782
## iter 100 value 160.461575
## final value 160.461575
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 426.841970
## iter 10 value 248.708968
## iter 20 value 210.726101
## iter 30 value 203.201041
## iter 40 value 161.840599
## iter 50 value 159.930238
## iter 60 value 159.254900
## iter 70 value 158.861835
## iter 80 value 158.621743
## iter 90 value 158.239118
## iter 100 value 157.893154
## final value 157.893154
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 399.568919
## iter 10 value 232.297292
## iter 20 value 165.712473
## iter 30 value 161.013634
## iter 40 value 160.385225
## iter 50 value 160.246782
## iter 60 value 160.101526
## iter 70 value 159.919704
## iter 80 value 159.700134
## iter 90 value 159.428660
## iter 100 value 159.010521
## final value 159.010521
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 413.223734
## iter 10 value 237.990325
## iter 20 value 226.648614
## iter 30 value 226.369510
## iter 40 value 226.306749
## iter 50 value 226.251310
## iter 60 value 226.246152
## iter 70 value 226.244473
## iter 80 value 226.241684
## iter 90 value 226.239572
## iter 100 value 226.236948
## final value 226.236948
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 408.205379
## iter 10 value 253.276789
## iter 20 value 234.941576
## iter 30 value 227.812313
## iter 40 value 226.362074
## iter 50 value 226.230204
## iter 60 value 226.228684
## iter 70 value 226.228196
## final value 226.226652
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 418.900155
## iter 10 value 259.683873
## iter 20 value 226.394544
## iter 30 value 226.348401
## iter 40 value 226.272337
## iter 50 value 226.251454
## iter 60 value 226.242253
## iter 70 value 226.239336
## iter 80 value 226.235701
## iter 90 value 226.230246
## iter 100 value 226.228742
## final value 226.228742
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 451.813439
## iter 10 value 364.913992
## iter 20 value 229.578191
## iter 30 value 227.405926
## iter 40 value 226.542842
## iter 50 value 226.300238
## iter 60 value 226.281284
## iter 70 value 226.262185
## iter 80 value 226.254430
## iter 90 value 226.242769
## iter 100 value 226.241474
## final value 226.241474
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 410.080169
## iter 10 value 274.070538
## iter 20 value 227.123551
## iter 30 value 226.467398
## iter 40 value 226.327769
## iter 50 value 226.272127
## iter 60 value 226.255467
## iter 70 value 226.250947
## iter 80 value 226.246610
## iter 90 value 226.243591
## iter 100 value 226.239191
## final value 226.239191
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 435.756476
## iter 10 value 327.865191
## iter 20 value 322.520568
## iter 30 value 321.985247
## iter 40 value 313.969160
## iter 50 value 258.675771
## iter 60 value 257.113424
## iter 70 value 251.810058
## iter 80 value 242.044557
## iter 90 value 229.019874
## iter 100 value 227.568562
## final value 227.568562
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 418.829043
## iter 10 value 279.032048
## iter 20 value 230.053867
## iter 30 value 226.321354
## iter 40 value 226.295695
## iter 50 value 226.254976
## iter 60 value 226.248701
## iter 70 value 226.231391
## iter 80 value 226.223705
## iter 90 value 226.216306
## iter 100 value 226.211596
## final value 226.211596
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 439.724247
## iter 10 value 255.074469
## iter 20 value 195.959706
## iter 30 value 173.937856
## iter 40 value 168.626493
## iter 50 value 167.945226
## iter 60 value 167.597949
## iter 70 value 167.508123
## iter 80 value 167.493827
## iter 90 value 167.448845
## iter 100 value 167.366428
## final value 167.366428
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 433.902393
## iter 10 value 328.218887
## iter 20 value 291.622187
## iter 30 value 273.985079
## iter 40 value 264.497711
## iter 50 value 251.105798
## iter 60 value 234.471400
## iter 70 value 229.136545
## iter 80 value 227.574949
## iter 90 value 227.031169
## iter 100 value 226.744878
## final value 226.744878
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 421.326756
## iter 10 value 242.468489
## iter 20 value 227.288105
## iter 30 value 226.480005
## iter 40 value 226.317165
## iter 50 value 226.290451
## iter 60 value 226.238635
## iter 70 value 226.230412
## iter 80 value 226.217840
## iter 90 value 226.217252
## iter 100 value 226.213197
## final value 226.213197
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 399.844436
## iter 10 value 229.901875
## iter 20 value 189.662291
## iter 30 value 173.574758
## iter 40 value 169.354920
## iter 50 value 167.998124
## iter 60 value 167.722673
## iter 70 value 167.487691
## iter 80 value 167.358469
## iter 90 value 167.273012
## iter 100 value 166.969095
## final value 166.969095
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 420.593575
## iter 10 value 255.190643
## iter 20 value 223.740503
## iter 30 value 177.120700
## iter 40 value 169.016539
## iter 50 value 167.372459
## iter 60 value 166.418523
## iter 70 value 165.502998
## iter 80 value 164.492071
## iter 90 value 163.209778
## iter 100 value 161.455742
## final value 161.455742
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 421.276926
## iter 10 value 254.651425
## iter 20 value 169.784319
## iter 30 value 166.785301
## iter 40 value 166.269789
## iter 50 value 165.463276
## iter 60 value 163.433757
## iter 70 value 162.602376
## iter 80 value 162.148198
## iter 90 value 160.984135
## iter 100 value 159.814580
## final value 159.814580
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 419.560047
## iter 10 value 280.234546
## iter 20 value 217.523561
## iter 30 value 179.786602
## iter 40 value 167.654361
## iter 50 value 166.961751
## iter 60 value 166.826717
## iter 70 value 166.789952
## iter 80 value 166.520201
## iter 90 value 165.920060
## iter 100 value 161.253841
## final value 161.253841
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 446.656533
## iter 10 value 356.947574
## iter 20 value 236.527325
## iter 30 value 226.671248
## iter 40 value 226.375965
## iter 50 value 224.145613
## iter 60 value 193.111459
## iter 70 value 170.075433
## iter 80 value 167.851388
## iter 90 value 167.617527
## iter 100 value 167.597414
## final value 167.597414
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 482.630148
## iter 10 value 298.636252
## iter 20 value 257.478019
## final value 257.068271
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 417.289932
## iter 10 value 287.952740
## iter 20 value 265.046061
## iter 30 value 256.936101
## final value 256.876898
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 419.204808
## iter 10 value 333.375787
## iter 20 value 257.406334
## iter 30 value 256.876896
## iter 30 value 256.876896
## iter 30 value 256.876896
## final value 256.876896
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 401.880772
## iter 10 value 272.052721
## iter 20 value 257.797178
## final value 257.068271
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 414.930420
## iter 10 value 341.367118
## iter 20 value 257.289580
## final value 257.068283
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 415.666957
## iter 10 value 291.017976
## iter 20 value 258.649795
## iter 30 value 256.283344
## iter 40 value 253.969303
## iter 50 value 253.372238
## iter 60 value 253.356456
## iter 70 value 253.352783
## final value 253.352768
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 397.465209
## iter 10 value 327.713773
## iter 20 value 256.507011
## iter 30 value 253.699952
## iter 40 value 253.504783
## iter 50 value 253.435678
## iter 60 value 253.414224
## iter 70 value 253.354127
## iter 80 value 253.352778
## final value 253.352765
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 404.072401
## iter 10 value 265.156434
## iter 20 value 254.566959
## iter 30 value 250.833990
## iter 40 value 248.013894
## iter 50 value 247.166635
## iter 60 value 247.144966
## final value 247.144945
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 398.547609
## iter 10 value 370.362091
## iter 20 value 260.248362
## iter 30 value 256.479093
## iter 40 value 253.564744
## iter 50 value 253.367753
## iter 60 value 253.352857
## final value 253.352760
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 424.822454
## iter 10 value 292.094821
## iter 20 value 255.192799
## iter 30 value 249.616961
## iter 40 value 248.151608
## iter 50 value 247.157320
## iter 60 value 247.060420
## iter 70 value 246.862064
## iter 80 value 246.853198
## final value 246.853152
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 438.851944
## iter 10 value 294.770415
## iter 20 value 257.401039
## iter 30 value 250.630402
## iter 40 value 249.711852
## iter 50 value 248.304953
## iter 60 value 247.834424
## iter 70 value 246.966777
## iter 80 value 246.775566
## iter 90 value 246.753383
## iter 100 value 246.743681
## final value 246.743681
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 437.707610
## iter 10 value 278.031644
## iter 20 value 253.638336
## iter 30 value 253.217152
## iter 40 value 253.136246
## iter 50 value 253.076324
## iter 60 value 253.066036
## iter 70 value 253.061627
## iter 80 value 253.057990
## iter 90 value 253.057382
## final value 253.057362
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 400.335009
## iter 10 value 303.459720
## iter 20 value 262.737749
## iter 30 value 255.691486
## iter 40 value 253.954553
## iter 50 value 253.685217
## iter 60 value 253.327398
## iter 70 value 253.188353
## iter 80 value 253.100741
## iter 90 value 253.093718
## iter 100 value 253.090088
## final value 253.090088
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 436.467528
## iter 10 value 273.134588
## iter 20 value 255.533019
## iter 30 value 254.191422
## iter 40 value 253.366821
## iter 50 value 253.285844
## iter 60 value 253.238757
## iter 70 value 253.144315
## iter 80 value 253.062253
## iter 90 value 253.057894
## iter 100 value 253.057491
## final value 253.057491
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 481.168829
## iter 10 value 265.835205
## iter 20 value 253.948991
## iter 30 value 253.620281
## iter 40 value 253.386724
## iter 50 value 253.281379
## iter 60 value 253.231227
## iter 70 value 253.120409
## iter 80 value 253.090854
## iter 90 value 253.080522
## iter 100 value 253.076298
## final value 253.076298
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 406.114930
## iter 10 value 271.886241
## iter 20 value 226.525807
## iter 30 value 226.444397
## iter 40 value 226.330361
## iter 50 value 226.319530
## iter 60 value 226.312498
## iter 70 value 226.310626
## iter 80 value 226.309681
## iter 90 value 226.308837
## iter 100 value 226.308233
## final value 226.308233
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 405.743739
## iter 10 value 233.114822
## iter 20 value 226.464130
## iter 30 value 226.391951
## iter 40 value 226.338764
## iter 50 value 226.325264
## iter 60 value 226.319274
## iter 70 value 226.315490
## iter 80 value 226.313025
## iter 90 value 226.310924
## iter 100 value 226.309862
## final value 226.309862
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 410.194374
## iter 10 value 254.619171
## iter 20 value 226.459955
## iter 30 value 226.401953
## iter 40 value 226.336739
## iter 50 value 226.324574
## iter 60 value 226.319432
## iter 70 value 226.310624
## iter 80 value 226.309253
## final value 226.309195
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 448.078122
## iter 10 value 230.197459
## iter 20 value 226.406576
## iter 30 value 226.347830
## iter 40 value 226.315711
## iter 50 value 226.306645
## iter 60 value 226.303193
## iter 70 value 226.295150
## iter 80 value 226.294322
## iter 90 value 226.294227
## final value 226.293686
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 415.502700
## iter 10 value 375.956122
## iter 20 value 337.577547
## iter 30 value 227.274729
## iter 40 value 226.385917
## iter 50 value 226.352793
## iter 60 value 226.314711
## final value 226.307330
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 479.947205
## iter 10 value 234.902070
## iter 20 value 185.275577
## iter 30 value 171.059454
## iter 40 value 168.756842
## iter 50 value 167.909281
## iter 60 value 167.681280
## iter 70 value 167.563396
## iter 80 value 167.515784
## iter 90 value 167.360537
## iter 100 value 166.602208
## final value 166.602208
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 459.207787
## iter 10 value 236.340562
## iter 20 value 227.040440
## iter 30 value 226.411322
## iter 40 value 226.269103
## iter 50 value 224.818398
## iter 60 value 190.897355
## iter 70 value 176.055576
## iter 80 value 171.781153
## iter 90 value 168.935314
## iter 100 value 167.757533
## final value 167.757533
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 397.212654
## iter 10 value 233.061387
## iter 20 value 206.207539
## iter 30 value 172.978516
## iter 40 value 168.219645
## iter 50 value 167.756399
## iter 60 value 167.290293
## iter 70 value 167.125412
## iter 80 value 167.092085
## iter 90 value 167.011550
## iter 100 value 166.849776
## final value 166.849776
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 417.835232
## iter 10 value 228.038220
## iter 20 value 226.550772
## iter 30 value 226.400608
## iter 40 value 226.386162
## iter 50 value 226.372121
## iter 60 value 226.339899
## iter 70 value 226.319572
## iter 80 value 226.258691
## iter 90 value 223.578926
## iter 100 value 177.285999
## final value 177.285999
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 400.033646
## iter 10 value 318.399136
## iter 20 value 299.708032
## iter 30 value 236.299729
## iter 40 value 192.252445
## iter 50 value 181.436227
## iter 60 value 179.159838
## iter 70 value 173.144349
## iter 80 value 169.302685
## iter 90 value 168.710994
## iter 100 value 168.581367
## final value 168.581367
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 459.697021
## iter 10 value 274.146951
## iter 20 value 222.636980
## iter 30 value 172.048687
## iter 40 value 167.985213
## iter 50 value 167.525563
## iter 60 value 167.425593
## iter 70 value 167.024759
## iter 80 value 166.933651
## iter 90 value 166.683531
## iter 100 value 166.562879
## final value 166.562879
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 426.403563
## iter 10 value 244.845873
## iter 20 value 226.827625
## iter 30 value 226.518035
## iter 40 value 226.361027
## iter 50 value 224.963267
## iter 60 value 203.408609
## iter 70 value 171.868845
## iter 80 value 168.520754
## iter 90 value 167.959585
## iter 100 value 167.885362
## final value 167.885362
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 442.104770
## iter 10 value 268.980075
## iter 20 value 225.419307
## iter 30 value 185.922734
## iter 40 value 170.758226
## iter 50 value 168.363220
## iter 60 value 167.234823
## iter 70 value 167.059050
## iter 80 value 166.793918
## iter 90 value 166.366281
## iter 100 value 165.164202
## final value 165.164202
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 404.711962
## iter 10 value 242.156719
## iter 20 value 227.071420
## iter 30 value 206.454826
## iter 40 value 177.633575
## iter 50 value 172.597410
## iter 60 value 169.782209
## iter 70 value 168.283037
## iter 80 value 167.096062
## iter 90 value 165.813126
## iter 100 value 164.095945
## final value 164.095945
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 412.985297
## iter 10 value 237.020859
## iter 20 value 227.296707
## iter 30 value 225.675643
## iter 40 value 178.334938
## iter 50 value 169.415665
## iter 60 value 168.342493
## iter 70 value 167.839509
## iter 80 value 167.566922
## iter 90 value 167.474565
## iter 100 value 167.120806
## final value 167.120806
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 415.348371
## iter 10 value 342.467259
## iter 20 value 262.045414
## iter 30 value 260.575216
## final value 260.574378
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 433.372223
## iter 10 value 275.051717
## iter 20 value 260.787731
## iter 30 value 260.613824
## iter 40 value 260.572469
## final value 260.564476
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 428.544987
## iter 10 value 262.278565
## iter 20 value 260.882520
## iter 30 value 260.635451
## iter 40 value 260.618022
## iter 50 value 260.580951
## iter 60 value 260.565006
## final value 260.564479
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 409.219724
## iter 10 value 276.730635
## iter 20 value 260.618747
## iter 30 value 260.565980
## final value 260.564477
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 413.954078
## iter 10 value 319.831919
## iter 20 value 270.096318
## iter 30 value 267.565754
## iter 40 value 264.715743
## iter 50 value 261.150947
## iter 60 value 260.595519
## iter 70 value 260.564708
## final value 260.564550
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 444.327913
## iter 10 value 299.765814
## iter 20 value 260.793662
## iter 30 value 233.193680
## iter 40 value 189.467926
## iter 50 value 188.674647
## iter 60 value 188.497886
## iter 70 value 188.463641
## iter 80 value 188.410040
## iter 90 value 188.356884
## iter 100 value 188.230422
## final value 188.230422
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 411.322562
## iter 10 value 316.039440
## iter 20 value 260.548680
## iter 30 value 249.668072
## iter 40 value 197.493328
## iter 50 value 190.857302
## iter 60 value 188.337407
## iter 70 value 187.659316
## iter 80 value 187.566896
## iter 90 value 187.434976
## iter 100 value 187.166100
## final value 187.166100
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 444.553104
## iter 10 value 307.725598
## iter 20 value 261.291605
## iter 30 value 260.712679
## iter 40 value 260.675284
## iter 50 value 260.596247
## iter 60 value 229.074438
## iter 70 value 188.919252
## iter 80 value 188.789005
## iter 90 value 188.663705
## iter 100 value 188.622345
## final value 188.622345
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 433.148542
## iter 10 value 331.605809
## iter 20 value 260.615470
## iter 30 value 249.322859
## iter 40 value 191.215338
## iter 50 value 188.522816
## iter 60 value 188.422226
## iter 70 value 188.314864
## iter 80 value 188.069797
## iter 90 value 187.818522
## iter 100 value 187.676656
## final value 187.676656
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 406.199272
## iter 10 value 308.846806
## iter 20 value 260.356401
## iter 30 value 207.459909
## iter 40 value 194.368865
## iter 50 value 190.886502
## iter 60 value 189.156249
## iter 70 value 188.844865
## iter 80 value 188.830156
## iter 90 value 188.776861
## iter 100 value 188.688642
## final value 188.688642
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 408.577827
## iter 10 value 268.075459
## iter 20 value 260.657678
## iter 30 value 257.917257
## iter 40 value 196.608854
## iter 50 value 188.904804
## iter 60 value 187.916985
## iter 70 value 187.765131
## iter 80 value 187.555175
## iter 90 value 187.232064
## iter 100 value 187.163648
## final value 187.163648
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 437.037948
## iter 10 value 300.254538
## iter 20 value 260.659829
## iter 30 value 260.380193
## iter 40 value 238.287625
## iter 50 value 194.889660
## iter 60 value 190.979197
## iter 70 value 188.852884
## iter 80 value 188.409627
## iter 90 value 188.097304
## iter 100 value 187.445259
## final value 187.445259
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 439.838705
## iter 10 value 348.113780
## iter 20 value 261.415648
## iter 30 value 212.414521
## iter 40 value 192.031480
## iter 50 value 188.703766
## iter 60 value 187.926861
## iter 70 value 187.513308
## iter 80 value 187.390943
## iter 90 value 187.174727
## iter 100 value 186.697995
## final value 186.697995
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 486.471628
## iter 10 value 279.672170
## iter 20 value 260.893762
## iter 30 value 233.664020
## iter 40 value 194.294475
## iter 50 value 188.827682
## iter 60 value 187.792958
## iter 70 value 186.714347
## iter 80 value 184.487807
## iter 90 value 182.571298
## iter 100 value 181.576387
## final value 181.576387
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 443.409520
## iter 10 value 265.359960
## iter 20 value 260.523898
## iter 30 value 233.241468
## iter 40 value 189.130075
## iter 50 value 188.161578
## iter 60 value 187.607511
## iter 70 value 187.314096
## iter 80 value 187.025294
## iter 90 value 186.523054
## iter 100 value 185.939163
## final value 185.939163
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 425.410079
## iter 10 value 340.729038
## iter 20 value 286.338520
## final value 286.257536
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 424.746528
## iter 10 value 290.914869
## iter 20 value 286.258759
## final value 286.257536
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 411.144141
## iter 10 value 369.056583
## iter 20 value 286.267169
## final value 286.257538
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 436.694733
## iter 10 value 377.123870
## iter 20 value 286.304366
## final value 286.257536
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 426.448371
## iter 10 value 300.902411
## iter 20 value 286.259006
## final value 286.257603
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 409.027504
## iter 10 value 303.281635
## iter 20 value 288.538097
## iter 30 value 286.153614
## iter 40 value 284.672602
## iter 50 value 282.124104
## iter 60 value 271.626441
## iter 70 value 270.583220
## iter 80 value 270.529922
## final value 270.528347
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 410.351530
## iter 10 value 319.709394
## iter 20 value 284.497344
## iter 30 value 284.054573
## iter 40 value 283.385731
## iter 50 value 283.263581
## iter 60 value 283.262626
## final value 283.261304
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 465.109832
## iter 10 value 374.201779
## iter 20 value 285.857395
## iter 30 value 283.466794
## iter 40 value 283.252641
## iter 50 value 283.213597
## iter 60 value 283.208438
## final value 283.205256
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 426.997214
## iter 10 value 337.332744
## iter 20 value 287.349004
## iter 30 value 285.306513
## iter 40 value 284.067374
## iter 50 value 283.280457
## iter 60 value 283.269689
## final value 283.269673
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 414.185445
## iter 10 value 345.276436
## iter 20 value 287.873622
## iter 30 value 285.147224
## iter 40 value 283.956227
## iter 50 value 283.269375
## iter 60 value 283.258039
## iter 70 value 283.238991
## iter 80 value 283.227961
## iter 90 value 283.210847
## iter 100 value 283.205263
## final value 283.205263
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 412.067844
## iter 10 value 308.398566
## iter 20 value 290.599324
## iter 30 value 286.982173
## iter 40 value 284.220122
## iter 50 value 275.459607
## iter 60 value 272.944816
## iter 70 value 270.477292
## iter 80 value 270.234372
## iter 90 value 270.213110
## iter 100 value 270.204441
## final value 270.204441
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 407.081480
## iter 10 value 307.215417
## iter 20 value 284.811914
## iter 30 value 283.822436
## iter 40 value 283.374961
## iter 50 value 283.237873
## iter 60 value 283.155375
## iter 70 value 283.068697
## iter 80 value 283.050250
## iter 90 value 283.049824
## final value 283.049224
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 405.088020
## iter 10 value 303.693784
## iter 20 value 285.937563
## iter 30 value 284.325759
## iter 40 value 283.688008
## iter 50 value 283.399776
## iter 60 value 283.293094
## iter 70 value 283.209380
## iter 80 value 283.094488
## iter 90 value 283.049405
## iter 100 value 283.034776
## final value 283.034776
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 416.548948
## iter 10 value 303.201115
## iter 20 value 286.114052
## iter 30 value 284.094495
## iter 40 value 283.815817
## iter 50 value 283.450434
## iter 60 value 283.261921
## iter 70 value 283.180824
## iter 80 value 283.058492
## iter 90 value 283.042063
## iter 100 value 283.033823
## final value 283.033823
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 498.256370
## iter 10 value 326.903816
## iter 20 value 288.639610
## iter 30 value 282.430803
## iter 40 value 277.300653
## iter 50 value 276.154777
## iter 60 value 274.401881
## iter 70 value 272.381922
## iter 80 value 270.882529
## iter 90 value 270.296752
## iter 100 value 270.270332
## final value 270.270332
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 409.618868
## iter 10 value 279.463086
## iter 20 value 260.731249
## iter 30 value 260.612003
## iter 40 value 260.598230
## final value 260.598223
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 422.648241
## iter 10 value 287.573508
## iter 20 value 260.822145
## iter 30 value 260.599143
## iter 40 value 260.596344
## final value 260.596212
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 410.414360
## iter 10 value 334.157600
## iter 20 value 261.152921
## iter 30 value 260.605595
## final value 260.596217
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 414.184356
## iter 10 value 273.123103
## iter 20 value 261.432220
## iter 30 value 260.601126
## iter 40 value 260.597103
## final value 260.596212
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 449.105311
## iter 10 value 296.347948
## iter 20 value 260.941768
## iter 30 value 260.602161
## final value 260.598158
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 401.935707
## iter 10 value 278.652898
## iter 20 value 261.187275
## iter 30 value 248.045773
## iter 40 value 215.784653
## iter 50 value 193.141288
## iter 60 value 188.756067
## iter 70 value 188.086117
## iter 80 value 188.017612
## iter 90 value 187.655469
## iter 100 value 187.351811
## final value 187.351811
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 400.458162
## iter 10 value 277.786610
## iter 20 value 260.936462
## iter 30 value 260.653452
## iter 40 value 260.618326
## iter 50 value 260.615685
## iter 60 value 260.605834
## iter 70 value 260.597761
## iter 80 value 259.849346
## iter 90 value 221.799872
## iter 100 value 196.108132
## final value 196.108132
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 457.054676
## iter 10 value 310.193442
## iter 20 value 264.580050
## iter 30 value 260.809590
## iter 40 value 259.587564
## iter 50 value 224.712891
## iter 60 value 189.121305
## iter 70 value 188.596663
## iter 80 value 187.854074
## iter 90 value 186.866331
## iter 100 value 186.062035
## final value 186.062035
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 423.584118
## iter 10 value 358.854394
## iter 20 value 262.159876
## iter 30 value 260.595692
## iter 40 value 260.523835
## iter 50 value 232.310569
## iter 60 value 203.183966
## iter 70 value 192.884533
## iter 80 value 191.429491
## iter 90 value 189.537625
## iter 100 value 189.043380
## final value 189.043380
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 411.290519
## iter 10 value 269.703841
## iter 20 value 260.232538
## iter 30 value 240.848256
## iter 40 value 197.045130
## iter 50 value 191.447189
## iter 60 value 189.076140
## iter 70 value 188.413880
## iter 80 value 188.176191
## iter 90 value 188.083533
## iter 100 value 187.960477
## final value 187.960477
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 421.788960
## iter 10 value 310.141447
## iter 20 value 258.890352
## iter 30 value 201.832142
## iter 40 value 189.072876
## iter 50 value 188.692479
## iter 60 value 187.917295
## iter 70 value 187.055294
## iter 80 value 186.531284
## iter 90 value 185.657418
## iter 100 value 184.156428
## final value 184.156428
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 420.109448
## iter 10 value 276.758543
## iter 20 value 261.135495
## iter 30 value 212.090411
## iter 40 value 190.063601
## iter 50 value 189.102782
## iter 60 value 189.041008
## iter 70 value 188.960333
## iter 80 value 188.853475
## iter 90 value 188.645238
## iter 100 value 188.124035
## final value 188.124035
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 441.888773
## iter 10 value 288.195177
## iter 20 value 260.769853
## iter 30 value 260.225420
## iter 40 value 250.159128
## iter 50 value 191.899513
## iter 60 value 189.352947
## iter 70 value 188.853333
## iter 80 value 188.294451
## iter 90 value 187.700432
## iter 100 value 187.224844
## final value 187.224844
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 404.287963
## iter 10 value 268.982892
## iter 20 value 195.485838
## iter 30 value 188.804841
## iter 40 value 188.659847
## iter 50 value 188.597510
## iter 60 value 188.579990
## iter 70 value 188.554525
## iter 80 value 188.518989
## iter 90 value 188.395846
## iter 100 value 188.018986
## final value 188.018986
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 450.973884
## iter 10 value 292.340006
## iter 20 value 260.249442
## iter 30 value 214.090099
## iter 40 value 188.833047
## iter 50 value 188.152666
## iter 60 value 187.860884
## iter 70 value 187.434455
## iter 80 value 186.781852
## iter 90 value 186.708977
## iter 100 value 186.242042
## final value 186.242042
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 415.101533
## iter 10 value 311.199359
## iter 20 value 213.752995
## iter 30 value 210.056720
## iter 40 value 209.629643
## iter 50 value 209.593287
## iter 60 value 209.553453
## iter 70 value 209.523690
## iter 80 value 209.506866
## iter 90 value 209.494377
## iter 100 value 209.491087
## final value 209.491087
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 442.225272
## iter 10 value 366.660341
## iter 20 value 210.100735
## iter 30 value 209.688810
## iter 40 value 209.635671
## iter 50 value 209.593747
## iter 60 value 209.554563
## iter 70 value 209.535529
## iter 80 value 209.521432
## iter 90 value 209.510123
## final value 209.508494
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 407.663765
## iter 10 value 213.487907
## iter 20 value 209.568417
## iter 30 value 209.512825
## iter 40 value 209.510640
## iter 50 value 209.489099
## iter 60 value 209.482039
## iter 70 value 209.481246
## iter 80 value 209.469123
## iter 90 value 209.466137
## final value 209.465793
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 411.989183
## iter 10 value 255.553305
## iter 20 value 223.148234
## iter 30 value 221.746832
## iter 40 value 213.298012
## iter 50 value 211.003759
## iter 60 value 209.929767
## iter 70 value 209.647426
## iter 80 value 209.617290
## iter 90 value 209.545840
## iter 100 value 209.534545
## final value 209.534545
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 407.781917
## iter 10 value 211.306604
## iter 20 value 209.892532
## iter 30 value 209.712887
## iter 40 value 209.586332
## iter 50 value 209.570743
## iter 60 value 209.558587
## iter 70 value 209.537139
## iter 80 value 209.516763
## iter 90 value 209.511976
## iter 100 value 209.507535
## final value 209.507535
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 446.535458
## iter 10 value 290.577853
## iter 20 value 230.759552
## iter 30 value 223.474164
## iter 40 value 220.384237
## iter 50 value 212.819742
## iter 60 value 211.329850
## iter 70 value 210.804733
## iter 80 value 209.317279
## iter 90 value 208.648461
## iter 100 value 207.285929
## final value 207.285929
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 403.341393
## iter 10 value 240.745174
## iter 20 value 196.658688
## iter 30 value 173.559507
## iter 40 value 170.343521
## iter 50 value 169.305697
## iter 60 value 166.370031
## iter 70 value 163.926655
## iter 80 value 163.715944
## iter 90 value 163.364518
## iter 100 value 163.161922
## final value 163.161922
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 410.178736
## iter 10 value 212.933555
## iter 20 value 209.483868
## iter 30 value 182.910447
## iter 40 value 175.193125
## iter 50 value 171.156832
## iter 60 value 168.936177
## iter 70 value 167.998121
## iter 80 value 167.776883
## iter 90 value 167.641112
## iter 100 value 167.536844
## final value 167.536844
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 469.058940
## iter 10 value 250.169089
## iter 20 value 205.305708
## iter 30 value 176.284649
## iter 40 value 165.068201
## iter 50 value 164.140534
## iter 60 value 163.338384
## iter 70 value 163.072216
## iter 80 value 162.948059
## iter 90 value 162.824514
## iter 100 value 162.673424
## final value 162.673424
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 418.369672
## iter 10 value 290.889915
## iter 20 value 274.348883
## iter 30 value 243.160467
## iter 40 value 235.593799
## iter 50 value 216.151072
## iter 60 value 211.502959
## iter 70 value 210.001306
## iter 80 value 209.567845
## final value 209.538912
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 422.423863
## iter 10 value 295.622894
## iter 20 value 196.291300
## iter 30 value 172.082787
## iter 40 value 166.248934
## iter 50 value 164.583570
## iter 60 value 163.618109
## iter 70 value 163.289426
## iter 80 value 162.978905
## iter 90 value 162.769919
## iter 100 value 162.617540
## final value 162.617540
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 427.465352
## iter 10 value 269.851361
## iter 20 value 213.743889
## iter 30 value 209.956156
## iter 40 value 209.573044
## iter 50 value 208.848487
## iter 60 value 195.784643
## iter 70 value 168.032974
## iter 80 value 165.891991
## iter 90 value 164.610177
## iter 100 value 163.409299
## final value 163.409299
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 507.581483
## iter 10 value 311.153087
## iter 20 value 299.009574
## iter 30 value 295.565276
## iter 40 value 273.361010
## iter 50 value 270.346558
## iter 60 value 269.590242
## iter 70 value 262.695652
## iter 80 value 219.298980
## iter 90 value 188.437177
## iter 100 value 180.872650
## final value 180.872650
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 427.363003
## iter 10 value 257.490931
## iter 20 value 207.017317
## iter 30 value 173.649237
## iter 40 value 166.830523
## iter 50 value 164.702281
## iter 60 value 163.526068
## iter 70 value 163.306313
## iter 80 value 162.898617
## iter 90 value 162.564071
## iter 100 value 162.278739
## final value 162.278739
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 447.466870
## iter 10 value 271.663034
## iter 20 value 209.619743
## iter 30 value 209.465866
## iter 40 value 209.021369
## iter 50 value 199.701843
## iter 60 value 176.343508
## iter 70 value 169.946550
## iter 80 value 168.800587
## iter 90 value 167.501177
## iter 100 value 166.628661
## final value 166.628661
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 437.065396
## iter 10 value 337.984971
## iter 20 value 244.637732
## iter 30 value 244.625372
## final value 244.625358
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 412.760483
## iter 10 value 250.866354
## iter 20 value 244.290915
## final value 244.066122
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 413.141334
## iter 10 value 251.568219
## final value 244.625400
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 417.600088
## iter 10 value 245.493993
## final value 244.066122
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 405.605992
## iter 10 value 271.481865
## iter 20 value 244.626013
## final value 244.625356
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 451.109217
## iter 10 value 264.651686
## iter 20 value 243.733482
## iter 30 value 240.772277
## iter 40 value 240.422700
## iter 50 value 240.383959
## iter 60 value 240.324676
## iter 70 value 240.320012
## final value 240.320006
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 400.942469
## iter 10 value 301.685863
## iter 20 value 246.772565
## iter 30 value 243.430121
## iter 40 value 242.177075
## iter 50 value 240.429933
## iter 60 value 240.332942
## iter 70 value 240.322406
## iter 80 value 240.320148
## iter 90 value 240.320004
## final value 240.319989
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 400.773762
## iter 10 value 265.839672
## iter 20 value 241.164055
## iter 30 value 240.471201
## iter 40 value 240.438668
## iter 50 value 240.422936
## iter 60 value 240.399107
## iter 70 value 240.322647
## final value 240.320010
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 436.580706
## iter 10 value 259.817664
## iter 20 value 241.860153
## iter 30 value 240.674305
## iter 40 value 240.437247
## iter 50 value 240.428647
## iter 60 value 240.414803
## iter 70 value 240.405663
## final value 240.405632
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 411.430317
## iter 10 value 265.187743
## iter 20 value 245.493035
## iter 30 value 242.852514
## iter 40 value 241.269590
## iter 50 value 240.448856
## iter 60 value 240.440120
## iter 70 value 240.434585
## iter 80 value 240.410574
## iter 90 value 240.339237
## iter 100 value 240.320211
## final value 240.320211
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 403.634029
## iter 10 value 271.357343
## iter 20 value 245.807130
## iter 30 value 241.433799
## iter 40 value 240.586191
## iter 50 value 240.210561
## iter 60 value 240.159720
## iter 70 value 240.069542
## iter 80 value 240.052974
## iter 90 value 240.034081
## iter 100 value 240.015106
## final value 240.015106
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 419.799301
## iter 10 value 273.217185
## iter 20 value 247.946049
## iter 30 value 244.786241
## iter 40 value 242.894157
## iter 50 value 241.413956
## iter 60 value 240.368697
## iter 70 value 240.141829
## iter 80 value 240.043127
## iter 90 value 240.026813
## iter 100 value 240.018432
## final value 240.018432
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 418.533360
## iter 10 value 272.755000
## iter 20 value 244.116597
## iter 30 value 241.480856
## iter 40 value 240.698672
## iter 50 value 240.434262
## iter 60 value 240.162858
## iter 70 value 240.065652
## iter 80 value 240.045747
## iter 90 value 240.023925
## iter 100 value 240.015347
## final value 240.015347
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 402.023343
## iter 10 value 296.735941
## iter 20 value 240.979015
## iter 30 value 240.336619
## iter 40 value 240.171879
## iter 50 value 240.071946
## iter 60 value 240.056822
## iter 70 value 240.051361
## iter 80 value 240.035144
## iter 90 value 240.023180
## iter 100 value 240.015134
## final value 240.015134
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 422.981019
## iter 10 value 356.697750
## iter 20 value 253.547630
## iter 30 value 241.981997
## iter 40 value 240.724444
## iter 50 value 240.557811
## iter 60 value 240.453832
## iter 70 value 240.288478
## iter 80 value 240.073429
## iter 90 value 240.059449
## iter 100 value 240.051653
## final value 240.051653
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 417.717786
## iter 10 value 320.722835
## iter 20 value 210.987572
## iter 30 value 209.863573
## iter 40 value 209.702206
## iter 50 value 209.642812
## iter 60 value 209.630002
## final value 209.629969
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 436.689468
## iter 10 value 379.490849
## iter 20 value 210.252576
## iter 30 value 209.790452
## iter 40 value 209.627918
## iter 50 value 209.606172
## iter 60 value 209.599098
## iter 70 value 209.594604
## iter 80 value 209.592059
## iter 90 value 209.591275
## iter 100 value 209.590202
## final value 209.590202
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 426.800719
## iter 10 value 355.691082
## iter 20 value 210.632838
## iter 30 value 210.166014
## iter 40 value 209.744870
## iter 50 value 209.646998
## iter 60 value 209.634973
## iter 70 value 209.632352
## iter 80 value 209.630371
## iter 90 value 209.627848
## iter 100 value 209.625025
## final value 209.625025
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 406.177517
## iter 10 value 351.396176
## iter 20 value 322.423652
## iter 30 value 320.616184
## iter 40 value 315.401050
## iter 50 value 295.349013
## iter 60 value 240.791209
## iter 70 value 239.491300
## iter 80 value 232.939736
## iter 90 value 220.971390
## iter 100 value 214.876172
## final value 214.876172
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 412.281591
## iter 10 value 214.805836
## iter 20 value 210.026320
## iter 30 value 209.792579
## iter 40 value 209.678337
## iter 50 value 209.651337
## iter 60 value 209.635571
## iter 70 value 209.625024
## iter 80 value 209.624289
## iter 80 value 209.624288
## iter 80 value 209.624288
## final value 209.624288
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 406.403014
## iter 10 value 299.029284
## iter 20 value 240.291055
## iter 30 value 217.189457
## iter 40 value 210.194975
## iter 50 value 184.799165
## iter 60 value 173.881650
## iter 70 value 170.642443
## iter 80 value 169.059972
## iter 90 value 168.515844
## iter 100 value 168.464187
## final value 168.464187
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 416.709347
## iter 10 value 344.167056
## iter 20 value 209.958834
## iter 30 value 209.702818
## iter 40 value 193.685695
## iter 50 value 173.021670
## iter 60 value 170.262833
## iter 70 value 168.864823
## iter 80 value 168.755279
## iter 90 value 168.531060
## iter 100 value 168.410966
## final value 168.410966
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 461.073856
## iter 10 value 291.069916
## iter 20 value 224.077079
## iter 30 value 207.956458
## iter 40 value 205.012811
## iter 50 value 192.526017
## iter 60 value 189.857373
## iter 70 value 184.041666
## iter 80 value 179.934006
## iter 90 value 176.319429
## iter 100 value 170.168120
## final value 170.168120
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 433.869123
## iter 10 value 232.250558
## iter 20 value 208.219189
## iter 30 value 198.929601
## iter 40 value 181.094692
## iter 50 value 174.828768
## iter 60 value 168.866543
## iter 70 value 165.609019
## iter 80 value 164.470319
## iter 90 value 163.779160
## iter 100 value 163.457805
## final value 163.457805
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 428.776965
## iter 10 value 255.155820
## iter 20 value 209.933994
## iter 30 value 189.407631
## iter 40 value 172.984685
## iter 50 value 169.687909
## iter 60 value 168.867135
## iter 70 value 168.547970
## iter 80 value 168.419127
## iter 90 value 168.290893
## iter 100 value 168.271687
## final value 168.271687
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 420.143902
## iter 10 value 223.109012
## iter 20 value 210.554581
## iter 30 value 209.769389
## iter 40 value 209.709793
## iter 50 value 209.524348
## iter 60 value 209.390456
## iter 70 value 207.413041
## iter 80 value 186.147460
## iter 90 value 176.509679
## iter 100 value 172.557553
## final value 172.557553
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 487.936170
## iter 10 value 215.075126
## iter 20 value 209.698466
## iter 30 value 191.838294
## iter 40 value 168.107306
## iter 50 value 165.649073
## iter 60 value 163.605694
## iter 70 value 163.499778
## iter 80 value 163.379676
## iter 90 value 163.100870
## iter 100 value 162.849093
## final value 162.849093
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 426.799715
## iter 10 value 254.312572
## iter 20 value 209.478101
## iter 30 value 190.655008
## iter 40 value 166.816269
## iter 50 value 164.373433
## iter 60 value 163.845442
## iter 70 value 163.336915
## iter 80 value 163.258049
## iter 90 value 163.106551
## iter 100 value 163.060435
## final value 163.060435
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 425.777549
## iter 10 value 230.049145
## iter 20 value 203.921576
## iter 30 value 172.328973
## iter 40 value 164.842064
## iter 50 value 163.555709
## iter 60 value 163.348962
## iter 70 value 163.266113
## iter 80 value 163.186430
## iter 90 value 163.006780
## iter 100 value 162.896155
## final value 162.896155
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 417.710553
## iter 10 value 240.644554
## iter 20 value 211.039766
## iter 30 value 181.864000
## iter 40 value 171.519494
## iter 50 value 167.564845
## iter 60 value 164.631116
## iter 70 value 164.030886
## iter 80 value 163.348907
## iter 90 value 163.096554
## iter 100 value 162.935541
## final value 162.935541
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 408.262650
## iter 10 value 249.576011
## iter 20 value 224.936001
## iter 30 value 224.068433
## final value 224.065000
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 438.610223
## iter 10 value 226.508372
## iter 20 value 224.212468
## iter 30 value 224.076702
## iter 40 value 224.061356
## final value 224.060112
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 399.085541
## iter 10 value 305.014226
## iter 20 value 231.781301
## iter 30 value 224.633943
## iter 40 value 224.144491
## iter 50 value 224.061953
## final value 224.060680
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 440.400290
## iter 10 value 320.428512
## iter 20 value 311.336558
## iter 30 value 311.048903
## iter 40 value 310.651748
## iter 50 value 310.144666
## iter 60 value 310.131324
## iter 70 value 310.127218
## iter 80 value 310.082964
## iter 90 value 310.078660
## iter 100 value 310.075882
## final value 310.075882
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 398.337398
## iter 10 value 290.429717
## iter 20 value 228.776835
## iter 30 value 224.105361
## iter 40 value 224.083379
## iter 50 value 224.060150
## final value 224.060144
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 415.996609
## iter 10 value 284.928193
## iter 20 value 224.156536
## iter 30 value 223.357257
## iter 40 value 176.462967
## iter 50 value 162.329352
## iter 60 value 161.837127
## iter 70 value 161.668294
## iter 80 value 161.522176
## iter 90 value 161.409988
## iter 100 value 161.073675
## final value 161.073675
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 431.504202
## iter 10 value 282.340062
## iter 20 value 222.369799
## iter 30 value 179.209993
## iter 40 value 164.542287
## iter 50 value 164.052266
## iter 60 value 163.620949
## iter 70 value 163.365173
## iter 80 value 163.117528
## iter 90 value 163.079645
## iter 100 value 163.013131
## final value 163.013131
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 396.109916
## iter 10 value 327.107972
## iter 20 value 320.863316
## iter 30 value 312.378446
## iter 40 value 310.790611
## iter 50 value 310.439209
## iter 60 value 310.233652
## iter 70 value 310.133349
## iter 80 value 310.076433
## iter 90 value 310.069108
## iter 100 value 310.011149
## final value 310.011149
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 422.227193
## iter 10 value 278.858368
## iter 20 value 235.585801
## iter 30 value 225.138338
## iter 40 value 224.214590
## iter 50 value 224.085742
## iter 60 value 224.084122
## iter 70 value 224.067361
## final value 224.061072
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 476.445134
## iter 10 value 277.704166
## iter 20 value 225.614227
## iter 30 value 224.193535
## iter 40 value 224.089293
## iter 50 value 224.077232
## iter 60 value 224.072412
## iter 70 value 224.060971
## iter 80 value 224.060122
## iter 90 value 224.059855
## final value 224.059598
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 422.312536
## iter 10 value 254.097159
## iter 20 value 217.420647
## iter 30 value 167.886478
## iter 40 value 161.744956
## iter 50 value 161.500302
## iter 60 value 161.391248
## iter 70 value 161.351363
## iter 80 value 161.145479
## iter 90 value 160.516014
## iter 100 value 159.724756
## final value 159.724756
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 445.188215
## iter 10 value 282.031761
## iter 20 value 231.136795
## iter 30 value 223.221761
## iter 40 value 183.430930
## iter 50 value 173.957246
## iter 60 value 170.560951
## iter 70 value 166.705365
## iter 80 value 164.394735
## iter 90 value 163.432460
## iter 100 value 163.112128
## final value 163.112128
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 445.101939
## iter 10 value 323.330776
## iter 20 value 225.209757
## iter 30 value 221.685386
## iter 40 value 174.941807
## iter 50 value 163.280187
## iter 60 value 162.069166
## iter 70 value 161.451301
## iter 80 value 161.436892
## iter 90 value 161.422962
## iter 100 value 161.413587
## final value 161.413587
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 454.462432
## iter 10 value 361.588905
## iter 20 value 233.218302
## iter 30 value 218.985118
## iter 40 value 164.477129
## iter 50 value 163.843505
## iter 60 value 163.173401
## iter 70 value 162.893151
## iter 80 value 162.767885
## iter 90 value 161.893640
## iter 100 value 161.487670
## final value 161.487670
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 412.155280
## iter 10 value 230.558379
## iter 20 value 223.985882
## iter 30 value 223.572382
## iter 40 value 199.337682
## iter 50 value 164.537431
## iter 60 value 162.105956
## iter 70 value 161.556225
## iter 80 value 161.154328
## iter 90 value 159.618654
## iter 100 value 159.230308
## final value 159.230308
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 400.295844
## iter 10 value 298.050115
## iter 20 value 255.441672
## final value 254.987470
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 430.487568
## iter 10 value 332.473905
## iter 20 value 259.539549
## iter 30 value 254.987472
## iter 30 value 254.987470
## iter 30 value 254.987470
## final value 254.987470
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 411.899277
## iter 10 value 256.134235
## iter 20 value 255.028602
## final value 255.005694
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 408.886854
## iter 10 value 276.067130
## iter 20 value 255.035766
## final value 255.005694
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 425.460854
## iter 10 value 302.738905
## iter 20 value 255.011453
## final value 255.005695
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 401.683551
## iter 10 value 292.398966
## iter 20 value 259.746582
## iter 30 value 256.110149
## iter 40 value 254.035007
## iter 50 value 251.987480
## iter 60 value 251.519411
## iter 70 value 251.503017
## iter 80 value 251.498195
## iter 90 value 251.451943
## iter 100 value 251.443372
## final value 251.443372
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 415.147167
## iter 10 value 286.447668
## iter 20 value 257.805825
## iter 30 value 256.289474
## iter 40 value 252.001404
## iter 50 value 251.462878
## iter 60 value 251.443291
## iter 70 value 251.443145
## final value 251.443133
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 416.007378
## iter 10 value 272.795274
## iter 20 value 257.183278
## iter 30 value 255.647468
## iter 40 value 252.816816
## iter 50 value 251.549257
## iter 60 value 251.509996
## iter 70 value 251.484061
## iter 80 value 251.467657
## iter 90 value 251.452295
## final value 251.443124
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 422.260135
## iter 10 value 304.125043
## iter 20 value 251.937584
## iter 30 value 251.720745
## iter 40 value 251.518059
## iter 50 value 251.498611
## iter 60 value 251.472561
## iter 70 value 251.468076
## final value 251.468066
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 425.129243
## iter 10 value 344.010174
## iter 20 value 259.382788
## iter 30 value 252.844393
## iter 40 value 251.840186
## iter 50 value 251.446863
## final value 251.443229
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 494.157581
## iter 10 value 269.564804
## iter 20 value 255.628700
## iter 30 value 253.278294
## iter 40 value 251.626846
## iter 50 value 251.522321
## iter 60 value 251.490149
## iter 70 value 251.424523
## iter 80 value 251.235408
## iter 90 value 251.181279
## iter 100 value 251.171706
## final value 251.171706
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 444.171842
## iter 10 value 275.130250
## iter 20 value 251.917271
## iter 30 value 251.528145
## iter 40 value 251.423787
## iter 50 value 251.301509
## iter 60 value 251.233113
## iter 70 value 251.194282
## iter 80 value 251.172238
## iter 90 value 251.170103
## final value 251.170031
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 421.100596
## iter 10 value 314.083933
## iter 20 value 254.877631
## iter 30 value 253.339072
## iter 40 value 252.169983
## iter 50 value 251.557974
## iter 60 value 251.387117
## iter 70 value 251.299634
## iter 80 value 251.203477
## iter 90 value 251.181502
## iter 100 value 251.172602
## final value 251.172602
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 423.472254
## iter 10 value 326.328717
## iter 20 value 254.375355
## iter 30 value 251.599505
## iter 40 value 251.517535
## iter 50 value 251.509553
## iter 60 value 251.449112
## iter 70 value 251.330411
## iter 80 value 251.226162
## iter 90 value 251.197606
## iter 100 value 251.191591
## final value 251.191591
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 413.804564
## iter 10 value 286.513521
## iter 20 value 260.017125
## iter 30 value 255.331129
## iter 40 value 254.027283
## iter 50 value 252.593937
## iter 60 value 251.647810
## iter 70 value 251.242053
## iter 80 value 251.188692
## iter 90 value 251.182065
## iter 100 value 251.171218
## final value 251.171218
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 400.632364
## iter 10 value 270.740077
## iter 20 value 246.820847
## iter 30 value 243.033997
## iter 40 value 241.983952
## iter 50 value 240.525160
## iter 60 value 234.718972
## iter 70 value 226.602471
## iter 80 value 224.317915
## iter 90 value 224.152071
## iter 100 value 224.100124
## final value 224.100124
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 419.008963
## iter 10 value 355.213091
## iter 20 value 224.247405
## iter 30 value 224.107531
## iter 40 value 224.098895
## final value 224.098719
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 445.819096
## iter 10 value 275.250777
## iter 20 value 225.165127
## iter 30 value 224.304369
## iter 40 value 224.118648
## iter 50 value 224.098781
## final value 224.098717
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 401.410482
## iter 10 value 299.208690
## iter 20 value 224.469167
## iter 30 value 224.164465
## iter 40 value 224.101373
## iter 50 value 224.098853
## final value 224.098711
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 443.859589
## iter 10 value 335.959503
## iter 20 value 224.205075
## iter 30 value 224.106916
## iter 40 value 224.098725
## iter 40 value 224.098725
## final value 224.098725
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 413.284664
## iter 10 value 317.888819
## iter 20 value 267.518941
## iter 30 value 256.105345
## iter 40 value 236.990281
## iter 50 value 226.651784
## iter 60 value 225.343551
## iter 70 value 224.822481
## iter 80 value 224.531422
## iter 90 value 224.503633
## iter 100 value 224.459152
## final value 224.459152
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 416.333216
## iter 10 value 268.270436
## iter 20 value 224.807606
## iter 30 value 172.405298
## iter 40 value 165.615076
## iter 50 value 164.335129
## iter 60 value 163.730273
## iter 70 value 163.389672
## iter 80 value 163.307401
## iter 90 value 163.227956
## iter 100 value 163.177305
## final value 163.177305
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 409.997661
## iter 10 value 262.816763
## iter 20 value 225.144521
## iter 30 value 221.859243
## iter 40 value 180.257522
## iter 50 value 164.401899
## iter 60 value 163.792180
## iter 70 value 163.650056
## iter 80 value 163.379128
## iter 90 value 163.275113
## iter 100 value 163.232880
## final value 163.232880
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 415.034394
## iter 10 value 298.728979
## iter 20 value 223.978518
## iter 30 value 220.774401
## iter 40 value 168.273870
## iter 50 value 164.233851
## iter 60 value 162.949848
## iter 70 value 162.621693
## iter 80 value 162.331991
## iter 90 value 162.069440
## iter 100 value 162.004840
## final value 162.004840
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 426.925462
## iter 10 value 226.918851
## iter 20 value 224.319630
## iter 30 value 224.194320
## iter 40 value 224.188700
## iter 50 value 224.167962
## iter 60 value 224.142143
## iter 70 value 224.136140
## iter 80 value 224.134530
## iter 90 value 224.118194
## iter 100 value 224.102927
## final value 224.102927
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 458.162624
## iter 10 value 281.437113
## iter 20 value 223.839358
## iter 30 value 184.631661
## iter 40 value 164.024638
## iter 50 value 162.678410
## iter 60 value 162.159287
## iter 70 value 162.006966
## iter 80 value 161.960577
## iter 90 value 161.848104
## iter 100 value 161.798008
## final value 161.798008
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 443.617138
## iter 10 value 292.587031
## iter 20 value 224.071069
## iter 30 value 219.552175
## iter 40 value 167.531322
## iter 50 value 162.431523
## iter 60 value 162.076948
## iter 70 value 161.864613
## iter 80 value 161.833213
## iter 90 value 161.784801
## iter 100 value 161.707579
## final value 161.707579
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 401.398100
## iter 10 value 296.181302
## iter 20 value 224.338603
## iter 30 value 220.716120
## iter 40 value 171.305944
## iter 50 value 164.110718
## iter 60 value 163.613915
## iter 70 value 163.400485
## iter 80 value 163.285517
## iter 90 value 163.251758
## iter 100 value 163.243012
## final value 163.243012
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 434.141872
## iter 10 value 239.329600
## iter 20 value 218.097532
## iter 30 value 170.994327
## iter 40 value 164.197081
## iter 50 value 162.583823
## iter 60 value 161.713988
## iter 70 value 161.526084
## iter 80 value 161.018562
## iter 90 value 160.673841
## iter 100 value 160.251505
## final value 160.251505
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 411.300698
## iter 10 value 259.398613
## iter 20 value 222.953075
## iter 30 value 164.873749
## iter 40 value 161.762829
## iter 50 value 161.636695
## iter 60 value 161.608764
## iter 70 value 161.594324
## iter 80 value 161.554415
## iter 90 value 161.417845
## iter 100 value 161.087399
## final value 161.087399
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 406.015185
## iter 10 value 246.150384
## iter 20 value 238.126980
## iter 30 value 237.549855
## iter 40 value 237.460093
## iter 50 value 237.389969
## iter 60 value 237.382311
## iter 70 value 237.377823
## iter 80 value 237.372786
## iter 90 value 237.369267
## iter 100 value 237.362882
## final value 237.362882
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 413.522541
## iter 10 value 331.496141
## iter 20 value 330.808701
## iter 30 value 327.045655
## iter 40 value 326.873982
## iter 50 value 326.009500
## iter 60 value 326.002499
## final value 326.002446
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 412.593757
## iter 10 value 372.161992
## iter 20 value 325.989868
## iter 30 value 324.941651
## iter 40 value 324.001745
## final value 324.000052
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 405.108728
## iter 10 value 269.638359
## iter 20 value 238.552520
## iter 30 value 237.641012
## iter 40 value 237.547041
## iter 50 value 237.436757
## iter 60 value 237.417568
## iter 70 value 237.408434
## iter 80 value 237.381002
## iter 90 value 237.369042
## iter 100 value 237.367293
## final value 237.367293
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 425.369203
## iter 10 value 265.546308
## iter 20 value 239.131729
## iter 30 value 238.010438
## iter 40 value 237.600842
## iter 50 value 237.446787
## iter 60 value 237.422529
## iter 70 value 237.386423
## iter 80 value 237.376721
## iter 90 value 237.374660
## iter 100 value 237.355801
## final value 237.355801
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 426.906534
## iter 10 value 331.821103
## iter 20 value 238.913135
## iter 30 value 213.745585
## iter 40 value 198.937000
## iter 50 value 186.202173
## iter 60 value 180.705878
## iter 70 value 177.960796
## iter 80 value 177.377749
## iter 90 value 177.183341
## iter 100 value 177.088166
## final value 177.088166
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 442.062506
## iter 10 value 290.532442
## iter 20 value 233.719220
## iter 30 value 189.455884
## iter 40 value 182.334337
## iter 50 value 179.226264
## iter 60 value 177.425483
## iter 70 value 177.256269
## iter 80 value 176.800947
## final value 176.625634
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 404.660903
## iter 10 value 317.168870
## iter 20 value 316.568213
## iter 30 value 308.145181
## iter 40 value 307.274809
## iter 50 value 295.254028
## iter 60 value 284.179636
## iter 70 value 270.353089
## iter 80 value 252.205801
## iter 90 value 242.089278
## iter 100 value 240.818402
## final value 240.818402
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 400.014073
## iter 10 value 330.215069
## iter 20 value 308.037814
## iter 30 value 300.752011
## iter 40 value 259.533852
## iter 50 value 255.413672
## iter 60 value 255.341773
## iter 70 value 255.145792
## iter 80 value 255.113411
## iter 90 value 254.276485
## iter 100 value 248.348396
## final value 248.348396
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 413.531443
## iter 10 value 315.767454
## iter 20 value 238.165417
## iter 30 value 237.439558
## iter 40 value 237.386550
## iter 50 value 237.373858
## iter 60 value 237.362375
## iter 70 value 237.331466
## iter 80 value 237.247790
## iter 90 value 237.120453
## iter 100 value 236.794272
## final value 236.794272
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 414.022557
## iter 10 value 245.891622
## iter 20 value 235.085935
## iter 30 value 191.953768
## iter 40 value 173.877200
## iter 50 value 173.466702
## iter 60 value 173.127895
## iter 70 value 172.214603
## iter 80 value 172.123136
## iter 90 value 172.081058
## iter 100 value 172.072439
## final value 172.072439
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 405.507523
## iter 10 value 251.249673
## iter 20 value 199.920432
## iter 30 value 183.043679
## iter 40 value 178.952210
## iter 50 value 176.193874
## iter 60 value 174.775778
## iter 70 value 173.850381
## iter 80 value 173.330253
## iter 90 value 172.777368
## iter 100 value 172.392489
## final value 172.392489
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 484.880802
## iter 10 value 326.000589
## iter 20 value 307.296675
## iter 30 value 260.005312
## iter 40 value 257.777438
## iter 50 value 244.981442
## iter 60 value 237.930626
## iter 70 value 237.532103
## iter 80 value 237.384756
## iter 90 value 237.329336
## iter 100 value 237.325003
## final value 237.325003
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 422.708814
## iter 10 value 244.455257
## iter 20 value 233.811953
## iter 30 value 180.799921
## iter 40 value 174.799833
## iter 50 value 173.631049
## iter 60 value 172.957333
## iter 70 value 172.693140
## iter 80 value 172.470322
## iter 90 value 172.063788
## iter 100 value 171.837725
## final value 171.837725
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 444.443793
## iter 10 value 307.979138
## iter 20 value 191.867125
## iter 30 value 176.051601
## iter 40 value 174.366723
## iter 50 value 173.855564
## iter 60 value 173.504678
## iter 70 value 173.036950
## iter 80 value 172.609421
## iter 90 value 172.484266
## iter 100 value 172.347003
## final value 172.347003
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 419.864003
## iter 10 value 324.049676
## iter 20 value 267.263409
## final value 267.257390
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 412.067963
## iter 10 value 290.187688
## iter 20 value 267.292604
## final value 267.257390
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 425.358850
## iter 10 value 373.106803
## iter 20 value 267.863924
## iter 30 value 267.261231
## final value 267.257390
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 426.211209
## iter 10 value 291.551723
## iter 20 value 266.883242
## final value 266.511223
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 416.772361
## iter 10 value 295.663139
## iter 20 value 266.973477
## final value 266.511223
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 399.166727
## iter 10 value 273.480524
## iter 20 value 264.113570
## iter 30 value 263.661334
## iter 40 value 263.656617
## iter 50 value 263.655315
## iter 60 value 263.649215
## iter 70 value 263.646791
## final value 263.646724
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 414.283137
## iter 10 value 310.017214
## iter 20 value 271.535812
## iter 30 value 266.359009
## iter 40 value 264.249440
## iter 50 value 263.661070
## iter 60 value 263.644324
## iter 70 value 263.639796
## iter 80 value 263.628394
## iter 90 value 263.565760
## iter 100 value 263.546560
## final value 263.546560
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 434.618713
## iter 10 value 337.879340
## iter 20 value 267.037604
## iter 30 value 265.367735
## iter 40 value 257.971137
## iter 50 value 257.206950
## iter 60 value 256.515625
## iter 70 value 256.341326
## final value 256.340856
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 403.987461
## iter 10 value 275.447860
## iter 20 value 264.926522
## iter 30 value 263.983253
## iter 40 value 263.681127
## iter 50 value 263.653308
## iter 60 value 263.648838
## iter 70 value 263.646743
## final value 263.646732
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 442.727067
## iter 10 value 275.324074
## iter 20 value 265.146577
## iter 30 value 263.888095
## iter 40 value 263.704759
## iter 50 value 263.656748
## iter 60 value 263.655375
## iter 70 value 263.605750
## iter 80 value 263.578218
## iter 90 value 263.552588
## iter 100 value 263.546145
## final value 263.546145
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 463.534415
## iter 10 value 278.309959
## iter 20 value 264.387727
## iter 30 value 263.807896
## iter 40 value 263.475942
## iter 50 value 263.436933
## iter 60 value 263.385057
## iter 70 value 263.366459
## iter 80 value 263.358598
## iter 90 value 263.335730
## iter 100 value 263.327895
## final value 263.327895
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 403.894542
## iter 10 value 268.520103
## iter 20 value 263.948446
## iter 30 value 263.594959
## iter 40 value 263.480999
## iter 50 value 263.365806
## iter 60 value 263.339557
## iter 70 value 263.332418
## iter 80 value 263.328461
## iter 90 value 263.327718
## final value 263.327683
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 489.005795
## iter 10 value 271.608697
## iter 20 value 264.641538
## iter 30 value 263.576684
## iter 40 value 263.470382
## iter 50 value 263.375921
## iter 60 value 263.352340
## iter 70 value 263.339895
## iter 80 value 263.329723
## iter 90 value 263.328066
## final value 263.327741
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 421.549411
## iter 10 value 304.583301
## iter 20 value 272.891204
## iter 30 value 267.962596
## iter 40 value 263.848190
## iter 50 value 259.861165
## iter 60 value 257.779141
## iter 70 value 256.097426
## iter 80 value 256.075617
## iter 90 value 255.959926
## iter 100 value 255.938648
## final value 255.938648
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 445.329229
## iter 10 value 301.825675
## iter 20 value 263.659580
## iter 30 value 263.572241
## iter 40 value 263.438404
## iter 50 value 263.377225
## iter 60 value 263.362908
## iter 70 value 263.359533
## iter 80 value 263.343650
## iter 90 value 263.332021
## iter 100 value 263.327948
## final value 263.327948
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 443.707962
## iter 10 value 276.767488
## iter 20 value 238.927377
## iter 30 value 237.822795
## iter 40 value 237.645220
## iter 50 value 237.515629
## iter 60 value 237.497860
## iter 70 value 237.483896
## iter 80 value 237.479649
## iter 90 value 237.470018
## iter 100 value 237.466080
## final value 237.466080
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 405.524807
## iter 10 value 259.826991
## iter 20 value 238.583378
## iter 30 value 237.566018
## iter 40 value 237.544209
## iter 50 value 237.483805
## iter 60 value 237.472480
## final value 237.471075
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 431.543490
## iter 10 value 252.675156
## iter 20 value 237.774886
## iter 30 value 237.582867
## iter 40 value 237.448598
## iter 50 value 237.442943
## iter 60 value 237.437268
## iter 70 value 237.430627
## iter 80 value 237.428237
## final value 237.427831
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 400.327636
## iter 10 value 282.523080
## iter 20 value 237.639082
## iter 30 value 237.516802
## iter 40 value 237.454814
## iter 50 value 237.446979
## iter 60 value 237.433150
## iter 70 value 237.430457
## iter 80 value 237.428894
## iter 90 value 237.428343
## iter 100 value 237.426902
## final value 237.426902
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 427.670978
## iter 10 value 350.096714
## iter 20 value 239.167693
## iter 30 value 238.001930
## iter 40 value 237.540620
## iter 50 value 237.516496
## iter 60 value 237.473225
## iter 70 value 237.471397
## iter 80 value 237.470261
## iter 90 value 237.467879
## final value 237.466895
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 413.085323
## iter 10 value 330.437420
## iter 20 value 324.160067
## iter 30 value 323.176639
## iter 40 value 300.841094
## iter 50 value 286.123298
## iter 60 value 248.183340
## iter 70 value 208.702539
## iter 80 value 204.447581
## iter 90 value 189.499268
## iter 100 value 182.811664
## final value 182.811664
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 404.793793
## iter 10 value 348.701424
## iter 20 value 344.165718
## iter 30 value 333.342704
## iter 40 value 330.825884
## iter 50 value 326.939431
## iter 60 value 265.072915
## iter 70 value 239.989659
## iter 80 value 235.598758
## iter 90 value 192.506241
## iter 100 value 178.714184
## final value 178.714184
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 402.465853
## iter 10 value 307.236157
## iter 20 value 240.305993
## iter 30 value 191.192985
## iter 40 value 179.832873
## iter 50 value 175.455299
## iter 60 value 174.297473
## iter 70 value 173.629674
## iter 80 value 173.370589
## iter 90 value 173.222521
## iter 100 value 173.036097
## final value 173.036097
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 418.968933
## iter 10 value 327.863735
## iter 20 value 302.726920
## iter 30 value 262.657737
## iter 40 value 233.222366
## iter 50 value 219.379927
## iter 60 value 206.296482
## iter 70 value 197.377875
## iter 80 value 188.519423
## iter 90 value 179.286512
## iter 100 value 173.858303
## final value 173.858303
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 429.139863
## iter 10 value 241.109930
## iter 20 value 237.404978
## iter 30 value 224.941486
## iter 40 value 185.963557
## iter 50 value 181.264574
## iter 60 value 178.912931
## iter 70 value 178.390754
## iter 80 value 178.148847
## iter 90 value 177.869701
## iter 100 value 177.614483
## final value 177.614483
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 512.010560
## iter 10 value 246.754036
## iter 20 value 237.283402
## iter 30 value 222.631540
## iter 40 value 180.665367
## iter 50 value 174.365709
## iter 60 value 173.920996
## iter 70 value 173.494138
## iter 80 value 173.323747
## iter 90 value 173.235485
## iter 100 value 173.122521
## final value 173.122521
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 420.030394
## iter 10 value 294.760945
## iter 20 value 220.270702
## iter 30 value 180.987135
## iter 40 value 176.195880
## iter 50 value 173.869043
## iter 60 value 173.045585
## iter 70 value 172.911978
## iter 80 value 172.788190
## iter 90 value 172.688712
## iter 100 value 172.573826
## final value 172.573826
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 414.103301
## iter 10 value 241.391548
## iter 20 value 233.598431
## iter 30 value 183.131467
## iter 40 value 176.586016
## iter 50 value 174.524966
## iter 60 value 173.965532
## iter 70 value 173.741722
## iter 80 value 173.639477
## iter 90 value 173.305611
## iter 100 value 173.172142
## final value 173.172142
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 438.875631
## iter 10 value 269.444690
## iter 20 value 228.136676
## iter 30 value 181.557913
## iter 40 value 175.678408
## iter 50 value 174.117035
## iter 60 value 173.733212
## iter 70 value 173.526696
## iter 80 value 173.328269
## iter 90 value 173.085084
## iter 100 value 173.001902
## final value 173.001902
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 446.740542
## iter 10 value 275.896805
## iter 20 value 230.993474
## iter 30 value 180.969573
## iter 40 value 174.759676
## iter 50 value 173.732012
## iter 60 value 173.407818
## iter 70 value 173.296966
## iter 80 value 173.049304
## iter 90 value 172.839960
## iter 100 value 172.517642
## final value 172.517642
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 418.402479
## iter 10 value 263.738929
## iter 20 value 256.001894
## iter 30 value 255.956661
## final value 255.948806
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 407.225337
## iter 10 value 263.091041
## iter 20 value 256.097342
## iter 30 value 255.962909
## iter 40 value 255.949914
## final value 255.948768
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 414.589955
## iter 10 value 311.103896
## iter 20 value 256.440599
## iter 30 value 255.949251
## final value 255.948782
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 443.133171
## iter 10 value 293.252920
## iter 20 value 256.535841
## iter 30 value 256.332940
## iter 40 value 256.067631
## iter 50 value 256.041739
## final value 256.041168
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 422.342626
## iter 10 value 290.779432
## iter 20 value 256.641877
## iter 30 value 256.016130
## iter 40 value 256.006403
## iter 50 value 255.999624
## iter 60 value 255.993750
## iter 70 value 255.987731
## iter 80 value 255.968865
## iter 90 value 255.964280
## iter 100 value 255.957686
## final value 255.957686
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 403.206309
## iter 10 value 272.828250
## iter 20 value 253.403516
## iter 30 value 214.285680
## iter 40 value 192.333863
## iter 50 value 188.436059
## iter 60 value 187.404489
## iter 70 value 186.817981
## iter 80 value 186.576811
## iter 90 value 186.240044
## iter 100 value 186.095796
## final value 186.095796
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 436.269846
## iter 10 value 256.807650
## iter 20 value 220.022623
## iter 30 value 199.175677
## iter 40 value 193.021703
## iter 50 value 191.040641
## iter 60 value 188.865658
## iter 70 value 187.367428
## iter 80 value 187.053477
## iter 90 value 186.769119
## iter 100 value 186.568908
## final value 186.568908
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 426.901385
## iter 10 value 334.584227
## iter 20 value 325.958249
## iter 30 value 282.573929
## iter 40 value 264.814444
## iter 50 value 258.129974
## iter 60 value 257.472844
## iter 70 value 254.110098
## iter 80 value 244.250847
## iter 90 value 225.781245
## iter 100 value 218.173058
## final value 218.173058
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 400.559369
## iter 10 value 265.809343
## iter 20 value 220.857263
## iter 30 value 198.844732
## iter 40 value 193.415148
## iter 50 value 192.291798
## iter 60 value 191.728996
## iter 70 value 191.167005
## iter 80 value 190.943612
## iter 90 value 190.749349
## iter 100 value 190.742272
## final value 190.742272
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 407.477335
## iter 10 value 258.326198
## iter 20 value 255.962452
## iter 30 value 255.588876
## iter 40 value 254.892165
## iter 50 value 232.557384
## iter 60 value 209.262733
## iter 70 value 197.934502
## iter 80 value 196.262237
## iter 90 value 192.690242
## iter 100 value 192.129709
## final value 192.129709
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 401.827216
## iter 10 value 309.214317
## iter 20 value 245.577406
## iter 30 value 198.655151
## iter 40 value 190.795064
## iter 50 value 189.796392
## iter 60 value 189.065941
## iter 70 value 188.267954
## iter 80 value 187.319263
## iter 90 value 186.946993
## iter 100 value 186.565493
## final value 186.565493
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 498.615449
## iter 10 value 320.558856
## iter 20 value 247.635401
## iter 30 value 197.362100
## iter 40 value 191.579094
## iter 50 value 189.471965
## iter 60 value 188.313400
## iter 70 value 187.713406
## iter 80 value 186.490348
## iter 90 value 186.026947
## iter 100 value 185.523649
## final value 185.523649
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 424.608632
## iter 10 value 319.965571
## iter 20 value 252.966219
## iter 30 value 204.724167
## iter 40 value 195.984726
## iter 50 value 193.932652
## iter 60 value 192.240961
## iter 70 value 191.777847
## iter 80 value 191.604337
## iter 90 value 191.364717
## iter 100 value 191.165727
## final value 191.165727
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 450.780596
## iter 10 value 288.105376
## iter 20 value 255.800632
## iter 30 value 253.937490
## iter 40 value 226.256265
## iter 50 value 202.292663
## iter 60 value 196.569236
## iter 70 value 193.116734
## iter 80 value 192.172953
## iter 90 value 191.955871
## iter 100 value 191.375410
## final value 191.375410
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 549.733476
## iter 10 value 335.242490
## iter 20 value 255.802930
## iter 30 value 236.776689
## iter 40 value 200.968554
## iter 50 value 192.214727
## iter 60 value 190.213830
## iter 70 value 189.815013
## iter 80 value 189.771009
## iter 90 value 189.706571
## iter 100 value 189.499901
## final value 189.499901
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 402.880302
## iter 10 value 287.188371
## iter 20 value 283.662659
## iter 20 value 283.662658
## iter 20 value 283.662658
## final value 283.662658
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 400.421473
## iter 10 value 292.363424
## iter 20 value 283.163371
## final value 283.070124
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 426.083250
## iter 10 value 329.333585
## iter 20 value 283.302007
## final value 283.070089
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 401.149822
## iter 10 value 301.394917
## iter 20 value 283.070484
## final value 283.070089
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 477.217014
## iter 10 value 373.489744
## iter 20 value 329.630567
## iter 30 value 283.317601
## iter 40 value 283.070171
## final value 283.070091
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 433.503273
## iter 10 value 371.447052
## iter 20 value 292.135276
## iter 30 value 281.351778
## iter 40 value 280.567171
## iter 50 value 280.447635
## iter 60 value 280.406888
## iter 70 value 280.391391
## iter 80 value 280.378021
## final value 280.377946
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 445.079945
## iter 10 value 289.161525
## iter 20 value 281.257197
## iter 30 value 279.842665
## iter 40 value 273.105470
## iter 50 value 272.732318
## iter 60 value 272.484161
## iter 70 value 272.471135
## final value 272.470982
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 452.804396
## iter 10 value 340.806983
## iter 20 value 281.632041
## iter 30 value 280.437226
## iter 40 value 280.417831
## iter 50 value 280.387404
## iter 60 value 280.380733
## iter 70 value 280.378285
## final value 280.377909
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 400.694090
## iter 10 value 296.035682
## iter 20 value 281.205288
## iter 30 value 280.504589
## iter 40 value 280.441458
## iter 50 value 280.441142
## iter 60 value 280.440309
## final value 280.440025
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 446.016742
## iter 10 value 341.051780
## iter 20 value 281.319209
## iter 30 value 280.580821
## iter 40 value 280.423084
## iter 50 value 280.420241
## iter 60 value 280.390795
## iter 70 value 280.378009
## final value 280.377911
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 447.456760
## iter 10 value 332.470927
## iter 20 value 284.930496
## iter 30 value 282.152498
## iter 40 value 280.947726
## iter 50 value 280.712560
## iter 60 value 280.439505
## iter 70 value 280.312074
## iter 80 value 280.235863
## iter 90 value 280.227713
## iter 100 value 280.223541
## final value 280.223541
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 411.445164
## iter 10 value 297.855510
## iter 20 value 282.101985
## iter 30 value 280.648999
## iter 40 value 280.470961
## iter 50 value 280.428186
## iter 60 value 280.406144
## iter 70 value 280.358783
## iter 80 value 280.271575
## iter 90 value 280.246977
## iter 100 value 280.240782
## final value 280.240782
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 455.654140
## iter 10 value 317.420475
## iter 20 value 283.284312
## iter 30 value 280.841206
## iter 40 value 280.607630
## iter 50 value 280.495270
## iter 60 value 280.444845
## iter 70 value 280.382623
## iter 80 value 280.288935
## iter 90 value 280.256463
## iter 100 value 280.240546
## final value 280.240546
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 492.633621
## iter 10 value 368.987724
## iter 20 value 282.314120
## iter 30 value 281.308003
## iter 40 value 280.567199
## iter 50 value 280.401143
## iter 60 value 280.325618
## iter 70 value 280.261092
## iter 80 value 280.248821
## iter 90 value 280.244551
## iter 100 value 280.244101
## final value 280.244101
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 404.583905
## iter 10 value 295.349464
## iter 20 value 281.214717
## iter 30 value 280.629151
## iter 40 value 280.422620
## iter 50 value 280.312409
## iter 60 value 280.294932
## iter 70 value 280.261327
## iter 80 value 280.238474
## iter 90 value 280.237844
## final value 280.237500
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 410.503510
## iter 10 value 294.879393
## iter 20 value 256.514854
## iter 30 value 255.996368
## iter 40 value 255.982529
## final value 255.981889
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 444.631165
## iter 10 value 289.567888
## iter 20 value 257.092801
## iter 30 value 255.997345
## iter 40 value 255.981952
## final value 255.981900
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 411.660916
## iter 10 value 367.507777
## iter 20 value 256.038986
## iter 30 value 255.991132
## iter 40 value 255.982508
## iter 50 value 255.981895
## final value 255.981889
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 428.408881
## iter 10 value 367.839930
## iter 20 value 269.269724
## iter 30 value 256.654346
## iter 40 value 255.998747
## final value 255.981890
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 460.664773
## iter 10 value 360.878673
## iter 20 value 260.099327
## iter 30 value 256.109926
## iter 40 value 255.992398
## iter 50 value 255.981893
## final value 255.981889
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 406.326058
## iter 10 value 279.899103
## iter 20 value 253.868494
## iter 30 value 212.040180
## iter 40 value 192.038248
## iter 50 value 188.149707
## iter 60 value 187.358399
## iter 70 value 187.122412
## iter 80 value 186.942832
## iter 90 value 186.862063
## iter 100 value 186.832279
## final value 186.832279
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 420.713111
## iter 10 value 265.656555
## iter 20 value 255.948177
## iter 30 value 246.471160
## iter 40 value 194.110076
## iter 50 value 190.691359
## iter 60 value 190.109933
## iter 70 value 190.029412
## iter 80 value 189.912997
## iter 90 value 189.564715
## iter 100 value 188.667870
## final value 188.667870
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 409.778594
## iter 10 value 259.911833
## iter 20 value 256.025418
## iter 30 value 255.272310
## iter 40 value 248.319324
## iter 50 value 201.662853
## iter 60 value 195.618441
## iter 70 value 193.511113
## iter 80 value 193.103054
## iter 90 value 192.286379
## iter 100 value 191.993404
## final value 191.993404
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 444.218687
## iter 10 value 310.055293
## iter 20 value 256.886927
## iter 30 value 255.923110
## iter 40 value 255.546968
## iter 50 value 249.008357
## iter 60 value 204.104800
## iter 70 value 196.163589
## iter 80 value 193.594798
## iter 90 value 192.471208
## iter 100 value 191.848626
## final value 191.848626
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 427.506184
## iter 10 value 343.027077
## iter 20 value 256.145934
## iter 30 value 253.434714
## iter 40 value 223.164050
## iter 50 value 198.614521
## iter 60 value 188.995115
## iter 70 value 187.761927
## iter 80 value 187.388274
## iter 90 value 187.045777
## iter 100 value 186.936050
## final value 186.936050
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 472.790950
## iter 10 value 258.319856
## iter 20 value 223.938246
## iter 30 value 199.417492
## iter 40 value 190.360537
## iter 50 value 187.938169
## iter 60 value 187.572113
## iter 70 value 187.378998
## iter 80 value 186.376228
## iter 90 value 185.820967
## iter 100 value 185.329423
## final value 185.329423
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 425.738954
## iter 10 value 372.058135
## iter 20 value 259.475727
## iter 30 value 251.120097
## iter 40 value 226.750507
## iter 50 value 191.462091
## iter 60 value 188.747049
## iter 70 value 188.075693
## iter 80 value 187.741464
## iter 90 value 187.522949
## iter 100 value 187.064576
## final value 187.064576
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 421.849525
## iter 10 value 361.758182
## iter 20 value 265.554309
## iter 30 value 256.153405
## iter 40 value 251.944189
## iter 50 value 200.621223
## iter 60 value 192.570991
## iter 70 value 191.597610
## iter 80 value 190.517079
## iter 90 value 190.213726
## iter 100 value 190.134337
## final value 190.134337
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 460.588427
## iter 10 value 390.693240
## iter 20 value 259.958872
## iter 30 value 256.237877
## iter 40 value 254.406261
## iter 50 value 221.487156
## iter 60 value 197.666258
## iter 70 value 190.664739
## iter 80 value 188.576290
## iter 90 value 187.392531
## iter 100 value 187.039935
## final value 187.039935
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 406.124489
## iter 10 value 261.450947
## iter 20 value 214.443861
## iter 30 value 192.506493
## iter 40 value 190.105450
## iter 50 value 188.952414
## iter 60 value 187.423045
## iter 70 value 187.220894
## iter 80 value 187.087545
## iter 90 value 186.935694
## iter 100 value 186.826916
## final value 186.826916
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 454.714744
## iter 10 value 374.468281
## iter 20 value 245.860025
## iter 30 value 243.371432
## iter 40 value 242.676161
## iter 50 value 242.518910
## iter 60 value 242.486335
## iter 70 value 242.482577
## iter 80 value 242.477719
## iter 90 value 242.476489
## final value 242.476320
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 414.414714
## iter 10 value 365.263325
## iter 20 value 357.524838
## iter 30 value 357.314823
## iter 40 value 356.810778
## iter 50 value 356.708619
## iter 60 value 356.181947
## iter 70 value 356.159947
## iter 80 value 356.100796
## final value 356.099395
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 424.508133
## iter 10 value 376.508342
## iter 20 value 243.445066
## iter 30 value 243.018272
## iter 40 value 242.550768
## iter 50 value 242.492875
## iter 60 value 242.479881
## iter 70 value 242.478272
## iter 80 value 242.477143
## iter 90 value 242.475955
## iter 100 value 242.475085
## final value 242.475085
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 402.942344
## iter 10 value 313.424034
## iter 20 value 243.060430
## iter 30 value 242.725944
## iter 40 value 242.500218
## iter 50 value 242.489680
## iter 60 value 242.478500
## iter 70 value 242.475733
## iter 80 value 242.474877
## iter 90 value 242.473712
## final value 242.473659
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 416.675433
## iter 10 value 248.641918
## iter 20 value 242.866726
## iter 30 value 242.531540
## iter 40 value 242.491661
## iter 50 value 242.481807
## iter 60 value 242.479107
## iter 70 value 242.477001
## iter 80 value 242.476052
## iter 90 value 242.474344
## final value 242.473436
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 396.746778
## iter 10 value 254.048209
## iter 20 value 202.529506
## iter 30 value 176.301523
## iter 40 value 174.528661
## iter 50 value 172.155461
## iter 60 value 171.263952
## iter 70 value 171.051813
## iter 80 value 170.881336
## iter 90 value 170.514491
## iter 100 value 169.653536
## final value 169.653536
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 417.286237
## iter 10 value 362.433174
## iter 20 value 220.259688
## iter 30 value 175.496349
## iter 40 value 173.592387
## iter 50 value 171.196451
## iter 60 value 171.123753
## iter 70 value 171.075458
## iter 80 value 171.014272
## iter 90 value 170.939326
## iter 100 value 170.766139
## final value 170.766139
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 406.985277
## iter 10 value 248.339321
## iter 20 value 234.999716
## iter 30 value 177.562643
## iter 40 value 176.367000
## iter 50 value 175.290587
## iter 60 value 175.025410
## iter 70 value 174.837674
## iter 80 value 174.163057
## iter 90 value 173.062481
## iter 100 value 172.124646
## final value 172.124646
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 478.584043
## iter 10 value 262.418952
## iter 20 value 239.233234
## iter 30 value 185.777821
## iter 40 value 180.189014
## iter 50 value 173.287622
## iter 60 value 171.498380
## iter 70 value 171.310331
## iter 80 value 171.284745
## iter 90 value 171.194938
## iter 100 value 171.133947
## final value 171.133947
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 461.414369
## iter 10 value 287.954612
## iter 20 value 245.703708
## iter 30 value 236.644523
## iter 40 value 196.093601
## iter 50 value 181.583741
## iter 60 value 175.509206
## iter 70 value 173.402710
## iter 80 value 172.852544
## iter 90 value 172.307097
## iter 100 value 171.501538
## final value 171.501538
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 439.302174
## iter 10 value 291.197781
## iter 20 value 242.450747
## iter 30 value 193.982306
## iter 40 value 179.001002
## iter 50 value 174.039924
## iter 60 value 171.841480
## iter 70 value 171.350105
## iter 80 value 171.165668
## iter 90 value 171.107343
## iter 100 value 171.104524
## final value 171.104524
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 412.316713
## iter 10 value 348.344867
## iter 20 value 242.868150
## iter 30 value 235.664825
## iter 40 value 183.274725
## iter 50 value 174.411807
## iter 60 value 171.326791
## iter 70 value 171.100201
## iter 80 value 170.644244
## iter 90 value 170.518955
## iter 100 value 170.299509
## final value 170.299509
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 448.555675
## iter 10 value 287.073815
## iter 20 value 238.049166
## iter 30 value 187.456400
## iter 40 value 174.388273
## iter 50 value 171.553423
## iter 60 value 171.190842
## iter 70 value 171.151171
## iter 80 value 171.067445
## iter 90 value 170.810293
## iter 100 value 169.959481
## final value 169.959481
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 506.952392
## iter 10 value 254.025119
## iter 20 value 197.291834
## iter 30 value 177.100687
## iter 40 value 174.003381
## iter 50 value 170.938669
## iter 60 value 170.370495
## iter 70 value 169.513659
## iter 80 value 168.827452
## iter 90 value 168.585903
## iter 100 value 168.510479
## final value 168.510479
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 433.570637
## iter 10 value 286.452229
## iter 20 value 243.202314
## iter 30 value 242.444754
## iter 40 value 235.394060
## iter 50 value 183.758720
## iter 60 value 176.174601
## iter 70 value 172.688854
## iter 80 value 171.465812
## iter 90 value 171.208076
## iter 100 value 171.143382
## final value 171.143382
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 453.644373
## iter 10 value 378.828185
## iter 20 value 284.681207
## iter 30 value 270.639523
## final value 270.523925
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 432.079182
## iter 10 value 360.604367
## iter 20 value 272.197677
## iter 30 value 270.206575
## iter 30 value 270.206574
## iter 30 value 270.206574
## final value 270.206574
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 490.343934
## iter 10 value 394.783148
## iter 20 value 271.399499
## iter 30 value 270.525610
## final value 270.523690
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 401.220820
## iter 10 value 278.622195
## iter 20 value 270.206653
## final value 270.206574
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 424.674124
## iter 10 value 288.243186
## iter 20 value 270.339662
## final value 270.206574
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 423.607540
## iter 10 value 350.358173
## iter 20 value 274.093176
## iter 30 value 268.831747
## iter 40 value 267.312653
## iter 50 value 267.125332
## iter 60 value 267.118580
## iter 70 value 267.117706
## iter 70 value 267.117704
## iter 70 value 267.117704
## final value 267.117704
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 399.325580
## iter 10 value 299.780267
## iter 20 value 269.202226
## iter 30 value 262.775855
## iter 40 value 259.737786
## iter 50 value 255.878358
## iter 60 value 255.042705
## iter 70 value 254.363515
## iter 80 value 253.905949
## iter 90 value 253.895104
## iter 90 value 253.895102
## iter 90 value 253.895102
## final value 253.895102
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 400.656950
## iter 10 value 273.415026
## iter 20 value 268.037614
## iter 30 value 267.289734
## iter 40 value 267.200335
## iter 50 value 267.163553
## iter 60 value 267.146462
## iter 70 value 267.101330
## final value 267.097836
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 409.560167
## iter 10 value 364.039067
## iter 20 value 279.387624
## iter 30 value 272.231410
## iter 40 value 271.021147
## iter 50 value 259.039947
## iter 60 value 254.319343
## iter 70 value 253.801858
## iter 80 value 253.797911
## final value 253.797645
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 430.557775
## iter 10 value 290.133839
## iter 20 value 269.652165
## iter 30 value 268.484097
## iter 40 value 267.256382
## iter 50 value 267.141796
## iter 60 value 267.130094
## iter 70 value 267.117735
## final value 267.117704
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 429.154700
## iter 10 value 306.028350
## iter 20 value 268.269703
## iter 30 value 267.249780
## iter 40 value 266.977328
## iter 50 value 266.913160
## iter 60 value 266.877322
## iter 70 value 266.864918
## iter 80 value 266.856682
## iter 90 value 266.855428
## final value 266.854910
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 396.932931
## iter 10 value 317.951814
## iter 20 value 273.876470
## iter 30 value 268.236640
## iter 40 value 267.345788
## iter 50 value 267.027538
## iter 60 value 266.913081
## iter 70 value 266.873362
## iter 80 value 266.861226
## iter 90 value 266.858028
## iter 100 value 266.857509
## final value 266.857509
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 410.831484
## iter 10 value 292.368714
## iter 20 value 267.953280
## iter 30 value 267.046744
## iter 40 value 266.911242
## iter 50 value 266.888253
## iter 60 value 266.881569
## iter 70 value 266.881211
## iter 80 value 266.868359
## iter 90 value 266.856096
## iter 100 value 266.855049
## final value 266.855049
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 447.197609
## iter 10 value 350.805984
## iter 20 value 268.011242
## iter 30 value 266.991865
## iter 40 value 266.890119
## iter 50 value 266.883057
## iter 60 value 266.882480
## final value 266.882324
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 398.315619
## iter 10 value 292.812574
## iter 20 value 271.261871
## iter 30 value 268.689151
## iter 40 value 267.344314
## iter 50 value 267.078032
## iter 60 value 266.954634
## iter 70 value 266.898515
## iter 80 value 266.864179
## iter 90 value 266.860367
## iter 100 value 266.857996
## final value 266.857996
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 420.893434
## iter 10 value 281.626769
## iter 20 value 243.123209
## iter 30 value 242.531241
## final value 242.529210
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 403.812827
## iter 10 value 341.645429
## iter 20 value 242.585247
## iter 30 value 242.537093
## iter 40 value 242.517743
## final value 242.517001
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 428.405144
## iter 10 value 363.335256
## iter 20 value 242.855604
## iter 30 value 242.579253
## iter 40 value 242.535875
## iter 50 value 242.521807
## iter 60 value 242.517674
## iter 70 value 242.516825
## final value 242.516767
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 424.881814
## iter 10 value 272.684529
## iter 20 value 242.603276
## iter 30 value 242.522661
## iter 40 value 242.519218
## iter 50 value 242.517591
## iter 60 value 242.517039
## iter 60 value 242.517038
## iter 60 value 242.517038
## final value 242.517038
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 415.544795
## iter 10 value 345.239150
## iter 20 value 242.744296
## iter 30 value 242.568311
## iter 40 value 242.521742
## final value 242.518246
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 406.832717
## iter 10 value 310.456814
## iter 20 value 239.652386
## iter 30 value 204.004059
## iter 40 value 176.801458
## iter 50 value 172.848908
## iter 60 value 171.599955
## iter 70 value 171.439516
## iter 80 value 171.400629
## iter 90 value 171.386021
## iter 100 value 171.370612
## final value 171.370612
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 480.937482
## iter 10 value 305.554538
## iter 20 value 239.746580
## iter 30 value 182.084904
## iter 40 value 175.500713
## iter 50 value 172.320068
## iter 60 value 171.758016
## iter 70 value 171.556807
## iter 80 value 171.531293
## iter 90 value 171.503768
## iter 100 value 171.479198
## final value 171.479198
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 424.295342
## iter 10 value 287.580164
## iter 20 value 238.142065
## iter 30 value 185.974399
## iter 40 value 176.942058
## iter 50 value 174.275779
## iter 60 value 171.884451
## iter 70 value 171.426459
## iter 80 value 171.392558
## iter 90 value 171.355951
## iter 100 value 171.339174
## final value 171.339174
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 425.964289
## iter 10 value 288.389327
## iter 20 value 242.629628
## iter 30 value 241.864029
## iter 40 value 226.987080
## iter 50 value 217.585134
## iter 60 value 208.330632
## iter 70 value 176.082849
## iter 80 value 172.201099
## iter 90 value 171.522047
## iter 100 value 171.461129
## final value 171.461129
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 463.892972
## iter 10 value 270.323173
## iter 20 value 243.485502
## iter 30 value 242.625351
## iter 40 value 241.195500
## iter 50 value 172.809901
## iter 60 value 172.159491
## iter 70 value 171.705959
## iter 80 value 171.472038
## iter 90 value 171.436184
## iter 100 value 171.377892
## final value 171.377892
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 426.211455
## iter 10 value 249.907890
## iter 20 value 202.899126
## iter 30 value 171.675594
## iter 40 value 171.473199
## iter 50 value 171.422007
## iter 60 value 171.416541
## iter 70 value 171.380341
## iter 80 value 171.325900
## iter 90 value 171.171272
## iter 100 value 170.998135
## final value 170.998135
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 420.494834
## iter 10 value 301.849751
## iter 20 value 242.820893
## iter 30 value 242.402096
## iter 40 value 195.743046
## iter 50 value 175.477301
## iter 60 value 171.983252
## iter 70 value 171.617144
## iter 80 value 171.456998
## iter 90 value 171.400184
## iter 100 value 171.392957
## final value 171.392957
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 442.380780
## iter 10 value 347.146533
## iter 20 value 263.206073
## iter 30 value 210.467765
## iter 40 value 187.711318
## iter 50 value 180.444177
## iter 60 value 174.937687
## iter 70 value 172.036343
## iter 80 value 171.828933
## iter 90 value 171.785919
## iter 100 value 171.709036
## final value 171.709036
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 473.105518
## iter 10 value 259.061575
## iter 20 value 211.884281
## iter 30 value 179.362009
## iter 40 value 172.106449
## iter 50 value 171.700683
## iter 60 value 171.541351
## iter 70 value 171.454754
## iter 80 value 171.423315
## iter 90 value 171.410221
## iter 100 value 171.396792
## final value 171.396792
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 399.280726
## iter 10 value 242.859826
## iter 20 value 232.256200
## iter 30 value 179.348544
## iter 40 value 172.763170
## iter 50 value 170.534669
## iter 60 value 168.438032
## iter 70 value 168.019172
## iter 80 value 167.344907
## iter 90 value 166.833779
## iter 100 value 166.457345
## final value 166.457345
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 421.253263
## iter 10 value 250.162552
## iter 20 value 231.438494
## iter 30 value 231.244816
## iter 40 value 231.043623
## iter 50 value 231.015445
## iter 60 value 231.006688
## iter 70 value 230.973336
## iter 80 value 230.966915
## iter 90 value 230.961204
## iter 100 value 230.945986
## final value 230.945986
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 414.019652
## iter 10 value 278.824772
## iter 20 value 232.330719
## iter 30 value 231.480525
## iter 40 value 231.224174
## iter 50 value 231.139526
## iter 60 value 231.074414
## iter 70 value 231.044736
## iter 80 value 231.021422
## iter 90 value 231.000365
## iter 100 value 230.989157
## final value 230.989157
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 455.562976
## iter 10 value 346.326400
## iter 20 value 231.497585
## iter 30 value 231.333617
## iter 40 value 231.087953
## iter 50 value 231.055271
## iter 60 value 231.038182
## iter 70 value 231.025304
## iter 80 value 231.017031
## iter 90 value 231.004894
## iter 100 value 230.975558
## final value 230.975558
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 431.626265
## iter 10 value 288.435241
## iter 20 value 232.188436
## iter 30 value 231.519235
## iter 40 value 231.032105
## iter 50 value 231.020736
## iter 60 value 230.974750
## iter 70 value 230.949992
## iter 80 value 230.948857
## iter 90 value 230.945723
## iter 100 value 230.944330
## final value 230.944330
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 411.639442
## iter 10 value 347.353333
## iter 20 value 233.109222
## iter 30 value 231.523160
## iter 40 value 231.149609
## iter 50 value 231.074814
## iter 60 value 231.010008
## iter 70 value 230.999170
## iter 80 value 230.989687
## iter 90 value 230.971528
## iter 100 value 230.967754
## final value 230.967754
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 403.833414
## iter 10 value 326.406015
## iter 20 value 323.615184
## iter 30 value 323.222530
## iter 40 value 323.027814
## iter 50 value 322.982958
## iter 60 value 322.768343
## iter 70 value 322.657816
## iter 80 value 322.504385
## iter 90 value 322.498528
## iter 100 value 322.486654
## final value 322.486654
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 413.370925
## iter 10 value 242.151151
## iter 20 value 224.003181
## iter 30 value 221.742503
## iter 40 value 220.350230
## iter 50 value 212.455812
## iter 60 value 204.127270
## iter 70 value 187.795588
## iter 80 value 181.492330
## iter 90 value 173.147367
## iter 100 value 168.728364
## final value 168.728364
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 464.275617
## iter 10 value 244.345004
## iter 20 value 219.380410
## iter 30 value 187.400951
## iter 40 value 173.591957
## iter 50 value 167.646066
## iter 60 value 165.801873
## iter 70 value 165.333998
## iter 80 value 165.227249
## iter 90 value 165.050230
## iter 100 value 164.834050
## final value 164.834050
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 431.189022
## iter 10 value 232.528268
## iter 20 value 230.693499
## iter 30 value 227.666105
## iter 40 value 214.376267
## iter 50 value 181.456864
## iter 60 value 172.588436
## iter 70 value 170.063427
## iter 80 value 168.580716
## iter 90 value 167.252455
## iter 100 value 166.763284
## final value 166.763284
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 430.281317
## iter 10 value 335.122827
## iter 20 value 311.429494
## iter 30 value 301.461952
## iter 40 value 278.119244
## iter 50 value 256.035647
## iter 60 value 255.727191
## iter 70 value 255.354269
## iter 80 value 252.808209
## iter 90 value 249.736890
## iter 100 value 248.377128
## final value 248.377128
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 458.942968
## iter 10 value 270.524839
## iter 20 value 202.715954
## iter 30 value 172.117193
## iter 40 value 166.608851
## iter 50 value 166.089985
## iter 60 value 165.326733
## iter 70 value 164.465770
## iter 80 value 164.061377
## iter 90 value 161.815198
## iter 100 value 160.156614
## final value 160.156614
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 515.700202
## iter 10 value 261.464463
## iter 20 value 226.634414
## iter 30 value 186.380396
## iter 40 value 170.889143
## iter 50 value 166.641403
## iter 60 value 165.042169
## iter 70 value 164.546763
## iter 80 value 163.738664
## iter 90 value 163.294676
## iter 100 value 163.053677
## final value 163.053677
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 410.765409
## iter 10 value 245.382330
## iter 20 value 197.488439
## iter 30 value 176.811321
## iter 40 value 170.095657
## iter 50 value 168.091763
## iter 60 value 167.369298
## iter 70 value 167.164412
## iter 80 value 166.843636
## iter 90 value 166.664040
## iter 100 value 166.216445
## final value 166.216445
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 409.071927
## iter 10 value 330.996660
## iter 20 value 328.008202
## iter 30 value 328.001559
## final value 328.000781
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 466.628181
## iter 10 value 285.717433
## iter 20 value 227.541723
## iter 30 value 194.883217
## iter 40 value 173.618287
## iter 50 value 167.409537
## iter 60 value 166.666758
## iter 70 value 165.827932
## iter 80 value 165.635347
## iter 90 value 165.514694
## iter 100 value 165.237801
## final value 165.237801
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 476.370191
## iter 10 value 318.885601
## iter 20 value 261.856977
## iter 30 value 261.572551
## iter 30 value 261.572551
## iter 30 value 261.572551
## final value 261.572551
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 437.848475
## iter 10 value 346.031740
## iter 20 value 263.536595
## iter 30 value 262.492780
## iter 30 value 262.492779
## iter 30 value 262.492779
## final value 262.492779
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 405.482673
## iter 10 value 322.789445
## iter 20 value 263.536862
## iter 30 value 261.572555
## final value 261.572551
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 402.984343
## iter 10 value 293.622877
## iter 20 value 262.492923
## final value 262.492801
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 429.536453
## iter 10 value 372.901269
## iter 20 value 263.885802
## iter 30 value 262.492804
## final value 262.492779
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 400.913079
## iter 10 value 284.458542
## iter 20 value 260.667664
## iter 30 value 258.914457
## iter 40 value 258.535825
## iter 50 value 258.480637
## iter 60 value 258.474556
## final value 258.474400
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 457.004840
## iter 10 value 390.958293
## iter 20 value 263.473059
## iter 30 value 258.681898
## iter 40 value 255.441265
## iter 50 value 254.324951
## iter 60 value 252.760447
## iter 70 value 252.531853
## iter 80 value 252.527061
## final value 252.527057
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 422.107583
## iter 10 value 306.936034
## iter 20 value 261.537213
## iter 30 value 259.825555
## iter 40 value 258.655386
## iter 50 value 258.522340
## iter 60 value 258.480351
## iter 70 value 258.474406
## iter 70 value 258.474404
## iter 70 value 258.474404
## final value 258.474404
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 412.603271
## iter 10 value 297.320749
## iter 20 value 265.527644
## iter 30 value 263.319703
## iter 40 value 260.244471
## iter 50 value 257.727589
## iter 60 value 253.419901
## iter 70 value 252.797715
## iter 80 value 252.771022
## iter 90 value 252.269384
## iter 100 value 252.246007
## final value 252.246007
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 460.455772
## iter 10 value 322.297183
## iter 20 value 259.101733
## iter 30 value 258.606288
## iter 40 value 258.597240
## iter 50 value 258.590295
## iter 60 value 258.501613
## iter 70 value 258.475040
## iter 80 value 258.474480
## final value 258.474439
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 430.786531
## iter 10 value 294.262012
## iter 20 value 261.575831
## iter 30 value 259.331684
## iter 40 value 258.562860
## iter 50 value 258.318863
## iter 60 value 258.273895
## iter 70 value 258.241154
## iter 80 value 258.230926
## iter 90 value 258.230438
## final value 258.230423
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 420.505623
## iter 10 value 278.580173
## iter 20 value 258.795770
## iter 30 value 258.608806
## iter 40 value 258.568116
## iter 50 value 258.381960
## iter 60 value 258.301694
## iter 70 value 258.241829
## iter 80 value 258.232018
## iter 90 value 258.230706
## final value 258.230426
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 411.063672
## iter 10 value 295.191388
## iter 20 value 263.066267
## iter 30 value 257.698317
## iter 40 value 254.755980
## iter 50 value 254.159329
## iter 60 value 253.290015
## iter 70 value 252.457194
## iter 80 value 252.366666
## iter 90 value 252.189570
## iter 100 value 252.087824
## final value 252.087824
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 453.971923
## iter 10 value 275.025065
## iter 20 value 260.529697
## iter 30 value 259.343834
## iter 40 value 258.588110
## iter 50 value 258.399710
## iter 60 value 258.322351
## iter 70 value 258.295559
## iter 80 value 258.278162
## iter 90 value 258.273182
## iter 100 value 258.272573
## final value 258.272573
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 416.002197
## iter 10 value 290.812179
## iter 20 value 259.306154
## iter 30 value 258.589972
## iter 40 value 258.546956
## iter 50 value 258.465594
## iter 60 value 258.432731
## iter 70 value 258.374627
## iter 80 value 258.277037
## iter 90 value 258.239906
## iter 100 value 258.231539
## final value 258.231539
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 445.231915
## iter 10 value 258.472177
## iter 20 value 233.201384
## iter 30 value 231.952401
## iter 40 value 231.328784
## iter 50 value 231.120302
## iter 60 value 231.106395
## iter 70 value 231.089323
## iter 80 value 231.083993
## final value 231.083804
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 399.583621
## iter 10 value 234.234455
## iter 20 value 232.344420
## iter 30 value 231.270767
## iter 40 value 231.215963
## iter 50 value 231.143567
## iter 60 value 231.117929
## iter 70 value 231.110306
## iter 80 value 231.083748
## iter 90 value 231.082662
## final value 231.082244
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 431.225321
## iter 10 value 234.091599
## iter 20 value 231.972485
## iter 30 value 231.303898
## iter 40 value 231.207524
## iter 50 value 231.171831
## iter 60 value 231.156634
## iter 70 value 231.135675
## iter 80 value 231.134344
## final value 231.133859
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 455.178160
## iter 10 value 267.591536
## iter 20 value 233.137352
## iter 30 value 231.758663
## iter 40 value 231.345145
## iter 50 value 231.202996
## iter 60 value 231.138251
## iter 70 value 231.104503
## final value 231.097283
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 401.925411
## iter 10 value 248.921058
## iter 20 value 233.241993
## iter 30 value 231.354860
## iter 40 value 231.281296
## iter 50 value 231.218277
## iter 60 value 231.174643
## iter 70 value 231.144328
## iter 80 value 231.136560
## iter 90 value 231.134318
## final value 231.134171
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 411.826805
## iter 10 value 282.043429
## iter 20 value 231.745626
## iter 30 value 231.246495
## iter 40 value 231.153725
## iter 50 value 231.001349
## iter 60 value 228.056359
## iter 70 value 186.382137
## iter 80 value 173.590309
## iter 90 value 170.089281
## iter 100 value 168.728908
## final value 168.728908
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 436.655481
## iter 10 value 261.205451
## iter 20 value 230.806420
## iter 30 value 209.257931
## iter 40 value 179.096386
## iter 50 value 175.036605
## iter 60 value 169.073682
## iter 70 value 166.328269
## iter 80 value 165.901068
## iter 90 value 165.846432
## iter 100 value 165.718879
## final value 165.718879
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 420.941712
## iter 10 value 305.494706
## iter 20 value 227.086150
## iter 30 value 196.462383
## iter 40 value 177.117331
## iter 50 value 171.949391
## iter 60 value 169.663118
## iter 70 value 167.959946
## iter 80 value 167.185921
## iter 90 value 167.039500
## iter 100 value 166.919104
## final value 166.919104
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 471.384265
## iter 10 value 353.115676
## iter 20 value 330.604279
## iter 30 value 319.969612
## iter 40 value 319.550789
## iter 50 value 319.080053
## iter 60 value 318.878538
## iter 70 value 318.754979
## iter 80 value 318.690103
## iter 90 value 318.652599
## iter 100 value 318.607836
## final value 318.607836
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 446.350318
## iter 10 value 307.523498
## iter 20 value 226.963516
## iter 30 value 187.612550
## iter 40 value 172.549635
## iter 50 value 169.958275
## iter 60 value 166.532619
## iter 70 value 166.119359
## iter 80 value 165.981325
## iter 90 value 165.753852
## iter 100 value 165.592020
## final value 165.592020
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 411.620331
## iter 10 value 240.558139
## iter 20 value 229.910330
## iter 30 value 183.368711
## iter 40 value 169.153444
## iter 50 value 166.717644
## iter 60 value 166.185639
## iter 70 value 166.085958
## iter 80 value 165.665575
## iter 90 value 165.208456
## iter 100 value 164.728220
## final value 164.728220
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 407.817840
## iter 10 value 255.803964
## iter 20 value 229.085875
## iter 30 value 220.195012
## iter 40 value 202.887412
## iter 50 value 182.757450
## iter 60 value 170.954487
## iter 70 value 168.655290
## iter 80 value 167.967587
## iter 90 value 167.559736
## iter 100 value 167.389301
## final value 167.389301
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 401.739193
## iter 10 value 257.026324
## iter 20 value 193.379846
## iter 30 value 174.029362
## iter 40 value 166.804468
## iter 50 value 163.209338
## iter 60 value 162.409801
## iter 70 value 161.962920
## iter 80 value 161.651785
## iter 90 value 161.433252
## iter 100 value 161.305886
## final value 161.305886
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 428.412369
## iter 10 value 232.490813
## iter 20 value 231.436856
## iter 30 value 231.364058
## iter 40 value 231.297851
## iter 50 value 231.170476
## iter 60 value 231.071513
## iter 70 value 228.142550
## iter 80 value 185.747206
## iter 90 value 171.668769
## iter 100 value 168.327113
## final value 168.327113
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 410.236804
## iter 10 value 241.232054
## iter 20 value 182.764713
## iter 30 value 169.856330
## iter 40 value 166.767075
## iter 50 value 166.622893
## iter 60 value 166.364026
## iter 70 value 166.087953
## iter 80 value 165.749852
## iter 90 value 165.643677
## iter 100 value 165.554972
## final value 165.554972
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 455.126738
## iter 10 value 368.115241
## iter 20 value 200.007476
## iter 30 value 199.930032
## final value 199.929849
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 405.618328
## iter 10 value 233.139469
## iter 20 value 200.092899
## iter 30 value 199.930287
## iter 40 value 199.929894
## final value 199.929871
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 404.828627
## iter 10 value 275.876574
## iter 20 value 201.461647
## iter 30 value 200.575540
## iter 40 value 199.937180
## iter 50 value 199.930565
## final value 199.929856
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 404.382524
## iter 10 value 216.751399
## iter 20 value 199.976199
## iter 30 value 199.942778
## iter 40 value 199.929848
## iter 40 value 199.929846
## iter 40 value 199.929846
## final value 199.929846
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 431.720512
## iter 10 value 319.285975
## iter 20 value 217.678964
## iter 30 value 204.208206
## iter 40 value 199.932597
## final value 199.929987
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 397.434729
## iter 10 value 250.412766
## iter 20 value 199.943217
## iter 30 value 175.588857
## iter 40 value 169.858248
## iter 50 value 169.318291
## iter 60 value 169.026570
## iter 70 value 168.820873
## iter 80 value 168.801511
## iter 90 value 168.784526
## iter 100 value 168.766553
## final value 168.766553
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 427.643718
## iter 10 value 262.023038
## iter 20 value 233.444588
## iter 30 value 227.950847
## iter 40 value 224.260804
## iter 50 value 209.026993
## iter 60 value 203.359715
## iter 70 value 200.598555
## iter 80 value 200.530217
## iter 90 value 200.335480
## iter 100 value 200.301585
## final value 200.301585
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 455.446114
## iter 10 value 251.711683
## iter 20 value 220.516160
## iter 30 value 201.091649
## iter 40 value 200.384035
## iter 50 value 197.515950
## iter 60 value 174.315316
## iter 70 value 172.969861
## iter 80 value 172.255307
## iter 90 value 170.986104
## iter 100 value 170.772776
## final value 170.772776
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 469.518756
## iter 10 value 226.623506
## iter 20 value 205.706306
## iter 30 value 178.074072
## iter 40 value 172.901133
## iter 50 value 170.787135
## iter 60 value 170.682796
## iter 70 value 170.621850
## iter 80 value 170.594777
## iter 90 value 170.568577
## iter 100 value 170.532521
## final value 170.532521
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 418.518951
## iter 10 value 225.580596
## iter 20 value 200.418088
## iter 30 value 200.090370
## iter 40 value 199.840858
## iter 50 value 198.518590
## iter 60 value 184.449542
## iter 70 value 171.999265
## iter 80 value 169.536158
## iter 90 value 169.168624
## iter 100 value 169.048354
## final value 169.048354
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 426.637030
## iter 10 value 281.642256
## iter 20 value 243.863537
## iter 30 value 225.253425
## iter 40 value 214.066975
## iter 50 value 202.470783
## iter 60 value 196.731311
## iter 70 value 193.444431
## iter 80 value 181.479839
## iter 90 value 175.504953
## iter 100 value 169.694715
## final value 169.694715
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 443.299905
## iter 10 value 247.486094
## iter 20 value 201.658576
## iter 30 value 200.164302
## iter 40 value 199.943748
## iter 50 value 199.746973
## iter 60 value 185.750278
## iter 70 value 173.152331
## iter 80 value 170.335886
## iter 90 value 169.645003
## iter 100 value 169.103582
## final value 169.103582
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 395.262206
## iter 10 value 265.295703
## iter 20 value 190.670710
## iter 30 value 171.143811
## iter 40 value 169.563301
## iter 50 value 169.192738
## iter 60 value 169.142677
## iter 70 value 169.090768
## iter 80 value 168.981573
## iter 90 value 168.803411
## iter 100 value 168.503863
## final value 168.503863
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 440.349630
## iter 10 value 351.582616
## iter 20 value 200.433950
## iter 30 value 186.352977
## iter 40 value 171.731608
## iter 50 value 169.409501
## iter 60 value 169.109376
## iter 70 value 169.041323
## iter 80 value 168.945375
## iter 90 value 168.867371
## iter 100 value 168.812273
## final value 168.812273
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 426.047679
## iter 10 value 219.407070
## iter 20 value 199.946499
## iter 30 value 199.848346
## iter 40 value 199.762947
## iter 50 value 199.123597
## iter 60 value 198.925918
## iter 70 value 198.817556
## iter 80 value 198.703068
## iter 90 value 197.785424
## iter 100 value 191.388409
## final value 191.388409
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 426.208125
## iter 10 value 277.623076
## iter 20 value 235.898553
## iter 30 value 235.672680
## iter 30 value 235.672679
## iter 30 value 235.672679
## final value 235.672679
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 463.682627
## iter 10 value 239.286209
## iter 20 value 235.672892
## final value 235.672679
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 483.692779
## iter 10 value 286.531203
## iter 20 value 235.791896
## iter 30 value 235.428822
## iter 30 value 235.428822
## iter 30 value 235.428822
## final value 235.428822
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 405.542636
## iter 10 value 391.245271
## iter 20 value 235.636909
## final value 235.428844
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 399.986738
## iter 10 value 291.098257
## iter 20 value 235.532794
## final value 235.428822
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 393.820820
## iter 10 value 298.351028
## iter 20 value 236.326795
## iter 30 value 232.534384
## iter 40 value 232.032153
## iter 50 value 231.894741
## final value 231.893388
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 437.478150
## iter 10 value 262.506178
## iter 20 value 239.585477
## iter 30 value 237.347342
## iter 40 value 233.040670
## iter 50 value 232.010656
## iter 60 value 231.891696
## iter 70 value 231.891241
## iter 80 value 231.881673
## iter 90 value 231.872357
## iter 100 value 231.841795
## final value 231.841795
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 407.476323
## iter 10 value 278.870712
## iter 20 value 234.302939
## iter 30 value 232.065351
## iter 40 value 231.868494
## iter 50 value 231.851609
## iter 60 value 231.844539
## iter 70 value 231.833181
## final value 231.833163
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 411.173765
## iter 10 value 281.658374
## iter 20 value 233.676021
## iter 30 value 232.423544
## iter 40 value 232.068769
## iter 50 value 231.859504
## iter 60 value 231.844744
## iter 70 value 231.833195
## final value 231.833163
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 441.602984
## iter 10 value 313.335557
## iter 20 value 236.944809
## iter 30 value 233.965594
## iter 40 value 233.010868
## iter 50 value 231.956137
## iter 60 value 231.833469
## iter 70 value 231.833320
## final value 231.833295
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 404.008756
## iter 10 value 252.390294
## iter 20 value 236.796270
## iter 30 value 233.108071
## iter 40 value 231.907102
## iter 50 value 231.834914
## iter 60 value 231.706541
## iter 70 value 231.662505
## iter 80 value 231.619497
## iter 90 value 231.616800
## iter 100 value 231.614610
## final value 231.614610
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 478.145067
## iter 10 value 294.299766
## iter 20 value 232.319032
## iter 30 value 231.954637
## iter 40 value 231.796537
## iter 50 value 231.703094
## iter 60 value 231.648257
## iter 70 value 231.642956
## iter 80 value 231.640351
## iter 90 value 231.636355
## iter 100 value 231.618212
## final value 231.618212
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 442.701737
## iter 10 value 305.835205
## iter 20 value 236.367394
## iter 30 value 234.011053
## iter 40 value 232.433348
## iter 50 value 231.784905
## iter 60 value 231.726248
## iter 70 value 231.679172
## iter 80 value 231.632484
## iter 90 value 231.629485
## iter 100 value 231.628503
## final value 231.628503
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 395.276018
## iter 10 value 246.471980
## iter 20 value 232.860594
## iter 30 value 231.988823
## iter 40 value 231.838711
## iter 50 value 231.796261
## iter 60 value 231.743931
## iter 70 value 231.708842
## iter 80 value 231.623835
## iter 90 value 231.615150
## iter 100 value 231.613870
## final value 231.613870
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 430.920654
## iter 10 value 307.316147
## iter 20 value 234.457321
## iter 30 value 232.353807
## iter 40 value 231.791130
## iter 50 value 231.719212
## iter 60 value 231.654742
## iter 70 value 231.642679
## iter 80 value 231.617224
## iter 90 value 231.614821
## iter 100 value 231.613773
## final value 231.613773
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 425.713886
## iter 10 value 256.929469
## iter 20 value 228.542432
## iter 30 value 221.866553
## iter 40 value 206.711653
## iter 50 value 205.475663
## iter 60 value 202.699857
## iter 70 value 200.283736
## iter 80 value 199.989153
## iter 90 value 199.986431
## final value 199.986420
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 415.248578
## iter 10 value 239.303063
## iter 20 value 205.970254
## iter 30 value 203.591431
## iter 40 value 201.231411
## iter 50 value 200.045406
## iter 60 value 199.984105
## final value 199.984102
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 398.347271
## iter 10 value 236.830209
## iter 20 value 200.603727
## iter 30 value 200.031404
## iter 40 value 200.022522
## iter 50 value 199.984555
## final value 199.984097
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 413.777270
## iter 10 value 256.591264
## iter 20 value 202.356103
## iter 30 value 200.173984
## iter 40 value 199.991513
## iter 50 value 199.986423
## iter 50 value 199.986423
## final value 199.986423
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 476.435732
## iter 10 value 235.285097
## iter 20 value 200.339732
## iter 30 value 199.994856
## final value 199.986479
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 464.158274
## iter 10 value 265.685508
## iter 20 value 206.484008
## iter 30 value 200.099750
## iter 40 value 200.026089
## iter 50 value 200.005395
## iter 60 value 199.983786
## iter 70 value 199.786635
## iter 80 value 177.301242
## iter 90 value 171.786678
## iter 100 value 169.921735
## final value 169.921735
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 426.840184
## iter 10 value 212.671642
## iter 20 value 196.460157
## iter 30 value 177.437019
## iter 40 value 174.354767
## iter 50 value 173.468650
## iter 60 value 172.664243
## iter 70 value 171.598614
## iter 80 value 171.169335
## iter 90 value 171.032226
## iter 100 value 170.876239
## final value 170.876239
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 406.443706
## iter 10 value 213.728408
## iter 20 value 194.134716
## iter 30 value 173.825103
## iter 40 value 171.183415
## iter 50 value 169.757033
## iter 60 value 169.404868
## iter 70 value 169.244435
## iter 80 value 169.185634
## iter 90 value 169.154822
## iter 100 value 169.121024
## final value 169.121024
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 441.271096
## iter 10 value 234.434786
## iter 20 value 200.216696
## iter 30 value 200.087319
## iter 40 value 200.037374
## iter 50 value 199.941786
## iter 60 value 194.322046
## iter 70 value 179.979109
## iter 80 value 173.795427
## iter 90 value 170.793937
## iter 100 value 170.073551
## final value 170.073551
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 402.306555
## iter 10 value 215.187248
## iter 20 value 200.218838
## iter 30 value 188.253085
## iter 40 value 172.220520
## iter 50 value 170.518436
## iter 60 value 169.663638
## iter 70 value 169.294993
## iter 80 value 169.151867
## iter 90 value 169.022306
## iter 100 value 168.641844
## final value 168.641844
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 417.786971
## iter 10 value 254.301783
## iter 20 value 193.907657
## iter 30 value 172.392158
## iter 40 value 170.277478
## iter 50 value 169.549554
## iter 60 value 169.444788
## iter 70 value 169.299401
## iter 80 value 169.160241
## iter 90 value 169.077461
## iter 100 value 169.028606
## final value 169.028606
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 439.335943
## iter 10 value 261.592511
## iter 20 value 203.678061
## iter 30 value 200.312127
## iter 40 value 200.114676
## iter 50 value 199.947418
## iter 60 value 199.838735
## iter 70 value 198.095267
## iter 80 value 184.130033
## iter 90 value 176.319007
## iter 100 value 175.325606
## final value 175.325606
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 427.533228
## iter 10 value 301.850023
## iter 20 value 267.632061
## iter 30 value 264.860701
## iter 40 value 262.066653
## iter 50 value 255.692215
## iter 60 value 240.092828
## iter 70 value 224.813097
## iter 80 value 209.204270
## iter 90 value 202.487097
## iter 100 value 201.171457
## final value 201.171457
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 488.663138
## iter 10 value 249.391993
## iter 20 value 200.529247
## iter 30 value 199.910525
## iter 40 value 198.895050
## iter 50 value 180.012367
## iter 60 value 171.152268
## iter 70 value 169.723538
## iter 80 value 169.202885
## iter 90 value 169.144366
## iter 100 value 169.124372
## final value 169.124372
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 446.385890
## iter 10 value 388.349524
## iter 20 value 234.362055
## iter 30 value 200.032645
## iter 40 value 199.961442
## iter 50 value 199.126092
## iter 60 value 182.500162
## iter 70 value 172.441917
## iter 80 value 170.558394
## iter 90 value 170.089197
## iter 100 value 169.713372
## final value 169.713372
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 446.059228
## iter 10 value 249.228935
## iter 20 value 242.069102
## iter 30 value 242.013710
## iter 40 value 241.969875
## iter 50 value 241.959187
## iter 60 value 241.952774
## iter 70 value 241.942088
## iter 80 value 241.941113
## iter 90 value 241.939809
## iter 100 value 241.939461
## final value 241.939461
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 409.928851
## iter 10 value 354.492511
## iter 20 value 242.433732
## iter 30 value 242.091800
## iter 40 value 242.002972
## iter 50 value 241.978555
## iter 60 value 241.961641
## iter 70 value 241.944227
## iter 80 value 241.943197
## iter 90 value 241.942318
## iter 100 value 241.941632
## final value 241.941632
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 412.297594
## iter 10 value 358.214553
## iter 20 value 249.735009
## iter 30 value 242.789386
## iter 40 value 242.126032
## iter 50 value 242.004442
## iter 60 value 241.955918
## iter 70 value 241.953079
## iter 80 value 241.946082
## final value 241.944780
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 404.044657
## iter 10 value 347.298371
## iter 20 value 346.210231
## iter 30 value 346.181075
## iter 40 value 346.178375
## iter 50 value 346.044168
## iter 60 value 345.976241
## iter 70 value 345.971004
## final value 345.969862
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 423.507211
## iter 10 value 261.007751
## iter 20 value 242.094749
## iter 30 value 242.021665
## iter 40 value 241.955612
## iter 50 value 241.952078
## iter 60 value 241.947339
## iter 70 value 241.945250
## iter 80 value 241.943634
## iter 90 value 241.942639
## iter 100 value 241.935418
## final value 241.935418
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 429.358452
## iter 10 value 339.639996
## iter 20 value 242.671789
## iter 30 value 241.555853
## iter 40 value 216.015284
## iter 50 value 189.609379
## iter 60 value 186.953238
## iter 70 value 186.317554
## iter 80 value 185.456285
## iter 90 value 184.817860
## iter 100 value 184.213080
## final value 184.213080
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 420.888835
## iter 10 value 268.452482
## iter 20 value 242.033868
## iter 30 value 230.615233
## iter 40 value 208.613402
## iter 50 value 194.494202
## iter 60 value 189.556360
## iter 70 value 187.991104
## iter 80 value 187.357962
## iter 90 value 186.547433
## iter 100 value 186.045459
## final value 186.045459
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 414.985390
## iter 10 value 256.069429
## iter 20 value 238.825333
## iter 30 value 197.034330
## iter 40 value 186.184073
## iter 50 value 185.835753
## iter 60 value 185.621682
## iter 70 value 185.187617
## iter 80 value 185.105783
## iter 90 value 185.045922
## iter 100 value 185.033647
## final value 185.033647
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 406.862212
## iter 10 value 257.622509
## iter 20 value 234.403570
## iter 30 value 195.222111
## iter 40 value 190.483518
## iter 50 value 187.034906
## iter 60 value 186.657486
## iter 70 value 186.186691
## iter 80 value 186.095825
## iter 90 value 185.937982
## iter 100 value 185.387456
## final value 185.387456
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 421.556615
## iter 10 value 308.889689
## iter 20 value 240.148512
## iter 30 value 227.592236
## iter 40 value 189.203551
## iter 50 value 185.808728
## iter 60 value 185.107485
## iter 70 value 185.058020
## iter 80 value 185.031816
## iter 90 value 184.953755
## iter 100 value 184.913115
## final value 184.913115
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 439.643035
## iter 10 value 303.251120
## iter 20 value 246.879170
## iter 30 value 242.598782
## iter 40 value 238.117961
## iter 50 value 206.048711
## iter 60 value 187.880484
## iter 70 value 186.997580
## iter 80 value 186.409537
## iter 90 value 186.375449
## iter 100 value 186.335884
## final value 186.335884
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 431.110687
## iter 10 value 268.849345
## iter 20 value 220.711226
## iter 30 value 190.490846
## iter 40 value 186.587499
## iter 50 value 186.112122
## iter 60 value 185.007772
## iter 70 value 184.348800
## iter 80 value 183.751014
## iter 90 value 183.379562
## iter 100 value 182.892512
## final value 182.892512
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 411.413427
## iter 10 value 278.277245
## iter 20 value 220.526414
## iter 30 value 189.229941
## iter 40 value 185.340731
## iter 50 value 184.354325
## iter 60 value 184.177908
## iter 70 value 183.796016
## iter 80 value 182.156781
## iter 90 value 180.826836
## iter 100 value 180.589635
## final value 180.589635
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 494.130835
## iter 10 value 279.985280
## iter 20 value 241.315801
## iter 30 value 216.775150
## iter 40 value 190.732495
## iter 50 value 187.042568
## iter 60 value 186.389721
## iter 70 value 186.249119
## iter 80 value 185.825042
## iter 90 value 185.362783
## iter 100 value 185.279276
## final value 185.279276
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 404.585404
## iter 10 value 248.234745
## iter 20 value 192.081062
## iter 30 value 186.819497
## iter 40 value 185.700016
## iter 50 value 185.449347
## iter 60 value 185.191484
## iter 70 value 184.899239
## iter 80 value 184.505481
## iter 90 value 184.028870
## iter 100 value 183.435161
## final value 183.435161
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 400.837238
## iter 10 value 352.722717
## iter 20 value 270.643890
## iter 30 value 270.567051
## iter 30 value 270.567049
## iter 30 value 270.567049
## final value 270.567049
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 408.499996
## iter 10 value 335.430446
## iter 20 value 270.474685
## iter 30 value 270.404757
## iter 30 value 270.404756
## iter 30 value 270.404756
## final value 270.404756
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 425.274432
## iter 10 value 395.409830
## iter 20 value 286.160362
## iter 30 value 270.582423
## final value 270.567049
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 427.743874
## iter 10 value 370.861141
## iter 20 value 276.288388
## iter 30 value 270.567052
## iter 30 value 270.567050
## iter 30 value 270.567050
## final value 270.567050
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 443.274113
## iter 10 value 298.159171
## iter 20 value 270.550116
## final value 270.404756
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 477.341420
## iter 10 value 296.881029
## iter 20 value 268.187908
## iter 30 value 267.570666
## iter 40 value 267.241624
## iter 50 value 267.198806
## iter 60 value 267.182981
## iter 70 value 267.170689
## iter 70 value 267.170687
## iter 70 value 267.170687
## final value 267.170687
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 417.593412
## iter 10 value 311.475506
## iter 20 value 270.657469
## iter 30 value 268.015738
## iter 40 value 267.309221
## iter 50 value 267.232103
## iter 60 value 267.214116
## iter 70 value 267.171817
## final value 267.170689
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 432.365095
## iter 10 value 320.307529
## iter 20 value 271.927302
## iter 30 value 270.630290
## iter 40 value 268.577538
## iter 50 value 267.281236
## iter 60 value 267.235506
## iter 70 value 267.234042
## iter 80 value 267.230677
## iter 90 value 267.181190
## iter 100 value 267.171006
## final value 267.171006
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 465.790640
## iter 10 value 319.930108
## iter 20 value 269.835000
## iter 30 value 268.169563
## iter 40 value 267.387491
## iter 50 value 267.182729
## iter 60 value 267.170895
## final value 267.170685
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 435.155224
## iter 10 value 341.243554
## iter 20 value 270.373508
## iter 30 value 267.863199
## iter 40 value 267.312478
## iter 50 value 267.235162
## iter 60 value 267.223641
## iter 70 value 267.203152
## final value 267.203084
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 429.182693
## iter 10 value 298.906086
## iter 20 value 270.200387
## iter 30 value 268.186715
## iter 40 value 267.593745
## iter 50 value 267.237872
## iter 60 value 267.112700
## iter 70 value 267.012273
## iter 80 value 266.943519
## iter 90 value 266.939142
## iter 100 value 266.926178
## final value 266.926178
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 458.088910
## iter 10 value 297.986773
## iter 20 value 271.447866
## iter 30 value 268.355528
## iter 40 value 267.351264
## iter 50 value 267.059470
## iter 60 value 266.969344
## iter 70 value 266.958807
## iter 80 value 266.949962
## final value 266.949894
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 400.862171
## iter 10 value 300.630876
## iter 20 value 269.467627
## iter 30 value 267.433558
## iter 40 value 267.217057
## iter 50 value 267.102709
## iter 60 value 267.070838
## iter 70 value 266.982614
## iter 80 value 266.939980
## iter 90 value 266.934622
## iter 100 value 266.923394
## final value 266.923394
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 450.172791
## iter 10 value 327.262580
## iter 20 value 274.226983
## iter 30 value 269.111601
## iter 40 value 267.393455
## iter 50 value 267.058999
## iter 60 value 266.971647
## iter 70 value 266.954178
## iter 80 value 266.948232
## iter 90 value 266.943952
## iter 100 value 266.933737
## final value 266.933737
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 478.536863
## iter 10 value 302.632110
## iter 20 value 267.577230
## iter 30 value 267.263163
## iter 40 value 267.207263
## iter 50 value 267.072185
## iter 60 value 267.009854
## iter 70 value 266.983777
## iter 80 value 266.950860
## iter 90 value 266.949880
## iter 100 value 266.949710
## final value 266.949710
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 419.673075
## iter 10 value 299.136003
## iter 20 value 243.244040
## iter 30 value 242.113425
## iter 40 value 242.045166
## iter 50 value 242.014548
## iter 60 value 242.007089
## iter 70 value 242.002047
## iter 80 value 242.001196
## iter 80 value 242.001196
## final value 242.001196
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 432.992213
## iter 10 value 289.775041
## iter 20 value 244.723726
## iter 30 value 242.080038
## iter 40 value 242.012826
## iter 50 value 242.006033
## iter 60 value 242.004095
## iter 70 value 242.003219
## iter 80 value 242.000866
## final value 242.000563
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 456.280916
## iter 10 value 319.925677
## iter 20 value 242.979161
## iter 30 value 242.118959
## iter 40 value 242.017829
## iter 50 value 242.001492
## iter 60 value 241.997049
## iter 70 value 241.995617
## iter 80 value 241.994935
## iter 90 value 241.994336
## iter 100 value 241.993893
## final value 241.993893
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 417.445527
## iter 10 value 279.384059
## iter 20 value 242.954736
## iter 30 value 242.185760
## iter 40 value 242.047180
## iter 50 value 242.011923
## iter 60 value 242.007765
## iter 70 value 242.003166
## iter 80 value 242.002169
## iter 90 value 242.001731
## iter 100 value 242.001113
## final value 242.001113
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 400.457912
## iter 10 value 337.981076
## iter 20 value 292.443932
## iter 30 value 262.050159
## iter 40 value 248.253515
## iter 50 value 243.593352
## iter 60 value 242.205244
## iter 70 value 242.007348
## iter 80 value 242.003802
## iter 90 value 242.003489
## iter 100 value 242.002738
## final value 242.002738
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 444.079218
## iter 10 value 241.231277
## iter 20 value 230.931175
## iter 30 value 194.965509
## iter 40 value 188.730333
## iter 50 value 187.340153
## iter 60 value 186.565311
## iter 70 value 186.127969
## iter 80 value 186.039697
## iter 90 value 185.536125
## iter 100 value 185.140154
## final value 185.140154
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 440.700958
## iter 10 value 256.725579
## iter 20 value 244.213642
## iter 30 value 242.782037
## iter 40 value 242.588977
## iter 50 value 197.157632
## iter 60 value 188.735200
## iter 70 value 187.516901
## iter 80 value 187.455817
## iter 90 value 187.197768
## iter 100 value 186.770515
## final value 186.770515
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 406.081157
## iter 10 value 291.360836
## iter 20 value 242.021581
## iter 30 value 241.074617
## iter 40 value 201.726479
## iter 50 value 189.340137
## iter 60 value 187.462247
## iter 70 value 187.251445
## iter 80 value 186.837983
## iter 90 value 186.568615
## iter 100 value 186.306853
## final value 186.306853
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 433.759356
## iter 10 value 253.693130
## iter 20 value 239.770256
## iter 30 value 194.425846
## iter 40 value 190.113349
## iter 50 value 187.850782
## iter 60 value 187.194295
## iter 70 value 186.821793
## iter 80 value 186.726204
## iter 90 value 186.567739
## iter 100 value 186.353543
## final value 186.353543
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 420.313415
## iter 10 value 312.978648
## iter 20 value 243.986805
## iter 30 value 242.039756
## iter 40 value 225.406729
## iter 50 value 193.509795
## iter 60 value 188.499988
## iter 70 value 187.874018
## iter 80 value 187.399483
## iter 90 value 186.967283
## iter 100 value 186.264559
## final value 186.264559
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 415.728059
## iter 10 value 248.478726
## iter 20 value 227.552359
## iter 30 value 189.334599
## iter 40 value 186.145117
## iter 50 value 186.021330
## iter 60 value 186.018249
## iter 70 value 185.935276
## iter 80 value 185.623688
## iter 90 value 185.351291
## iter 100 value 185.229971
## final value 185.229971
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 417.123676
## iter 10 value 327.708286
## iter 20 value 239.923568
## iter 30 value 194.924516
## iter 40 value 188.497033
## iter 50 value 186.398964
## iter 60 value 185.584380
## iter 70 value 185.450079
## iter 80 value 185.359228
## iter 90 value 185.299081
## iter 100 value 185.259751
## final value 185.259751
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 421.263916
## iter 10 value 277.304525
## iter 20 value 215.615999
## iter 30 value 187.777686
## iter 40 value 186.039242
## iter 50 value 185.473546
## iter 60 value 185.398241
## iter 70 value 185.324202
## iter 80 value 185.266523
## iter 90 value 185.203631
## iter 100 value 184.762445
## final value 184.762445
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 406.647558
## iter 10 value 261.520395
## iter 20 value 232.403148
## iter 30 value 194.166301
## iter 40 value 187.871643
## iter 50 value 186.915030
## iter 60 value 186.824629
## iter 70 value 186.771709
## iter 80 value 186.520429
## iter 90 value 186.426307
## iter 100 value 186.359169
## final value 186.359169
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 437.249547
## iter 10 value 263.403237
## iter 20 value 238.135826
## iter 30 value 192.571473
## iter 40 value 188.045314
## iter 50 value 187.202406
## iter 60 value 186.879149
## iter 70 value 186.784823
## iter 80 value 186.552546
## iter 90 value 186.187895
## iter 100 value 185.660301
## final value 185.660301
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 406.596997
## iter 10 value 223.741347
## iter 20 value 217.424692
## final value 217.424637
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 415.265515
## iter 10 value 304.950869
## iter 20 value 217.671723
## iter 30 value 217.445909
## iter 40 value 217.429517
## iter 50 value 217.425118
## final value 217.424621
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 421.417407
## iter 10 value 337.867710
## iter 20 value 217.684216
## iter 30 value 217.446179
## iter 40 value 217.424964
## final value 217.424693
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 436.703239
## iter 10 value 249.529686
## iter 20 value 238.861215
## iter 30 value 236.780825
## iter 40 value 227.378539
## iter 50 value 224.038036
## iter 60 value 223.304474
## iter 70 value 220.503750
## iter 80 value 217.916915
## iter 90 value 217.464029
## iter 100 value 217.424785
## final value 217.424785
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 411.105781
## iter 10 value 233.268404
## iter 20 value 217.885022
## iter 30 value 217.557632
## iter 40 value 217.553792
## iter 50 value 217.526954
## iter 60 value 217.506595
## iter 70 value 217.490763
## iter 80 value 217.445235
## iter 90 value 217.430281
## iter 100 value 217.424771
## final value 217.424771
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 420.472726
## iter 10 value 231.387106
## iter 20 value 199.745335
## iter 30 value 191.118490
## iter 40 value 187.842904
## iter 50 value 184.637260
## iter 60 value 183.900077
## iter 70 value 183.259654
## iter 80 value 182.779116
## iter 90 value 182.495736
## iter 100 value 182.382118
## final value 182.382118
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 395.982651
## iter 10 value 238.126590
## iter 20 value 205.843977
## iter 30 value 192.748406
## iter 40 value 190.048043
## iter 50 value 184.394153
## iter 60 value 182.330755
## iter 70 value 181.058248
## iter 80 value 180.652218
## iter 90 value 179.920850
## iter 100 value 179.640311
## final value 179.640311
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 406.249333
## final value 328.000000
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 442.531622
## iter 10 value 273.554055
## iter 20 value 217.574804
## iter 30 value 208.201030
## iter 40 value 186.872567
## iter 50 value 182.564070
## iter 60 value 181.759236
## iter 70 value 180.633464
## iter 80 value 179.851352
## iter 90 value 179.423025
## iter 100 value 179.316785
## final value 179.316785
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 433.732294
## iter 10 value 230.590882
## iter 20 value 208.172707
## iter 30 value 184.072821
## iter 40 value 182.790113
## iter 50 value 182.446786
## iter 60 value 182.372964
## iter 70 value 182.351102
## iter 80 value 182.339156
## iter 90 value 182.331911
## iter 100 value 182.328832
## final value 182.328832
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 423.236948
## iter 10 value 326.179383
## iter 20 value 216.736709
## iter 30 value 205.978156
## iter 40 value 190.096285
## iter 50 value 183.493381
## iter 60 value 182.087868
## iter 70 value 181.678611
## iter 80 value 181.038852
## iter 90 value 180.498651
## iter 100 value 180.095523
## final value 180.095523
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 440.381304
## iter 10 value 304.928293
## iter 20 value 279.821634
## iter 30 value 278.347208
## iter 40 value 272.436908
## iter 50 value 231.060060
## iter 60 value 222.283421
## iter 70 value 218.925943
## iter 80 value 218.729710
## iter 90 value 218.613013
## iter 100 value 218.554715
## final value 218.554715
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 444.765950
## iter 10 value 268.703400
## iter 20 value 216.122373
## iter 30 value 198.941487
## iter 40 value 189.633396
## iter 50 value 184.206686
## iter 60 value 181.964414
## iter 70 value 181.615686
## iter 80 value 181.302515
## iter 90 value 180.250231
## iter 100 value 179.264620
## final value 179.264620
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 424.695565
## iter 10 value 278.466848
## iter 20 value 241.720490
## iter 30 value 226.545675
## iter 40 value 219.859448
## iter 50 value 219.443247
## iter 60 value 218.127814
## iter 70 value 217.580038
## iter 80 value 217.075073
## iter 90 value 215.633626
## iter 100 value 194.039594
## final value 194.039594
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 416.399882
## iter 10 value 302.601040
## iter 20 value 289.711449
## iter 30 value 289.386123
## iter 40 value 277.262351
## iter 50 value 254.361335
## iter 60 value 241.693176
## iter 70 value 240.996790
## iter 80 value 239.187703
## iter 90 value 236.630375
## iter 100 value 231.820659
## final value 231.820659
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 423.050996
## iter 10 value 263.173387
## iter 20 value 250.862903
## final value 250.503115
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 463.537905
## iter 10 value 318.019808
## iter 20 value 250.703348
## final value 250.503115
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 447.244219
## iter 10 value 382.775140
## iter 20 value 251.102852
## iter 30 value 250.503617
## final value 250.503115
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 403.265376
## iter 10 value 296.130888
## iter 20 value 253.356932
## iter 30 value 250.503124
## final value 250.503115
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 403.310727
## iter 10 value 297.180217
## iter 20 value 251.368405
## final value 250.503115
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 432.048254
## iter 10 value 282.058478
## iter 20 value 249.585319
## iter 30 value 247.912213
## iter 40 value 247.128945
## iter 50 value 246.845599
## iter 60 value 246.844183
## iter 70 value 246.835482
## iter 80 value 246.826062
## iter 90 value 246.817027
## iter 100 value 246.806822
## final value 246.806822
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 426.049882
## iter 10 value 271.243393
## iter 20 value 252.098002
## iter 30 value 250.482312
## iter 40 value 247.856989
## iter 50 value 246.832778
## iter 60 value 246.811696
## iter 70 value 246.807053
## final value 246.806895
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 414.024663
## iter 10 value 338.421398
## iter 20 value 249.032142
## iter 30 value 247.120828
## iter 40 value 246.839254
## iter 50 value 246.826899
## iter 60 value 246.813187
## iter 70 value 246.806812
## final value 246.806804
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 421.806984
## iter 10 value 307.211189
## iter 20 value 247.868315
## iter 30 value 246.872195
## iter 40 value 246.840678
## iter 50 value 246.832039
## iter 60 value 246.798637
## iter 70 value 246.776215
## final value 246.775669
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 399.039997
## iter 10 value 311.964491
## iter 20 value 250.607917
## iter 30 value 247.276507
## iter 40 value 247.021689
## iter 50 value 246.830867
## iter 60 value 246.812016
## iter 70 value 246.779644
## iter 80 value 246.775680
## final value 246.775659
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 401.309185
## iter 10 value 277.235103
## iter 20 value 250.197264
## iter 30 value 247.474333
## iter 40 value 246.866933
## iter 50 value 246.796171
## iter 60 value 246.725842
## iter 70 value 246.633435
## iter 80 value 246.550360
## iter 90 value 246.541521
## iter 100 value 246.538323
## final value 246.538323
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 413.769337
## iter 10 value 320.908434
## iter 20 value 252.842666
## iter 30 value 248.386887
## iter 40 value 247.350667
## iter 50 value 247.104295
## iter 60 value 246.912019
## iter 70 value 246.843297
## iter 80 value 246.706082
## iter 90 value 246.571166
## iter 100 value 246.542418
## final value 246.542418
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 404.197021
## iter 10 value 283.483030
## iter 20 value 254.445464
## iter 30 value 249.172837
## iter 40 value 247.744796
## iter 50 value 247.288650
## iter 60 value 246.904893
## iter 70 value 246.650107
## iter 80 value 246.564330
## iter 90 value 246.546765
## iter 100 value 246.546089
## final value 246.546089
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 432.836764
## iter 10 value 312.353391
## iter 20 value 247.814739
## iter 30 value 246.965956
## iter 40 value 246.777269
## iter 50 value 246.720601
## iter 60 value 246.668140
## iter 70 value 246.598925
## iter 80 value 246.517633
## iter 90 value 246.515007
## iter 100 value 246.514134
## final value 246.514134
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 407.177415
## iter 10 value 273.268619
## iter 20 value 249.491874
## iter 30 value 246.913364
## iter 40 value 246.788003
## iter 50 value 246.736971
## iter 60 value 246.629636
## iter 70 value 246.580323
## iter 80 value 246.534341
## iter 90 value 246.530507
## iter 100 value 246.528002
## final value 246.528002
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 403.131835
## iter 10 value 364.831301
## iter 20 value 218.003536
## iter 30 value 217.534113
## iter 40 value 217.501617
## iter 50 value 217.487252
## iter 60 value 217.472478
## final value 217.471765
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 414.637895
## iter 10 value 222.815666
## iter 20 value 217.498020
## iter 30 value 217.474209
## final value 217.469889
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 408.859295
## iter 10 value 254.055579
## iter 20 value 217.481399
## iter 30 value 217.475448
## final value 217.471772
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 404.540880
## iter 10 value 217.700631
## iter 20 value 217.501350
## iter 30 value 217.474981
## final value 217.471768
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 420.128954
## iter 10 value 241.086850
## iter 20 value 217.613292
## iter 30 value 217.484395
## iter 40 value 217.472006
## iter 50 value 217.471765
## iter 50 value 217.471764
## iter 50 value 217.471764
## final value 217.471764
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 412.452432
## iter 10 value 279.420022
## iter 20 value 235.892046
## iter 30 value 219.673637
## iter 40 value 217.414209
## iter 50 value 211.223849
## iter 60 value 191.293275
## iter 70 value 186.254530
## iter 80 value 183.751210
## iter 90 value 182.918702
## iter 100 value 181.845422
## final value 181.845422
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 453.797112
## iter 10 value 239.713630
## iter 20 value 218.056299
## iter 30 value 217.490969
## iter 40 value 217.375276
## iter 50 value 216.812823
## iter 60 value 211.272396
## iter 70 value 194.303393
## iter 80 value 190.095507
## iter 90 value 185.957373
## iter 100 value 182.948252
## final value 182.948252
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 402.363721
## iter 10 value 288.152504
## iter 20 value 218.441142
## iter 30 value 217.787396
## iter 40 value 213.382162
## iter 50 value 193.036370
## iter 60 value 186.363596
## iter 70 value 182.254385
## iter 80 value 178.037913
## iter 90 value 174.279019
## iter 100 value 173.359635
## final value 173.359635
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 405.401607
## iter 10 value 228.864076
## iter 20 value 216.973352
## iter 30 value 216.435372
## iter 40 value 215.705076
## iter 50 value 208.357412
## iter 60 value 203.461380
## iter 70 value 196.148851
## iter 80 value 185.135500
## iter 90 value 181.785023
## iter 100 value 181.033259
## final value 181.033259
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 436.055664
## iter 10 value 278.025783
## iter 20 value 245.968879
## iter 30 value 228.852392
## iter 40 value 223.806135
## iter 50 value 223.090513
## iter 60 value 222.504485
## iter 70 value 222.188909
## iter 80 value 219.141979
## iter 90 value 219.000203
## iter 100 value 218.687862
## final value 218.687862
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 404.148251
## iter 10 value 306.466046
## iter 20 value 286.710251
## iter 30 value 286.232019
## iter 40 value 282.392737
## iter 50 value 253.894326
## iter 60 value 219.735038
## iter 70 value 208.812185
## iter 80 value 203.129736
## iter 90 value 198.205943
## iter 100 value 189.086981
## final value 189.086981
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 402.958820
## iter 10 value 231.475542
## iter 20 value 203.256589
## iter 30 value 189.344904
## iter 40 value 185.725257
## iter 50 value 183.853242
## iter 60 value 183.228065
## iter 70 value 182.869314
## iter 80 value 181.847601
## iter 90 value 180.810001
## iter 100 value 178.667382
## final value 178.667382
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 421.052707
## iter 10 value 266.617687
## iter 20 value 218.928163
## iter 30 value 216.341714
## iter 40 value 206.817382
## iter 50 value 185.112464
## iter 60 value 182.942909
## iter 70 value 181.556024
## iter 80 value 180.437858
## iter 90 value 180.034601
## iter 100 value 179.820962
## final value 179.820962
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 431.311635
## iter 10 value 285.960856
## iter 20 value 215.833861
## iter 30 value 194.836887
## iter 40 value 188.092008
## iter 50 value 185.871751
## iter 60 value 184.003308
## iter 70 value 182.308141
## iter 80 value 181.836030
## iter 90 value 181.613515
## iter 100 value 181.011898
## final value 181.011898
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 401.327719
## iter 10 value 257.324387
## iter 20 value 210.149816
## iter 30 value 186.768372
## iter 40 value 184.934949
## iter 50 value 183.328331
## iter 60 value 182.711868
## iter 70 value 182.062131
## iter 80 value 181.803536
## iter 90 value 181.544965
## iter 100 value 180.871099
## final value 180.871099
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 406.360835
## iter 10 value 239.537307
## iter 20 value 229.967796
## iter 30 value 229.660659
## iter 40 value 229.500475
## iter 50 value 229.466237
## iter 60 value 229.442773
## iter 70 value 229.426529
## iter 80 value 229.413618
## iter 90 value 229.401933
## final value 229.401418
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 430.128997
## iter 10 value 314.644941
## iter 20 value 230.499294
## iter 30 value 229.869967
## iter 40 value 229.542877
## iter 50 value 229.487678
## iter 60 value 229.442307
## iter 70 value 229.428062
## iter 80 value 229.420257
## iter 90 value 229.415816
## iter 100 value 229.399786
## final value 229.399786
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 399.943002
## iter 10 value 372.247022
## iter 20 value 229.878259
## iter 30 value 229.675627
## iter 40 value 229.513073
## iter 50 value 229.449865
## iter 60 value 229.444282
## iter 70 value 229.404250
## iter 80 value 229.400793
## iter 90 value 229.394248
## iter 100 value 229.392069
## final value 229.392069
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 442.010600
## iter 10 value 265.596588
## iter 20 value 229.613277
## iter 30 value 229.550979
## iter 40 value 229.464171
## iter 50 value 229.450963
## iter 60 value 229.429272
## iter 70 value 229.420132
## iter 80 value 229.415434
## iter 90 value 229.407112
## iter 100 value 229.403936
## final value 229.403936
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 432.166367
## iter 10 value 244.910153
## iter 20 value 230.164301
## iter 30 value 229.638257
## iter 40 value 229.524232
## iter 50 value 229.440875
## iter 60 value 229.413166
## iter 70 value 229.405160
## iter 80 value 229.402120
## iter 90 value 229.391229
## iter 100 value 229.384564
## final value 229.384564
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 422.035624
## iter 10 value 380.458771
## iter 20 value 227.070940
## iter 30 value 183.826235
## iter 40 value 177.623060
## iter 50 value 176.211267
## iter 60 value 175.558976
## iter 70 value 174.863247
## iter 80 value 174.386126
## iter 90 value 174.242729
## iter 100 value 174.146708
## final value 174.146708
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 438.791789
## iter 10 value 334.051091
## iter 20 value 236.464007
## iter 30 value 222.802696
## iter 40 value 210.838921
## iter 50 value 182.817260
## iter 60 value 174.555486
## iter 70 value 172.121084
## iter 80 value 168.959385
## iter 90 value 167.530876
## iter 100 value 167.221872
## final value 167.221872
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 435.177182
## iter 10 value 351.100655
## iter 20 value 223.200467
## iter 30 value 186.443382
## iter 40 value 172.097814
## iter 50 value 170.078120
## iter 60 value 169.138715
## iter 70 value 168.566265
## iter 80 value 168.404052
## iter 90 value 167.896218
## iter 100 value 167.838692
## final value 167.838692
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 402.581600
## iter 10 value 244.806463
## iter 20 value 231.674459
## iter 30 value 229.613872
## iter 40 value 229.557375
## iter 50 value 229.435572
## iter 60 value 229.405385
## iter 70 value 229.376891
## iter 80 value 229.371573
## iter 90 value 229.363419
## iter 100 value 229.349512
## final value 229.349512
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 402.423982
## iter 10 value 268.579985
## iter 20 value 221.578925
## iter 30 value 173.879166
## iter 40 value 169.683954
## iter 50 value 168.843060
## iter 60 value 168.614969
## iter 70 value 168.244001
## iter 80 value 167.987675
## iter 90 value 167.854276
## iter 100 value 167.675452
## final value 167.675452
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 431.693024
## iter 10 value 258.744463
## iter 20 value 227.678660
## iter 30 value 211.434995
## iter 40 value 169.632565
## iter 50 value 167.062715
## iter 60 value 166.536323
## iter 70 value 166.295916
## iter 80 value 165.986276
## iter 90 value 165.911284
## iter 100 value 165.894959
## final value 165.894959
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 406.554823
## iter 10 value 236.377490
## iter 20 value 172.639259
## iter 30 value 169.370269
## iter 40 value 168.885027
## iter 50 value 168.417341
## iter 60 value 168.233896
## iter 70 value 168.164876
## iter 80 value 168.035835
## iter 90 value 166.465940
## iter 100 value 165.948284
## final value 165.948284
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 400.135491
## iter 10 value 247.397817
## iter 20 value 229.461308
## iter 30 value 226.472515
## iter 40 value 186.283354
## iter 50 value 168.431155
## iter 60 value 166.668859
## iter 70 value 166.468677
## iter 80 value 166.229062
## iter 90 value 166.043540
## iter 100 value 165.967490
## final value 165.967490
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 487.998836
## iter 10 value 240.904466
## iter 20 value 224.029029
## iter 30 value 185.587969
## iter 40 value 178.014348
## iter 50 value 173.992286
## iter 60 value 171.255183
## iter 70 value 167.265677
## iter 80 value 166.745840
## iter 90 value 166.654468
## iter 100 value 166.538855
## final value 166.538855
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 405.620677
## iter 10 value 351.010923
## iter 20 value 349.978308
## iter 30 value 349.014122
## iter 40 value 349.002241
## iter 40 value 349.002239
## iter 40 value 349.002238
## final value 349.002238
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 444.311398
## iter 10 value 365.219591
## iter 20 value 261.950883
## iter 30 value 260.893867
## final value 260.893754
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 429.385655
## iter 10 value 342.904755
## iter 20 value 261.595775
## final value 260.666618
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 436.793078
## iter 10 value 354.517647
## iter 20 value 263.599944
## final value 260.893755
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 438.328485
## iter 10 value 283.594962
## iter 20 value 260.897020
## final value 260.893754
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 403.796500
## iter 10 value 349.421799
## iter 20 value 261.997455
## iter 30 value 260.666833
## final value 260.666618
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 406.097956
## iter 10 value 273.399626
## iter 20 value 258.479312
## iter 30 value 257.313697
## iter 40 value 257.232694
## iter 50 value 257.222583
## iter 60 value 257.209292
## final value 257.208962
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 434.377831
## iter 10 value 281.358157
## iter 20 value 263.339134
## iter 30 value 260.100274
## iter 40 value 257.913832
## iter 50 value 257.221291
## iter 60 value 257.209001
## final value 257.208992
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 452.043615
## iter 10 value 302.459570
## iter 20 value 261.720651
## iter 30 value 259.959149
## iter 40 value 257.888003
## iter 50 value 257.237819
## iter 60 value 257.226587
## iter 70 value 257.178339
## iter 80 value 257.165593
## iter 90 value 257.164683
## final value 257.164311
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 413.901755
## iter 10 value 321.435908
## iter 20 value 260.664044
## iter 30 value 257.643268
## iter 40 value 257.292661
## iter 50 value 257.218802
## iter 60 value 257.210124
## final value 257.208962
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 435.544112
## iter 10 value 309.910818
## iter 20 value 258.248995
## iter 30 value 257.491593
## iter 40 value 257.277333
## iter 50 value 257.218180
## iter 60 value 257.185397
## iter 70 value 257.164614
## final value 257.164341
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 441.819615
## iter 10 value 339.088560
## iter 20 value 258.450089
## iter 30 value 257.682850
## iter 40 value 257.142819
## iter 50 value 257.011694
## iter 60 value 256.908842
## iter 70 value 256.895028
## iter 80 value 256.888285
## iter 90 value 256.885749
## final value 256.885508
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 411.976716
## iter 10 value 322.870565
## iter 20 value 260.111771
## iter 30 value 258.295719
## iter 40 value 257.430285
## iter 50 value 257.123296
## iter 60 value 256.968113
## iter 70 value 256.924582
## iter 80 value 256.921959
## iter 90 value 256.920656
## iter 100 value 256.901394
## final value 256.901394
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 418.267433
## iter 10 value 314.329902
## iter 20 value 262.161898
## iter 30 value 258.820221
## iter 40 value 257.431434
## iter 50 value 257.329953
## iter 60 value 257.197191
## iter 70 value 257.064705
## iter 80 value 256.923055
## iter 90 value 256.917090
## iter 100 value 256.908334
## final value 256.908334
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 403.004010
## iter 10 value 323.388175
## iter 20 value 265.797874
## iter 30 value 259.999256
## iter 40 value 259.010671
## iter 50 value 257.882038
## iter 60 value 257.308792
## iter 70 value 256.959604
## iter 80 value 256.926481
## iter 90 value 256.923515
## iter 100 value 256.923236
## final value 256.923236
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 474.604534
## iter 10 value 323.596807
## iter 20 value 263.804998
## iter 30 value 259.551382
## iter 40 value 258.182824
## iter 50 value 257.534253
## iter 60 value 257.298696
## iter 70 value 257.223364
## iter 80 value 257.053804
## iter 90 value 256.936999
## iter 100 value 256.931035
## final value 256.931035
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 400.655311
## iter 10 value 242.662453
## iter 20 value 229.709509
## iter 30 value 229.622162
## iter 40 value 229.542625
## iter 50 value 229.512159
## iter 60 value 229.504809
## iter 70 value 229.494781
## iter 80 value 229.492305
## iter 90 value 229.491470
## final value 229.490239
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 420.969443
## iter 10 value 327.141189
## iter 20 value 231.020041
## iter 30 value 230.133884
## iter 40 value 229.576320
## iter 50 value 229.521921
## iter 60 value 229.475999
## iter 70 value 229.471394
## iter 80 value 229.469885
## iter 90 value 229.466442
## iter 100 value 229.465161
## final value 229.465161
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 400.542604
## iter 10 value 334.652167
## iter 20 value 246.714067
## iter 30 value 232.329088
## iter 40 value 229.781816
## iter 50 value 229.475378
## iter 60 value 229.468306
## final value 229.468287
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 442.763826
## iter 10 value 354.701204
## iter 20 value 299.539138
## iter 30 value 236.745697
## iter 40 value 230.367285
## iter 50 value 229.539600
## iter 60 value 229.492427
## iter 70 value 229.487285
## iter 80 value 229.467498
## iter 90 value 229.464778
## iter 100 value 229.463196
## final value 229.463196
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 407.862205
## iter 10 value 356.561362
## iter 20 value 258.040936
## iter 30 value 239.679889
## iter 40 value 231.019121
## iter 50 value 229.611819
## iter 60 value 229.530650
## iter 70 value 229.484124
## iter 80 value 229.472540
## iter 90 value 229.467042
## iter 100 value 229.465951
## final value 229.465951
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 400.863640
## iter 10 value 320.416885
## iter 20 value 300.979592
## iter 30 value 269.453421
## iter 40 value 213.074393
## iter 50 value 203.011954
## iter 60 value 201.847009
## iter 70 value 201.677626
## iter 80 value 200.422798
## iter 90 value 197.447366
## iter 100 value 182.420493
## final value 182.420493
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 399.346315
## iter 10 value 218.404179
## iter 20 value 202.020702
## iter 30 value 190.701183
## iter 40 value 178.887080
## iter 50 value 169.706664
## iter 60 value 168.908650
## iter 70 value 168.107076
## iter 80 value 167.408710
## iter 90 value 164.740848
## iter 100 value 163.967427
## final value 163.967427
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 410.324382
## iter 10 value 251.183939
## iter 20 value 212.702173
## iter 30 value 173.966476
## iter 40 value 169.834263
## iter 50 value 169.243398
## iter 60 value 168.324443
## iter 70 value 167.934565
## iter 80 value 167.868000
## iter 90 value 167.689994
## iter 100 value 167.460827
## final value 167.460827
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 443.555648
## iter 10 value 345.312034
## iter 20 value 315.049436
## iter 30 value 270.957078
## iter 40 value 250.021107
## iter 50 value 240.596458
## iter 60 value 233.563104
## iter 70 value 230.826425
## iter 80 value 230.306312
## iter 90 value 230.238575
## iter 100 value 230.189142
## final value 230.189142
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 399.371680
## iter 10 value 238.523695
## iter 20 value 226.458840
## iter 30 value 185.827199
## iter 40 value 172.374666
## iter 50 value 169.637851
## iter 60 value 168.866104
## iter 70 value 168.617372
## iter 80 value 168.563543
## iter 90 value 168.495545
## iter 100 value 168.476809
## final value 168.476809
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 443.760132
## iter 10 value 287.971067
## iter 20 value 204.879209
## iter 30 value 179.844938
## iter 40 value 171.709906
## iter 50 value 169.912943
## iter 60 value 167.801770
## iter 70 value 166.842286
## iter 80 value 166.658761
## iter 90 value 166.424084
## iter 100 value 166.339621
## final value 166.339621
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 446.943453
## iter 10 value 309.812259
## iter 20 value 229.288275
## iter 30 value 202.619637
## iter 40 value 171.129650
## iter 50 value 167.037162
## iter 60 value 166.915692
## iter 70 value 166.865975
## iter 80 value 166.629082
## iter 90 value 166.384447
## iter 100 value 166.251367
## final value 166.251367
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 405.488912
## iter 10 value 320.932151
## iter 20 value 274.008884
## iter 30 value 254.295213
## iter 40 value 234.531300
## iter 50 value 231.691075
## iter 60 value 230.819358
## iter 70 value 230.219355
## iter 80 value 230.117124
## iter 90 value 230.056276
## iter 100 value 229.919151
## final value 229.919151
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 454.125540
## iter 10 value 314.401556
## iter 20 value 224.092834
## iter 30 value 187.545584
## iter 40 value 171.321702
## iter 50 value 167.821028
## iter 60 value 167.186970
## iter 70 value 166.713925
## iter 80 value 166.515282
## iter 90 value 166.214314
## iter 100 value 166.139121
## final value 166.139121
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 417.640856
## iter 10 value 252.017345
## iter 20 value 224.961378
## iter 30 value 179.408521
## iter 40 value 170.212492
## iter 50 value 167.924367
## iter 60 value 167.443626
## iter 70 value 166.862786
## iter 80 value 166.533473
## iter 90 value 166.248999
## iter 100 value 166.237214
## final value 166.237214
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 401.076257
## iter 10 value 301.081112
## iter 20 value 237.541370
## iter 30 value 237.203051
## iter 40 value 237.162609
## iter 50 value 237.160714
## final value 237.160532
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 400.871000
## iter 10 value 342.371122
## iter 20 value 238.255143
## iter 30 value 237.573554
## iter 40 value 237.204824
## iter 50 value 237.164385
## iter 60 value 237.161478
## final value 237.160553
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 429.807058
## iter 10 value 300.167662
## iter 20 value 237.208022
## iter 30 value 237.181341
## iter 40 value 237.160840
## final value 237.160794
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 439.188025
## iter 10 value 339.710023
## iter 20 value 285.797617
## iter 30 value 240.236948
## iter 40 value 237.534438
## iter 50 value 237.516413
## iter 60 value 237.479754
## iter 70 value 237.437754
## iter 80 value 237.407844
## iter 90 value 237.375972
## iter 100 value 237.340204
## final value 237.340204
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 401.070012
## iter 10 value 259.079589
## iter 20 value 242.747166
## iter 30 value 237.192505
## iter 40 value 237.165967
## iter 50 value 237.160819
## iter 60 value 237.160620
## final value 237.160552
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 454.632558
## iter 10 value 274.263521
## iter 20 value 236.255550
## iter 30 value 189.621352
## iter 40 value 176.522278
## iter 50 value 174.139973
## iter 60 value 173.028017
## iter 70 value 172.054421
## iter 80 value 171.730939
## iter 90 value 171.654653
## iter 100 value 171.623228
## final value 171.623228
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 420.015471
## iter 10 value 273.551657
## iter 20 value 237.619291
## iter 30 value 237.262898
## iter 40 value 237.163068
## iter 50 value 237.161111
## final value 237.160740
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 457.299962
## iter 10 value 321.798352
## iter 20 value 252.760013
## iter 30 value 240.826674
## iter 40 value 201.535877
## iter 50 value 176.356972
## iter 60 value 173.888003
## iter 70 value 173.163397
## iter 80 value 172.055093
## iter 90 value 171.671524
## iter 100 value 171.622683
## final value 171.622683
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 406.855714
## iter 10 value 278.857680
## iter 20 value 236.206268
## iter 30 value 213.098506
## iter 40 value 188.584934
## iter 50 value 177.790445
## iter 60 value 173.076557
## iter 70 value 170.831390
## iter 80 value 170.477161
## iter 90 value 169.725313
## iter 100 value 168.798650
## final value 168.798650
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 427.885232
## iter 10 value 287.178960
## iter 20 value 245.247475
## iter 30 value 190.334571
## iter 40 value 179.851786
## iter 50 value 173.432618
## iter 60 value 170.835976
## iter 70 value 170.447697
## iter 80 value 170.219262
## iter 90 value 170.093635
## iter 100 value 169.834932
## final value 169.834932
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 426.103068
## iter 10 value 242.364581
## iter 20 value 237.301780
## iter 30 value 228.371151
## iter 40 value 179.450143
## iter 50 value 171.861786
## iter 60 value 171.297071
## iter 70 value 170.744238
## iter 80 value 170.304373
## iter 90 value 170.171132
## iter 100 value 169.916854
## final value 169.916854
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 414.008619
## iter 10 value 278.131745
## iter 20 value 237.578613
## iter 30 value 236.795680
## iter 40 value 212.351439
## iter 50 value 176.106732
## iter 60 value 173.195345
## iter 70 value 171.821327
## iter 80 value 171.637654
## iter 90 value 170.735633
## iter 100 value 170.560009
## final value 170.560009
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 429.771191
## iter 10 value 319.129962
## iter 20 value 218.486894
## iter 30 value 171.424710
## iter 40 value 170.789589
## iter 50 value 169.448030
## iter 60 value 168.409630
## iter 70 value 167.902287
## iter 80 value 167.783667
## iter 90 value 166.815736
## iter 100 value 165.819948
## final value 165.819948
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 439.589143
## iter 10 value 250.435087
## iter 20 value 235.416161
## iter 30 value 179.139228
## iter 40 value 176.023804
## iter 50 value 175.062771
## iter 60 value 174.026905
## iter 70 value 172.627437
## iter 80 value 172.098200
## iter 90 value 172.025419
## iter 100 value 171.796585
## final value 171.796585
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 419.737393
## iter 10 value 285.082620
## iter 20 value 237.674205
## iter 30 value 236.222354
## iter 40 value 199.610233
## iter 50 value 175.075141
## iter 60 value 171.328542
## iter 70 value 170.625037
## iter 80 value 170.316817
## iter 90 value 168.736405
## iter 100 value 167.705525
## final value 167.705525
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 414.923439
## iter 10 value 306.644951
## iter 20 value 266.981978
## final value 266.645265
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 426.085206
## iter 10 value 317.478520
## iter 20 value 266.664090
## final value 266.645267
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 436.970941
## iter 10 value 379.402324
## iter 20 value 268.330303
## iter 30 value 266.645569
## final value 266.645266
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 400.426917
## iter 10 value 380.940037
## iter 20 value 266.461675
## iter 30 value 266.383712
## final value 266.383685
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 426.032992
## iter 10 value 276.929965
## iter 20 value 266.647836
## final value 266.645265
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 408.709005
## iter 10 value 304.692133
## iter 20 value 270.512939
## iter 30 value 265.860368
## iter 40 value 264.148950
## iter 50 value 263.269919
## iter 60 value 263.256752
## iter 70 value 263.256591
## iter 80 value 263.256297
## iter 90 value 263.228308
## iter 100 value 263.185590
## final value 263.185590
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 418.574057
## iter 10 value 267.734061
## iter 20 value 263.801681
## iter 30 value 263.246782
## iter 40 value 263.233145
## iter 50 value 263.232641
## iter 60 value 263.231623
## final value 263.231559
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 401.179508
## iter 10 value 302.692253
## iter 20 value 264.246155
## iter 30 value 260.512662
## iter 40 value 259.660356
## iter 50 value 258.512805
## iter 60 value 257.254540
## iter 70 value 256.506617
## iter 80 value 256.045580
## iter 90 value 255.985811
## final value 255.985785
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 432.147426
## iter 10 value 344.237802
## iter 20 value 263.837062
## iter 30 value 263.374158
## iter 40 value 263.189328
## iter 50 value 263.183629
## iter 60 value 263.183270
## final value 263.183101
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 408.353689
## iter 10 value 289.473117
## iter 20 value 267.612041
## iter 30 value 266.873226
## iter 40 value 265.026253
## iter 50 value 263.433344
## iter 60 value 263.241912
## iter 70 value 263.236890
## iter 80 value 263.231719
## final value 263.231588
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 468.141114
## iter 10 value 317.561225
## iter 20 value 267.875724
## iter 30 value 266.353716
## iter 40 value 264.705851
## iter 50 value 264.029796
## iter 60 value 263.469735
## iter 70 value 263.201377
## iter 80 value 263.044138
## iter 90 value 262.978791
## iter 100 value 262.972985
## final value 262.972985
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 460.583692
## iter 10 value 274.877049
## iter 20 value 263.497424
## iter 30 value 263.194453
## iter 40 value 263.169689
## iter 50 value 263.140991
## iter 60 value 263.069182
## iter 70 value 262.987412
## iter 80 value 262.957845
## iter 90 value 262.952318
## iter 100 value 262.949341
## final value 262.949341
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 421.613392
## iter 10 value 297.183071
## iter 20 value 267.645124
## iter 30 value 264.563452
## iter 40 value 263.493973
## iter 50 value 263.186610
## iter 60 value 263.134498
## iter 70 value 263.027454
## iter 80 value 262.983428
## iter 90 value 262.983097
## iter 100 value 262.982749
## final value 262.982749
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 405.103110
## iter 10 value 327.241089
## iter 20 value 268.154662
## iter 30 value 265.641974
## iter 40 value 264.283747
## iter 50 value 263.600860
## iter 60 value 263.256448
## iter 70 value 263.114543
## iter 80 value 262.990136
## iter 90 value 262.958366
## iter 100 value 262.953285
## final value 262.953285
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 456.971547
## iter 10 value 337.022253
## iter 20 value 268.369407
## iter 30 value 264.299952
## iter 40 value 263.617019
## iter 50 value 263.161991
## iter 60 value 263.012758
## iter 70 value 262.978619
## iter 80 value 262.975157
## iter 90 value 262.968996
## final value 262.968606
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 406.005250
## iter 10 value 240.025137
## iter 20 value 237.205564
## iter 30 value 237.201897
## iter 40 value 237.199930
## final value 237.199851
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 443.124121
## iter 10 value 397.050621
## iter 20 value 237.374769
## iter 30 value 237.226134
## iter 40 value 237.203552
## iter 50 value 237.199759
## iter 50 value 237.199758
## iter 50 value 237.199758
## final value 237.199758
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 418.069732
## iter 10 value 356.440560
## iter 20 value 238.621861
## iter 30 value 237.622726
## iter 40 value 237.222341
## iter 50 value 237.195981
## final value 237.195843
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 401.731686
## iter 10 value 269.833243
## iter 20 value 237.470223
## iter 30 value 237.247856
## iter 40 value 237.200852
## iter 50 value 237.195871
## final value 237.195867
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 401.864009
## iter 10 value 342.641907
## iter 20 value 279.525023
## iter 30 value 259.836472
## iter 40 value 257.329826
## iter 50 value 245.300935
## iter 60 value 238.404061
## iter 70 value 237.207383
## final value 237.195973
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 411.700952
## iter 10 value 267.811859
## iter 20 value 179.570097
## iter 30 value 175.649207
## iter 40 value 175.406207
## iter 50 value 174.896515
## iter 60 value 174.680730
## iter 70 value 174.669786
## iter 80 value 174.464916
## iter 90 value 173.250221
## iter 100 value 172.529130
## final value 172.529130
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 399.959269
## iter 10 value 273.726556
## iter 20 value 238.933980
## iter 30 value 237.656787
## iter 40 value 237.537152
## iter 50 value 237.419685
## iter 60 value 237.402792
## iter 70 value 237.003157
## iter 80 value 225.507172
## iter 90 value 180.731466
## iter 100 value 176.249982
## final value 176.249982
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 427.864369
## iter 10 value 245.214704
## iter 20 value 237.343121
## iter 30 value 237.280703
## iter 40 value 237.259996
## iter 50 value 237.254561
## iter 60 value 237.240953
## iter 70 value 237.232382
## final value 237.232261
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 441.840515
## iter 10 value 243.424179
## iter 20 value 237.563243
## iter 30 value 237.275198
## iter 40 value 237.264850
## iter 50 value 237.244744
## iter 60 value 237.156680
## iter 70 value 224.550389
## iter 80 value 181.829773
## iter 90 value 174.972310
## iter 100 value 174.009323
## final value 174.009323
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 404.809556
## iter 10 value 240.690572
## iter 20 value 236.363719
## iter 30 value 181.540259
## iter 40 value 170.976522
## iter 50 value 170.657852
## iter 60 value 170.568718
## iter 70 value 170.478276
## iter 80 value 170.278024
## iter 90 value 169.618825
## iter 100 value 169.428277
## final value 169.428277
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 436.376105
## iter 10 value 342.517336
## iter 20 value 238.693608
## iter 30 value 230.664260
## iter 40 value 197.398276
## iter 50 value 181.329725
## iter 60 value 177.522509
## iter 70 value 176.629602
## iter 80 value 175.321968
## iter 90 value 175.078925
## iter 100 value 174.875200
## final value 174.875200
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 421.279843
## iter 10 value 289.247261
## iter 20 value 234.618671
## iter 30 value 176.904893
## iter 40 value 175.653717
## iter 50 value 174.594788
## iter 60 value 173.322967
## iter 70 value 171.458946
## iter 80 value 171.254348
## iter 90 value 171.009842
## iter 100 value 170.185558
## final value 170.185558
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 483.505235
## iter 10 value 261.423535
## iter 20 value 236.588366
## iter 30 value 181.089520
## iter 40 value 176.454315
## iter 50 value 175.426533
## iter 60 value 175.080014
## iter 70 value 174.546087
## iter 80 value 174.361785
## iter 90 value 174.245535
## iter 100 value 173.909041
## final value 173.909041
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 464.178337
## iter 10 value 365.025256
## iter 20 value 238.206861
## iter 30 value 237.224662
## iter 40 value 227.470087
## iter 50 value 179.539019
## iter 60 value 172.757378
## iter 70 value 171.527030
## iter 80 value 171.072988
## iter 90 value 170.783909
## iter 100 value 170.714595
## final value 170.714595
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 407.294525
## iter 10 value 260.896538
## iter 20 value 189.852044
## iter 30 value 172.884261
## iter 40 value 171.560676
## iter 50 value 171.178854
## iter 60 value 170.945607
## iter 70 value 170.815361
## iter 80 value 170.501104
## iter 90 value 170.009558
## iter 100 value 169.624451
## final value 169.624451
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 458.115405
## iter 10 value 346.001465
## iter 20 value 346.000011
## final value 346.000002
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 409.446833
## iter 10 value 246.805750
## iter 20 value 230.264376
## iter 30 value 229.148521
## iter 40 value 229.107584
## final value 229.104188
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 423.095862
## iter 10 value 332.658227
## iter 20 value 234.203125
## iter 30 value 229.386267
## iter 40 value 229.133323
## final value 229.104188
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 404.260868
## iter 10 value 315.777571
## iter 20 value 229.211015
## iter 30 value 229.106430
## final value 229.104188
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 412.398826
## iter 10 value 269.316957
## iter 20 value 233.895989
## iter 30 value 229.452011
## iter 40 value 229.185960
## iter 50 value 229.104231
## iter 50 value 229.104228
## iter 50 value 229.104228
## final value 229.104228
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 417.066311
## iter 10 value 289.955014
## iter 20 value 232.291016
## iter 30 value 213.347648
## iter 40 value 190.922714
## iter 50 value 185.880113
## iter 60 value 182.177150
## iter 70 value 180.838873
## iter 80 value 179.932363
## iter 90 value 178.749976
## iter 100 value 178.158477
## final value 178.158477
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 419.587810
## iter 10 value 248.015110
## iter 20 value 231.086735
## iter 30 value 229.679219
## iter 40 value 229.575476
## iter 50 value 229.491505
## iter 60 value 229.471513
## iter 70 value 229.444576
## iter 80 value 229.435064
## iter 90 value 229.404632
## iter 100 value 229.231762
## final value 229.231762
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 510.544598
## iter 10 value 232.826216
## iter 20 value 229.360464
## iter 30 value 229.212228
## iter 40 value 222.470050
## iter 50 value 186.801555
## iter 60 value 183.268947
## iter 70 value 181.291356
## iter 80 value 180.925191
## iter 90 value 180.639120
## iter 100 value 180.085087
## final value 180.085087
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 419.230111
## iter 10 value 255.104721
## iter 20 value 222.869264
## iter 30 value 186.908944
## iter 40 value 185.530653
## iter 50 value 182.812006
## iter 60 value 180.968229
## iter 70 value 180.020233
## iter 80 value 179.879149
## iter 90 value 179.815140
## iter 100 value 179.684408
## final value 179.684408
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 404.588067
## iter 10 value 324.169571
## iter 20 value 228.901868
## iter 30 value 183.743111
## iter 40 value 180.161925
## iter 50 value 178.681773
## iter 60 value 178.099482
## iter 70 value 177.832049
## iter 80 value 177.671355
## iter 90 value 177.189839
## iter 100 value 177.061727
## final value 177.061727
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 435.462044
## iter 10 value 373.885026
## iter 20 value 230.225306
## iter 30 value 193.656379
## iter 40 value 181.575282
## iter 50 value 179.172689
## iter 60 value 178.098611
## iter 70 value 177.594875
## iter 80 value 177.192872
## iter 90 value 176.819924
## iter 100 value 176.617469
## final value 176.617469
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 424.921016
## iter 10 value 270.287581
## iter 20 value 228.938389
## iter 30 value 195.021298
## iter 40 value 182.418152
## iter 50 value 178.590489
## iter 60 value 177.213850
## iter 70 value 177.054505
## iter 80 value 176.869959
## iter 90 value 175.929634
## iter 100 value 175.261760
## final value 175.261760
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 420.969019
## iter 10 value 360.525737
## iter 20 value 229.226758
## iter 30 value 212.651257
## iter 40 value 188.318623
## iter 50 value 184.251343
## iter 60 value 181.968342
## iter 70 value 180.848950
## iter 80 value 179.435811
## iter 90 value 178.964868
## iter 100 value 178.319053
## final value 178.319053
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 406.692626
## iter 10 value 240.139325
## iter 20 value 230.624785
## iter 30 value 228.533008
## iter 40 value 186.914200
## iter 50 value 179.825874
## iter 60 value 178.739004
## iter 70 value 178.455489
## iter 80 value 178.359020
## iter 90 value 178.249527
## iter 100 value 178.213865
## final value 178.213865
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 420.974485
## iter 10 value 248.073105
## iter 20 value 225.620756
## iter 30 value 189.426234
## iter 40 value 180.501608
## iter 50 value 178.755457
## iter 60 value 178.403073
## iter 70 value 177.850001
## iter 80 value 177.618054
## iter 90 value 177.301940
## iter 100 value 177.200791
## final value 177.200791
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 402.822589
## iter 10 value 263.124132
## final value 260.589353
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 422.761746
## iter 10 value 325.143202
## iter 20 value 260.962863
## iter 30 value 260.847754
## final value 260.847751
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 415.834088
## iter 10 value 279.453504
## iter 20 value 261.067755
## final value 260.847751
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 442.233710
## iter 10 value 301.606597
## iter 20 value 261.047923
## final value 260.589349
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 430.546654
## iter 10 value 371.943024
## iter 20 value 275.080741
## iter 30 value 260.610960
## final value 260.589350
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 400.468980
## iter 10 value 260.746942
## iter 20 value 257.425874
## iter 30 value 257.389577
## iter 40 value 257.384790
## iter 50 value 257.382550
## iter 60 value 257.378288
## final value 257.378251
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 414.520008
## iter 10 value 308.393810
## iter 20 value 265.601533
## iter 30 value 261.983071
## iter 40 value 259.174292
## iter 50 value 257.432416
## iter 60 value 257.393727
## iter 70 value 257.384959
## iter 80 value 257.375244
## iter 90 value 257.363154
## iter 100 value 257.343916
## final value 257.343916
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 427.975157
## iter 10 value 349.086254
## iter 20 value 269.266639
## iter 30 value 262.603956
## iter 40 value 261.679269
## iter 50 value 260.127247
## iter 60 value 258.190047
## iter 70 value 257.471966
## iter 80 value 257.359265
## iter 90 value 257.352261
## iter 100 value 257.343359
## final value 257.343359
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 468.389125
## iter 10 value 306.722718
## iter 20 value 257.576139
## iter 30 value 257.415455
## iter 40 value 257.381087
## final value 257.381064
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 450.352966
## iter 10 value 294.270630
## iter 20 value 260.796845
## iter 30 value 259.733787
## iter 40 value 258.503679
## iter 50 value 257.479500
## iter 60 value 257.388448
## iter 70 value 257.387191
## iter 80 value 257.383627
## iter 90 value 257.372319
## iter 100 value 257.347988
## final value 257.347988
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 408.074480
## iter 10 value 283.171996
## iter 20 value 260.840896
## iter 30 value 257.930180
## iter 40 value 257.470477
## iter 50 value 257.395624
## iter 60 value 257.375213
## iter 70 value 257.337005
## iter 80 value 257.178748
## iter 90 value 257.161252
## iter 100 value 257.155166
## final value 257.155166
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 445.877592
## iter 10 value 377.595940
## iter 20 value 262.681837
## iter 30 value 258.400251
## iter 40 value 257.382028
## iter 50 value 257.253959
## iter 60 value 257.230123
## iter 70 value 257.219981
## iter 80 value 257.173011
## iter 90 value 257.162308
## iter 100 value 257.159361
## final value 257.159361
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 413.782252
## iter 10 value 287.655151
## iter 20 value 260.221197
## iter 30 value 259.100135
## iter 40 value 258.012510
## iter 50 value 257.486058
## iter 60 value 257.374184
## iter 70 value 257.296868
## iter 80 value 257.170050
## iter 90 value 257.162433
## iter 100 value 257.156744
## final value 257.156744
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 450.775043
## iter 10 value 343.000194
## iter 20 value 258.238766
## iter 30 value 257.372118
## iter 40 value 257.211561
## iter 50 value 257.189203
## iter 60 value 257.175808
## iter 70 value 257.168221
## iter 80 value 257.160416
## iter 90 value 257.157035
## iter 100 value 257.144811
## final value 257.144811
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 474.803326
## iter 10 value 338.793595
## iter 20 value 257.830913
## iter 30 value 257.407892
## iter 40 value 257.376037
## iter 50 value 257.319794
## iter 60 value 257.236862
## iter 70 value 257.187092
## iter 80 value 257.156694
## iter 90 value 257.145956
## iter 100 value 257.142778
## final value 257.142778
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 409.542911
## iter 10 value 279.737026
## iter 20 value 229.795173
## iter 30 value 229.213360
## final value 229.149785
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 400.119670
## iter 10 value 236.106815
## iter 20 value 229.380195
## iter 30 value 229.284446
## iter 40 value 229.198139
## final value 229.149744
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 442.400311
## iter 10 value 363.546329
## iter 20 value 340.241701
## iter 30 value 328.165130
## iter 40 value 299.653963
## iter 50 value 297.409961
## iter 60 value 295.890855
## iter 70 value 295.076874
## iter 80 value 269.661733
## iter 90 value 267.568672
## iter 100 value 266.283501
## final value 266.283501
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 437.263856
## iter 10 value 230.769941
## iter 20 value 229.178592
## iter 30 value 229.149886
## final value 229.149723
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 426.353091
## iter 10 value 311.494508
## iter 20 value 250.218533
## iter 30 value 232.013568
## iter 40 value 229.413757
## iter 50 value 229.222699
## iter 60 value 229.181898
## iter 70 value 229.150905
## final value 229.150738
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 407.500854
## iter 10 value 260.860532
## iter 20 value 229.335818
## iter 30 value 229.205634
## iter 40 value 229.199821
## iter 50 value 229.085386
## iter 60 value 215.667263
## iter 70 value 190.771733
## iter 80 value 184.847559
## iter 90 value 183.375530
## iter 100 value 181.894136
## final value 181.894136
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 404.973933
## iter 10 value 322.798821
## iter 20 value 318.482117
## iter 30 value 299.301835
## iter 40 value 248.788657
## iter 50 value 238.282489
## iter 60 value 237.005385
## iter 70 value 232.620132
## iter 80 value 231.974200
## iter 90 value 231.839604
## iter 100 value 231.193376
## final value 231.193376
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 413.367829
## iter 10 value 234.745069
## iter 20 value 229.176277
## iter 30 value 228.375255
## iter 40 value 207.772143
## iter 50 value 187.103159
## iter 60 value 182.951640
## iter 70 value 181.829889
## iter 80 value 180.079790
## iter 90 value 178.869621
## iter 100 value 178.693773
## final value 178.693773
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 432.345279
## iter 10 value 254.863230
## iter 20 value 227.809935
## iter 30 value 193.803076
## iter 40 value 187.103091
## iter 50 value 182.216721
## iter 60 value 179.339156
## iter 70 value 177.989808
## iter 80 value 177.811128
## iter 90 value 177.531767
## iter 100 value 177.454010
## final value 177.454010
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 468.574647
## iter 10 value 271.097561
## iter 20 value 229.382618
## iter 30 value 228.855624
## iter 40 value 203.868490
## iter 50 value 187.859940
## iter 60 value 180.364660
## iter 70 value 178.888488
## iter 80 value 178.112484
## iter 90 value 177.729735
## iter 100 value 177.624785
## final value 177.624785
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 476.370965
## iter 10 value 236.303430
## iter 20 value 203.175457
## iter 30 value 184.155059
## iter 40 value 180.524555
## iter 50 value 178.513124
## iter 60 value 178.227055
## iter 70 value 177.955439
## iter 80 value 177.779661
## iter 90 value 177.607735
## iter 100 value 177.538685
## final value 177.538685
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 410.698005
## iter 10 value 237.862348
## iter 20 value 229.471407
## iter 30 value 225.608627
## iter 40 value 183.836587
## iter 50 value 180.255277
## iter 60 value 179.409761
## iter 70 value 178.191493
## iter 80 value 177.879604
## iter 90 value 177.716390
## iter 100 value 177.572703
## final value 177.572703
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 455.696565
## iter 10 value 239.617249
## iter 20 value 229.369949
## iter 30 value 222.565126
## iter 40 value 183.051906
## iter 50 value 179.434906
## iter 60 value 178.529317
## iter 70 value 178.430508
## iter 80 value 178.352641
## iter 90 value 178.307138
## iter 100 value 178.279372
## final value 178.279372
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 467.439797
## iter 10 value 244.657873
## iter 20 value 227.134959
## iter 30 value 195.561861
## iter 40 value 184.928376
## iter 50 value 182.335606
## iter 60 value 181.570172
## iter 70 value 180.881173
## iter 80 value 180.768213
## iter 90 value 180.582685
## iter 100 value 179.691512
## final value 179.691512
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 412.161143
## iter 10 value 366.485837
## iter 20 value 236.966264
## iter 30 value 227.024114
## iter 40 value 185.757528
## iter 50 value 180.019407
## iter 60 value 178.460957
## iter 70 value 178.227709
## iter 80 value 177.614116
## iter 90 value 177.514825
## iter 100 value 177.363042
## final value 177.363042
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 440.856695
## iter 10 value 240.982504
## iter 20 value 225.887937
## iter 30 value 224.953418
## iter 40 value 224.802752
## iter 50 value 224.681623
## iter 60 value 224.670628
## iter 70 value 224.662970
## iter 80 value 224.645481
## iter 90 value 224.638926
## final value 224.638740
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 413.741660
## iter 10 value 281.329949
## iter 20 value 227.734857
## iter 30 value 225.431045
## iter 40 value 224.915622
## iter 50 value 224.696846
## iter 60 value 224.675593
## iter 70 value 224.652011
## iter 80 value 224.647735
## iter 90 value 224.645195
## iter 100 value 224.641913
## final value 224.641913
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 411.134894
## iter 10 value 270.468338
## iter 20 value 226.738806
## iter 30 value 225.164692
## iter 40 value 224.814531
## iter 50 value 224.712726
## iter 60 value 224.685021
## iter 70 value 224.670582
## iter 80 value 224.654886
## iter 90 value 224.646566
## iter 100 value 224.642039
## final value 224.642039
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 396.043789
## iter 10 value 228.858949
## iter 20 value 224.951677
## iter 30 value 224.774219
## iter 40 value 224.738081
## iter 50 value 224.669113
## iter 60 value 224.659651
## iter 70 value 224.655222
## iter 80 value 224.631543
## iter 90 value 224.628636
## final value 224.628585
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 408.483995
## iter 10 value 270.229710
## iter 20 value 226.106955
## iter 30 value 224.750876
## iter 40 value 224.730979
## iter 50 value 224.676584
## iter 60 value 224.651109
## final value 224.647429
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 403.095062
## iter 10 value 322.849987
## iter 20 value 244.236628
## iter 30 value 221.309542
## iter 40 value 215.361939
## iter 50 value 183.087432
## iter 60 value 174.198677
## iter 70 value 170.576904
## iter 80 value 167.972821
## iter 90 value 167.411121
## iter 100 value 166.954480
## final value 166.954480
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 447.878930
## iter 10 value 243.955889
## iter 20 value 211.133038
## iter 30 value 176.282803
## iter 40 value 173.623198
## iter 50 value 171.377855
## iter 60 value 169.258644
## iter 70 value 167.368973
## iter 80 value 167.186786
## iter 90 value 166.983926
## iter 100 value 166.904366
## final value 166.904366
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 417.397872
## iter 10 value 236.888357
## iter 20 value 225.210618
## iter 30 value 224.959755
## iter 40 value 224.521047
## iter 50 value 216.460084
## iter 60 value 167.389034
## iter 70 value 164.475014
## iter 80 value 164.133330
## iter 90 value 164.018139
## iter 100 value 163.885017
## final value 163.885017
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 431.264155
## iter 10 value 239.958510
## iter 20 value 224.456161
## iter 30 value 223.890565
## iter 40 value 212.318476
## iter 50 value 184.463036
## iter 60 value 168.469999
## iter 70 value 166.821753
## iter 80 value 166.620133
## iter 90 value 166.614231
## iter 100 value 166.602798
## final value 166.602798
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 417.835977
## iter 10 value 272.491685
## iter 20 value 224.508253
## iter 30 value 184.380303
## iter 40 value 169.258659
## iter 50 value 166.412526
## iter 60 value 165.513523
## iter 70 value 165.467063
## iter 80 value 165.415656
## iter 90 value 165.364688
## iter 100 value 165.345654
## final value 165.345654
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 409.569621
## iter 10 value 230.692504
## iter 20 value 215.913753
## iter 30 value 168.519594
## iter 40 value 167.209995
## iter 50 value 166.973519
## iter 60 value 166.938960
## iter 70 value 166.910868
## iter 80 value 166.896330
## iter 90 value 166.817271
## iter 100 value 166.643367
## final value 166.643367
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 397.962179
## iter 10 value 235.484575
## iter 20 value 195.452903
## iter 30 value 170.505910
## iter 40 value 167.344888
## iter 50 value 165.631545
## iter 60 value 164.436567
## iter 70 value 164.087398
## iter 80 value 163.931099
## iter 90 value 163.605366
## iter 100 value 163.208049
## final value 163.208049
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 402.037642
## iter 10 value 232.049743
## iter 20 value 217.533190
## iter 30 value 176.115993
## iter 40 value 167.985491
## iter 50 value 164.086489
## iter 60 value 163.679902
## iter 70 value 163.479750
## iter 80 value 163.253551
## iter 90 value 162.605321
## iter 100 value 161.993250
## final value 161.993250
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 486.828289
## iter 10 value 277.525138
## iter 20 value 222.296647
## iter 30 value 221.662352
## iter 40 value 219.667044
## iter 50 value 191.646911
## iter 60 value 182.801544
## iter 70 value 173.865938
## iter 80 value 167.326563
## iter 90 value 165.478847
## iter 100 value 164.945703
## final value 164.945703
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 396.288017
## iter 10 value 262.353470
## iter 20 value 224.811133
## iter 30 value 190.723251
## iter 40 value 167.601276
## iter 50 value 164.529539
## iter 60 value 163.404273
## iter 70 value 163.129452
## iter 80 value 162.368986
## iter 90 value 161.544904
## iter 100 value 160.217033
## final value 160.217033
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 413.613669
## iter 10 value 338.544857
## iter 20 value 255.351481
## final value 255.317771
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 454.001174
## iter 10 value 332.064455
## iter 20 value 255.399235
## final value 255.317771
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 396.030217
## iter 10 value 298.312419
## iter 20 value 255.693228
## final value 255.530880
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 400.353387
## iter 10 value 298.570224
## iter 20 value 255.340210
## final value 255.317772
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 462.108616
## iter 10 value 272.894235
## iter 20 value 255.320358
## final value 255.317771
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 451.014768
## iter 10 value 283.588468
## iter 20 value 253.937421
## iter 30 value 252.279963
## iter 40 value 251.908266
## iter 50 value 251.832907
## iter 60 value 251.799153
## iter 70 value 251.771757
## final value 251.770516
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 460.610553
## iter 10 value 343.666659
## iter 20 value 264.627749
## iter 30 value 257.081762
## iter 40 value 252.598436
## iter 50 value 251.843732
## iter 60 value 251.811804
## iter 70 value 251.770100
## iter 80 value 251.766538
## iter 90 value 251.765231
## final value 251.765050
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 430.194309
## iter 10 value 277.636950
## iter 20 value 257.308660
## iter 30 value 252.969550
## iter 40 value 252.229223
## iter 50 value 251.825195
## iter 60 value 251.802417
## iter 70 value 251.768118
## iter 80 value 251.765115
## iter 80 value 251.765113
## iter 80 value 251.765113
## final value 251.765113
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 426.486516
## iter 10 value 271.229603
## iter 20 value 254.283669
## iter 30 value 252.244665
## iter 40 value 251.922882
## iter 50 value 251.845366
## iter 60 value 251.843785
## iter 70 value 251.804412
## iter 80 value 251.775702
## iter 90 value 251.771431
## final value 251.770511
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 439.588860
## iter 10 value 349.612988
## iter 20 value 258.405805
## iter 30 value 256.082805
## iter 40 value 254.506320
## iter 50 value 252.279477
## iter 60 value 251.841518
## iter 70 value 251.808473
## iter 80 value 251.796443
## iter 90 value 251.765279
## final value 251.765051
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 471.110012
## iter 10 value 313.083653
## iter 20 value 258.488605
## iter 30 value 253.986509
## iter 40 value 252.857959
## iter 50 value 252.346907
## iter 60 value 251.871255
## iter 70 value 251.619155
## iter 80 value 251.488442
## iter 90 value 251.482444
## iter 100 value 251.482329
## final value 251.482329
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 397.724628
## iter 10 value 273.514174
## iter 20 value 254.327364
## iter 30 value 253.014707
## iter 40 value 252.209206
## iter 50 value 251.945145
## iter 60 value 251.855332
## iter 70 value 251.801223
## iter 80 value 251.554289
## iter 90 value 251.482059
## iter 100 value 251.478117
## final value 251.478117
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 478.216718
## iter 10 value 368.806850
## iter 20 value 261.691835
## iter 30 value 253.330865
## iter 40 value 251.917258
## iter 50 value 251.648433
## iter 60 value 251.531396
## iter 70 value 251.476230
## iter 80 value 251.458383
## iter 90 value 251.452852
## iter 100 value 251.451252
## final value 251.451252
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 433.819667
## iter 10 value 333.055717
## iter 20 value 258.897807
## iter 30 value 254.417522
## iter 40 value 253.221543
## iter 50 value 252.190690
## iter 60 value 251.968437
## iter 70 value 251.765454
## iter 80 value 251.554641
## iter 90 value 251.484212
## iter 100 value 251.482780
## final value 251.482780
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 523.553596
## iter 10 value 255.700658
## iter 20 value 251.630344
## iter 30 value 251.517589
## iter 40 value 251.488297
## iter 50 value 251.480518
## iter 60 value 251.465462
## iter 70 value 251.456923
## iter 80 value 251.450425
## final value 251.448260
## converged
## Fitting Repeat 1
##
## # weights: 7
## initial value 399.162201
## iter 10 value 277.241819
## iter 20 value 226.939255
## iter 30 value 225.506759
## iter 40 value 224.897095
## iter 50 value 224.727932
## iter 60 value 224.724123
## iter 70 value 224.714739
## final value 224.712075
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 430.508616
## iter 10 value 249.904896
## iter 20 value 225.480448
## iter 30 value 224.785565
## iter 40 value 224.772400
## iter 50 value 224.720918
## iter 60 value 224.715559
## iter 70 value 224.714672
## iter 80 value 224.707200
## iter 80 value 224.707199
## final value 224.707199
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 395.250722
## iter 10 value 239.806637
## iter 20 value 226.272163
## iter 30 value 224.985633
## iter 40 value 224.843854
## iter 50 value 224.731374
## iter 60 value 224.724441
## iter 70 value 224.720531
## iter 80 value 224.715393
## iter 90 value 224.710418
## iter 100 value 224.708961
## final value 224.708961
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 398.658739
## iter 10 value 239.311355
## iter 20 value 225.266254
## iter 30 value 224.905025
## iter 40 value 224.752523
## iter 50 value 224.737559
## iter 60 value 224.726778
## iter 70 value 224.722643
## iter 80 value 224.719684
## iter 90 value 224.718247
## iter 100 value 224.715145
## final value 224.715145
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 442.122839
## iter 10 value 352.195911
## iter 20 value 265.583740
## iter 30 value 229.553418
## iter 40 value 224.982483
## iter 50 value 224.766965
## iter 60 value 224.717821
## iter 70 value 224.708919
## final value 224.708364
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 441.077738
## iter 10 value 264.009605
## iter 20 value 227.022636
## iter 30 value 197.895950
## iter 40 value 175.817971
## iter 50 value 171.497385
## iter 60 value 170.233164
## iter 70 value 169.521077
## iter 80 value 169.187394
## iter 90 value 168.995823
## iter 100 value 168.658872
## final value 168.658872
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 496.456543
## iter 10 value 273.780692
## iter 20 value 215.084057
## iter 30 value 167.968852
## iter 40 value 164.710212
## iter 50 value 164.363605
## iter 60 value 164.077614
## iter 70 value 163.918087
## iter 80 value 163.869152
## iter 90 value 163.715786
## iter 100 value 163.526300
## final value 163.526300
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 399.820125
## iter 10 value 304.225244
## iter 20 value 288.197596
## iter 30 value 237.985678
## iter 40 value 227.745735
## iter 50 value 225.992641
## iter 60 value 225.653032
## iter 70 value 225.463544
## iter 80 value 225.392825
## iter 90 value 225.143428
## iter 100 value 225.121514
## final value 225.121514
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 422.703817
## iter 10 value 255.920296
## iter 20 value 225.579118
## iter 30 value 225.067797
## iter 40 value 224.880791
## iter 50 value 224.812691
## iter 60 value 224.754771
## iter 70 value 224.749554
## final value 224.749144
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 469.765549
## iter 10 value 263.064453
## iter 20 value 229.801187
## iter 30 value 225.541783
## iter 40 value 224.978087
## iter 50 value 224.841967
## iter 60 value 224.796477
## iter 70 value 224.792148
## iter 80 value 224.776915
## iter 90 value 224.648353
## iter 100 value 203.724363
## final value 203.724363
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 528.653847
## iter 10 value 309.103703
## iter 20 value 223.104838
## iter 30 value 187.877245
## iter 40 value 170.014358
## iter 50 value 165.565002
## iter 60 value 164.601746
## iter 70 value 163.943256
## iter 80 value 163.529105
## iter 90 value 163.130707
## iter 100 value 162.723547
## final value 162.723547
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 393.212231
## iter 10 value 311.897091
## iter 20 value 208.200602
## iter 30 value 187.666069
## iter 40 value 175.100814
## iter 50 value 169.507470
## iter 60 value 166.153225
## iter 70 value 164.183908
## iter 80 value 163.602383
## iter 90 value 163.022286
## iter 100 value 162.659229
## final value 162.659229
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 395.532035
## iter 10 value 244.204271
## iter 20 value 182.111618
## iter 30 value 170.092794
## iter 40 value 165.835554
## iter 50 value 165.165333
## iter 60 value 165.040008
## iter 70 value 164.738507
## iter 80 value 164.400849
## iter 90 value 164.008893
## iter 100 value 163.734367
## final value 163.734367
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 484.773391
## iter 10 value 305.659569
## iter 20 value 253.581316
## iter 30 value 226.565753
## iter 40 value 195.425762
## iter 50 value 172.549629
## iter 60 value 169.308440
## iter 70 value 168.706295
## iter 80 value 167.684161
## iter 90 value 167.073439
## iter 100 value 166.900708
## final value 166.900708
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 414.325063
## iter 10 value 245.668138
## iter 20 value 223.428503
## iter 30 value 178.962304
## iter 40 value 169.160822
## iter 50 value 166.808143
## iter 60 value 165.215900
## iter 70 value 164.432739
## iter 80 value 164.116421
## iter 90 value 164.025271
## iter 100 value 163.726645
## final value 163.726645
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 403.926699
## iter 10 value 257.858581
## iter 20 value 206.446318
## iter 30 value 205.825820
## iter 40 value 205.824267
## iter 50 value 205.794994
## iter 60 value 205.790094
## final value 205.781556
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 427.277341
## iter 10 value 275.509165
## iter 20 value 205.988342
## iter 30 value 205.784631
## final value 205.781461
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 415.571224
## iter 10 value 257.775129
## iter 20 value 216.995955
## iter 30 value 207.432201
## iter 40 value 205.791241
## iter 50 value 205.781579
## final value 205.781452
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 445.356905
## iter 10 value 219.734662
## iter 20 value 205.926136
## iter 30 value 205.823636
## iter 40 value 205.818768
## iter 50 value 205.783528
## iter 60 value 205.781547
## final value 205.781458
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 432.607921
## iter 10 value 287.935770
## iter 20 value 205.808975
## iter 30 value 205.787494
## final value 205.781453
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 402.008658
## iter 10 value 228.147569
## iter 20 value 207.499988
## iter 30 value 179.270374
## iter 40 value 147.031320
## iter 50 value 143.870542
## iter 60 value 142.810349
## iter 70 value 142.314066
## iter 80 value 142.159484
## iter 90 value 142.107745
## iter 100 value 142.026087
## final value 142.026087
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 452.968188
## iter 10 value 253.658055
## iter 20 value 218.959317
## iter 30 value 207.356357
## iter 40 value 206.007314
## iter 50 value 205.836202
## iter 60 value 205.807763
## final value 205.799496
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 435.501978
## iter 10 value 244.767648
## iter 20 value 214.199156
## iter 30 value 206.097996
## iter 40 value 205.792298
## iter 50 value 205.782825
## iter 60 value 205.781883
## final value 205.781536
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 404.365455
## iter 10 value 215.826335
## iter 20 value 205.977618
## iter 30 value 205.750871
## iter 40 value 205.724701
## iter 50 value 205.698223
## iter 60 value 205.569257
## iter 70 value 205.452001
## iter 80 value 205.391495
## iter 90 value 205.381416
## iter 100 value 205.327129
## final value 205.327129
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 433.002258
## iter 10 value 282.187836
## iter 20 value 205.843260
## iter 30 value 202.978873
## iter 40 value 146.291181
## iter 50 value 144.968172
## iter 60 value 144.723956
## iter 70 value 144.315739
## iter 80 value 143.360623
## iter 90 value 142.691000
## iter 100 value 142.289089
## final value 142.289089
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 402.701070
## iter 10 value 235.208796
## iter 20 value 168.692026
## iter 30 value 145.824481
## iter 40 value 143.833030
## iter 50 value 142.664312
## iter 60 value 142.310794
## iter 70 value 142.127439
## iter 80 value 142.053145
## iter 90 value 142.027164
## iter 100 value 141.997146
## final value 141.997146
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 441.220987
## iter 10 value 291.274197
## iter 20 value 206.628529
## iter 30 value 202.920819
## iter 40 value 147.455010
## iter 50 value 144.926048
## iter 60 value 144.080713
## iter 70 value 143.253108
## iter 80 value 142.923891
## iter 90 value 142.813068
## iter 100 value 142.646178
## final value 142.646178
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 426.391165
## iter 10 value 349.167052
## iter 20 value 208.747549
## iter 30 value 177.777473
## iter 40 value 147.424641
## iter 50 value 145.322727
## iter 60 value 144.963900
## iter 70 value 144.434916
## iter 80 value 143.874315
## iter 90 value 143.740749
## iter 100 value 143.691786
## final value 143.691786
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 442.952193
## iter 10 value 281.140816
## iter 20 value 268.698378
## iter 30 value 268.263641
## iter 40 value 265.407282
## iter 50 value 231.221859
## iter 60 value 222.977659
## iter 70 value 215.151005
## iter 80 value 207.769789
## iter 90 value 206.297344
## iter 100 value 206.018104
## final value 206.018104
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 446.620672
## iter 10 value 240.701805
## iter 20 value 176.246835
## iter 30 value 146.388886
## iter 40 value 143.821753
## iter 50 value 143.587338
## iter 60 value 143.360309
## iter 70 value 142.919593
## iter 80 value 142.433718
## iter 90 value 142.059860
## iter 100 value 141.936716
## final value 141.936716
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 456.364413
## iter 10 value 262.146035
## iter 20 value 239.306279
## final value 239.303021
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 420.839875
## iter 10 value 260.866757
## iter 20 value 239.524150
## final value 239.303021
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 424.464752
## iter 10 value 394.808778
## iter 20 value 239.754311
## iter 30 value 239.305467
## final value 239.303021
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 410.290563
## iter 10 value 321.982315
## iter 20 value 239.520150
## final value 239.303021
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 421.912108
## iter 10 value 376.361530
## iter 20 value 246.245625
## iter 30 value 239.295733
## final value 239.259115
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 402.332147
## iter 10 value 261.548591
## iter 20 value 236.050923
## iter 30 value 235.463184
## iter 40 value 235.446332
## iter 50 value 235.445252
## iter 60 value 235.443655
## final value 235.443584
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 406.436631
## iter 10 value 255.828508
## iter 20 value 235.746421
## iter 30 value 235.525241
## iter 40 value 235.509343
## iter 50 value 235.503851
## iter 60 value 235.466393
## iter 70 value 235.444066
## final value 235.443629
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 414.335436
## iter 10 value 266.444351
## iter 20 value 239.374428
## iter 30 value 238.324406
## iter 40 value 236.261260
## iter 50 value 235.526303
## iter 60 value 235.514183
## iter 70 value 235.512914
## iter 80 value 235.509941
## iter 90 value 235.472979
## iter 100 value 235.457927
## final value 235.457927
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 461.544271
## iter 10 value 240.300632
## iter 20 value 235.810064
## iter 30 value 235.539021
## iter 40 value 235.516790
## iter 50 value 235.515909
## iter 60 value 235.474074
## final value 235.457876
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 483.014537
## iter 10 value 289.263792
## iter 20 value 236.444626
## iter 30 value 235.614735
## iter 40 value 235.500789
## iter 50 value 235.465138
## iter 60 value 235.448734
## iter 70 value 235.443585
## iter 70 value 235.443584
## iter 70 value 235.443584
## final value 235.443584
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 410.614867
## iter 10 value 257.472500
## iter 20 value 237.631580
## iter 30 value 236.040897
## iter 40 value 235.546470
## iter 50 value 235.489680
## iter 60 value 235.411726
## iter 70 value 235.279961
## iter 80 value 235.150874
## iter 90 value 235.140797
## iter 100 value 235.137170
## final value 235.137170
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 423.106826
## iter 10 value 325.591946
## iter 20 value 246.394706
## iter 30 value 238.778713
## iter 40 value 235.895770
## iter 50 value 235.488036
## iter 60 value 235.321853
## iter 70 value 235.215918
## iter 80 value 235.168722
## iter 90 value 235.166216
## iter 100 value 235.152795
## final value 235.152795
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 469.097405
## iter 10 value 358.669277
## iter 20 value 241.359831
## iter 30 value 236.175749
## iter 40 value 235.218397
## iter 50 value 235.159698
## iter 60 value 235.142265
## iter 70 value 235.138663
## iter 80 value 235.136028
## iter 90 value 235.135780
## final value 235.135738
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 483.588159
## iter 10 value 265.536529
## iter 20 value 236.059241
## iter 30 value 235.508362
## iter 40 value 235.361042
## iter 50 value 235.258360
## iter 60 value 235.185327
## iter 70 value 235.168824
## iter 80 value 235.151266
## iter 90 value 235.140729
## iter 100 value 235.135858
## final value 235.135858
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 428.440764
## iter 10 value 265.872459
## iter 20 value 240.704833
## iter 30 value 238.710388
## iter 40 value 236.802534
## iter 50 value 236.018668
## iter 60 value 235.675536
## iter 70 value 235.489111
## iter 80 value 235.303859
## iter 90 value 235.144444
## iter 100 value 235.139063
## final value 235.139063
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 466.399880
## iter 10 value 299.336525
## iter 20 value 206.070075
## iter 30 value 205.949711
## iter 40 value 205.824529
## iter 50 value 205.824231
## final value 205.824074
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 430.825438
## iter 10 value 296.320849
## iter 20 value 206.373299
## iter 30 value 205.906977
## iter 40 value 205.822525
## iter 50 value 205.822302
## final value 205.822295
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 448.787958
## iter 10 value 235.081457
## iter 20 value 205.967575
## iter 30 value 205.825387
## iter 40 value 205.822518
## final value 205.822295
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 414.659479
## iter 10 value 286.493065
## iter 20 value 277.503911
## iter 30 value 256.332351
## iter 40 value 241.282832
## iter 50 value 236.442120
## iter 60 value 224.754880
## iter 70 value 211.498506
## iter 80 value 208.156337
## iter 90 value 207.171177
## iter 100 value 206.744497
## final value 206.744497
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 437.646355
## iter 10 value 289.212652
## iter 20 value 205.848153
## final value 205.825354
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 428.954985
## iter 10 value 245.780466
## iter 20 value 198.206078
## iter 30 value 150.130513
## iter 40 value 148.038092
## iter 50 value 147.112826
## iter 60 value 146.617016
## iter 70 value 146.066096
## iter 80 value 145.998974
## iter 90 value 145.974049
## iter 100 value 145.946981
## final value 145.946981
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 428.172411
## iter 10 value 311.570388
## iter 20 value 208.381693
## iter 30 value 203.349744
## iter 40 value 168.712645
## iter 50 value 153.447874
## iter 60 value 147.657009
## iter 70 value 145.978685
## iter 80 value 145.768652
## iter 90 value 145.649591
## iter 100 value 145.574128
## final value 145.574128
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 404.972319
## iter 10 value 223.308883
## iter 20 value 206.175877
## iter 30 value 206.124737
## iter 40 value 206.030940
## iter 50 value 205.983489
## iter 60 value 205.928943
## iter 70 value 203.838949
## iter 80 value 168.757531
## iter 90 value 150.600370
## iter 100 value 146.742007
## final value 146.742007
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 436.199636
## iter 10 value 270.013293
## iter 20 value 206.048670
## iter 30 value 200.552876
## iter 40 value 162.623153
## iter 50 value 150.412958
## iter 60 value 148.623707
## iter 70 value 147.929473
## iter 80 value 145.711401
## iter 90 value 145.222461
## iter 100 value 145.188516
## final value 145.188516
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 418.457389
## iter 10 value 284.350353
## iter 20 value 205.501125
## iter 30 value 160.371761
## iter 40 value 150.454374
## iter 50 value 145.321246
## iter 60 value 144.465383
## iter 70 value 143.581793
## iter 80 value 143.236934
## iter 90 value 142.958080
## iter 100 value 142.846182
## final value 142.846182
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 418.395621
## iter 10 value 262.889901
## iter 20 value 206.396257
## iter 30 value 194.775198
## iter 40 value 150.168864
## iter 50 value 146.416208
## iter 60 value 145.644922
## iter 70 value 145.245352
## iter 80 value 145.115936
## iter 90 value 145.005081
## iter 100 value 144.936198
## final value 144.936198
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 417.394709
## iter 10 value 297.568249
## iter 20 value 248.563724
## iter 30 value 222.349852
## iter 40 value 218.893521
## iter 50 value 218.169926
## iter 60 value 211.366726
## iter 70 value 209.141324
## iter 80 value 207.962582
## iter 90 value 207.618936
## iter 100 value 207.232168
## final value 207.232168
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 467.889745
## iter 10 value 228.424783
## iter 20 value 150.152806
## iter 30 value 143.804643
## iter 40 value 143.221819
## iter 50 value 142.970277
## iter 60 value 142.919628
## iter 70 value 142.889402
## iter 80 value 142.865782
## iter 90 value 142.804427
## iter 100 value 142.780601
## final value 142.780601
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 446.122731
## iter 10 value 243.245266
## iter 20 value 206.903332
## iter 30 value 194.096898
## iter 40 value 161.638165
## iter 50 value 150.183853
## iter 60 value 147.096739
## iter 70 value 144.682717
## iter 80 value 144.078365
## iter 90 value 143.617318
## iter 100 value 143.112012
## final value 143.112012
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 417.761008
## iter 10 value 248.929330
## iter 20 value 207.478271
## iter 30 value 206.100888
## iter 40 value 178.089517
## iter 50 value 146.122025
## iter 60 value 145.211624
## iter 70 value 144.999221
## iter 80 value 144.946317
## iter 90 value 144.910843
## iter 100 value 144.870236
## final value 144.870236
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 412.598608
## iter 10 value 242.076998
## iter 20 value 229.363795
## iter 30 value 224.792733
## iter 40 value 223.699231
## iter 50 value 223.361006
## iter 60 value 223.287599
## iter 70 value 223.248251
## iter 80 value 223.233244
## iter 90 value 223.211203
## iter 100 value 223.197499
## final value 223.197499
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 425.689185
## iter 10 value 335.753123
## iter 20 value 223.751784
## iter 30 value 223.458497
## iter 40 value 223.255976
## iter 50 value 223.237963
## iter 60 value 223.227526
## iter 70 value 223.214977
## iter 80 value 223.202794
## iter 90 value 223.190713
## iter 100 value 223.172143
## final value 223.172143
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 407.695723
## iter 10 value 228.718291
## iter 20 value 223.422372
## iter 30 value 223.228568
## iter 40 value 223.224101
## iter 50 value 223.188491
## iter 60 value 223.181012
## final value 223.177569
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 426.282544
## iter 10 value 276.350126
## iter 20 value 225.157372
## iter 30 value 223.251843
## iter 40 value 223.232346
## iter 50 value 223.220729
## iter 60 value 223.204739
## final value 223.192349
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 424.200999
## iter 10 value 335.610428
## iter 20 value 272.402224
## iter 30 value 257.930851
## iter 40 value 254.964387
## iter 50 value 248.968601
## iter 60 value 239.038679
## iter 70 value 225.858573
## iter 80 value 223.715349
## iter 90 value 223.357918
## iter 100 value 223.191208
## final value 223.191208
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 416.497363
## iter 10 value 362.090670
## iter 20 value 278.586800
## iter 30 value 245.159030
## iter 40 value 227.465161
## iter 50 value 223.816162
## iter 60 value 223.415271
## iter 70 value 223.191556
## iter 80 value 223.173363
## iter 90 value 223.152484
## iter 100 value 223.141285
## final value 223.141285
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 431.839172
## iter 10 value 290.667523
## iter 20 value 213.544697
## iter 30 value 178.745469
## iter 40 value 175.528980
## iter 50 value 171.975593
## iter 60 value 169.386672
## iter 70 value 168.881472
## iter 80 value 168.851105
## iter 90 value 168.819589
## iter 100 value 168.815813
## final value 168.815813
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 423.499345
## iter 10 value 260.851407
## iter 20 value 249.804258
## iter 30 value 222.152643
## iter 40 value 193.728747
## iter 50 value 184.099000
## iter 60 value 179.965790
## iter 70 value 177.238566
## iter 80 value 172.745655
## iter 90 value 169.301480
## iter 100 value 168.939917
## final value 168.939917
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 425.154395
## iter 10 value 343.458665
## iter 20 value 333.015238
## iter 30 value 332.408571
## iter 40 value 330.514259
## iter 50 value 310.604405
## iter 60 value 305.718051
## iter 70 value 259.356285
## iter 80 value 242.582103
## iter 90 value 226.673812
## iter 100 value 224.432520
## final value 224.432520
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 448.875468
## iter 10 value 251.426033
## iter 20 value 224.191686
## iter 30 value 223.631750
## iter 40 value 222.957325
## iter 50 value 220.135202
## iter 60 value 188.753135
## iter 70 value 177.022551
## iter 80 value 173.842098
## iter 90 value 169.926477
## iter 100 value 168.955863
## final value 168.955863
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 405.163539
## iter 10 value 295.479873
## iter 20 value 225.053861
## iter 30 value 205.468510
## iter 40 value 185.720411
## iter 50 value 175.390847
## iter 60 value 171.610299
## iter 70 value 170.417904
## iter 80 value 169.709461
## iter 90 value 169.383587
## iter 100 value 169.210947
## final value 169.210947
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 444.304901
## iter 10 value 374.624307
## iter 20 value 221.829976
## iter 30 value 178.112795
## iter 40 value 169.383060
## iter 50 value 168.388809
## iter 60 value 168.322881
## iter 70 value 168.317989
## iter 80 value 168.279797
## iter 90 value 168.238247
## iter 100 value 168.207970
## final value 168.207970
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 433.324592
## iter 10 value 249.303880
## iter 20 value 221.242085
## iter 30 value 196.245136
## iter 40 value 174.038507
## iter 50 value 169.354666
## iter 60 value 168.125458
## iter 70 value 167.130649
## iter 80 value 166.080698
## iter 90 value 166.000770
## iter 100 value 165.747074
## final value 165.747074
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 446.736812
## iter 10 value 324.127879
## iter 20 value 229.078853
## iter 30 value 220.065361
## iter 40 value 202.824798
## iter 50 value 181.019385
## iter 60 value 173.410845
## iter 70 value 171.150595
## iter 80 value 169.925643
## iter 90 value 169.517488
## iter 100 value 169.117720
## final value 169.117720
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 413.323241
## iter 10 value 226.493430
## iter 20 value 218.244629
## iter 30 value 176.401250
## iter 40 value 171.143283
## iter 50 value 168.935890
## iter 60 value 168.382023
## iter 70 value 168.138165
## iter 80 value 167.853135
## iter 90 value 166.816446
## iter 100 value 165.629741
## final value 165.629741
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 415.124776
## iter 10 value 330.596574
## iter 20 value 253.516883
## final value 253.510585
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 414.981943
## iter 10 value 320.693066
## iter 20 value 253.834296
## final value 253.333209
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 399.702596
## iter 10 value 259.937067
## iter 20 value 253.672498
## final value 253.510585
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 405.297423
## iter 10 value 254.938952
## iter 20 value 253.408025
## final value 253.333209
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 407.441624
## iter 10 value 299.967360
## iter 20 value 253.809327
## final value 253.510585
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 428.190075
## iter 10 value 323.220093
## iter 20 value 253.284242
## iter 30 value 252.157240
## iter 40 value 251.095283
## iter 50 value 249.801568
## iter 60 value 249.774370
## iter 70 value 249.772589
## final value 249.772540
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 464.296755
## iter 10 value 268.760151
## iter 20 value 250.962582
## iter 30 value 249.961245
## iter 40 value 249.866363
## iter 50 value 249.763625
## iter 60 value 249.754170
## iter 70 value 249.685220
## iter 80 value 249.665297
## iter 90 value 249.665032
## final value 249.664909
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 486.854815
## iter 10 value 256.043067
## iter 20 value 249.869214
## iter 30 value 249.761117
## iter 40 value 249.752434
## iter 50 value 249.737282
## iter 60 value 249.671192
## iter 70 value 249.665047
## final value 249.664915
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 444.743146
## iter 10 value 277.702556
## iter 20 value 251.681514
## iter 30 value 250.813071
## iter 40 value 250.058063
## iter 50 value 249.779623
## iter 60 value 249.766293
## iter 70 value 249.730207
## iter 80 value 249.703666
## iter 90 value 249.701089
## iter 100 value 249.699530
## final value 249.699530
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 410.048041
## iter 10 value 258.935685
## iter 20 value 253.874727
## iter 30 value 252.399472
## iter 40 value 249.976164
## iter 50 value 249.776378
## iter 60 value 249.769214
## iter 70 value 249.709343
## iter 80 value 249.700049
## final value 249.699667
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 406.411385
## iter 10 value 288.255458
## iter 20 value 250.506242
## iter 30 value 249.900122
## iter 40 value 249.712147
## iter 50 value 249.635990
## iter 60 value 249.499057
## iter 70 value 249.388762
## iter 80 value 249.357513
## iter 90 value 249.348612
## iter 100 value 249.336837
## final value 249.336837
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 420.363839
## iter 10 value 286.878344
## iter 20 value 254.676143
## iter 30 value 249.614786
## iter 40 value 247.829412
## iter 50 value 246.509143
## iter 60 value 246.370758
## iter 70 value 246.115985
## iter 80 value 245.970814
## iter 90 value 245.804673
## iter 100 value 245.794959
## final value 245.794959
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 430.485966
## iter 10 value 326.549974
## iter 20 value 265.445581
## iter 30 value 254.298342
## iter 40 value 251.224425
## iter 50 value 249.147740
## iter 60 value 247.814814
## iter 70 value 246.219637
## iter 80 value 245.910967
## iter 90 value 245.868224
## iter 100 value 245.858119
## final value 245.858119
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 406.273265
## iter 10 value 262.385339
## iter 20 value 251.382889
## iter 30 value 250.305432
## iter 40 value 249.703465
## iter 50 value 249.547329
## iter 60 value 249.397836
## iter 70 value 249.332221
## iter 80 value 249.320524
## iter 90 value 249.318809
## final value 249.318415
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 441.242565
## iter 10 value 315.213089
## iter 20 value 255.728450
## iter 30 value 252.480943
## iter 40 value 251.254985
## iter 50 value 250.687620
## iter 60 value 250.038423
## iter 70 value 249.703822
## iter 80 value 249.534788
## iter 90 value 249.371954
## iter 100 value 249.365465
## final value 249.365465
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 414.391460
## iter 10 value 274.255713
## iter 20 value 236.605700
## iter 30 value 233.056887
## iter 40 value 226.030015
## iter 50 value 224.007366
## iter 60 value 223.414449
## iter 70 value 223.326972
## iter 80 value 223.282919
## iter 90 value 223.277836
## iter 100 value 223.273325
## final value 223.273325
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 427.311350
## iter 10 value 280.455568
## iter 20 value 240.322653
## iter 30 value 235.406576
## iter 40 value 228.294470
## iter 50 value 224.220052
## iter 60 value 223.510237
## iter 70 value 223.351592
## iter 80 value 223.288333
## final value 223.280457
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 426.292134
## iter 10 value 397.341125
## iter 20 value 233.112451
## iter 30 value 224.321656
## iter 40 value 223.453300
## iter 50 value 223.365206
## iter 60 value 223.278702
## iter 70 value 223.272563
## final value 223.272283
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 428.417975
## iter 10 value 329.233088
## iter 20 value 308.091144
## iter 30 value 303.333135
## iter 40 value 278.153330
## iter 50 value 266.585903
## iter 60 value 262.246370
## iter 70 value 259.016773
## iter 80 value 252.374212
## iter 90 value 247.171917
## iter 100 value 245.283403
## final value 245.283403
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 406.171783
## iter 10 value 371.832698
## iter 20 value 223.958454
## iter 30 value 223.575665
## iter 40 value 223.292600
## iter 50 value 223.283505
## iter 60 value 223.277861
## iter 70 value 223.268552
## iter 80 value 223.263400
## final value 223.262717
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 401.348430
## iter 10 value 251.034434
## iter 20 value 228.687205
## iter 30 value 224.294719
## iter 40 value 224.024521
## iter 50 value 223.675299
## iter 60 value 223.635613
## iter 70 value 223.472075
## iter 80 value 223.316455
## iter 90 value 223.244080
## iter 100 value 223.139072
## final value 223.139072
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 421.680949
## iter 10 value 270.967100
## iter 20 value 230.407220
## iter 30 value 224.081514
## iter 40 value 223.426307
## iter 50 value 223.369540
## iter 60 value 223.307459
## iter 70 value 223.299623
## iter 80 value 223.297714
## iter 90 value 223.268787
## iter 100 value 222.509239
## final value 222.509239
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 441.987012
## iter 10 value 285.874365
## iter 20 value 233.300022
## iter 30 value 221.988796
## iter 40 value 208.801302
## iter 50 value 189.841939
## iter 60 value 171.470766
## iter 70 value 170.047754
## iter 80 value 169.044449
## iter 90 value 168.726048
## iter 100 value 168.643107
## final value 168.643107
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 409.903637
## iter 10 value 333.982668
## iter 20 value 245.548878
## iter 30 value 227.494602
## iter 40 value 223.765081
## iter 50 value 223.414557
## iter 60 value 223.042932
## iter 70 value 222.524725
## iter 80 value 213.921814
## iter 90 value 178.257495
## iter 100 value 171.634484
## final value 171.634484
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 428.180492
## iter 10 value 294.389772
## iter 20 value 220.888084
## iter 30 value 183.463266
## iter 40 value 174.349338
## iter 50 value 171.301752
## iter 60 value 169.441700
## iter 70 value 169.141896
## iter 80 value 169.134124
## iter 90 value 169.094553
## iter 100 value 169.070893
## final value 169.070893
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 407.732989
## iter 10 value 234.801143
## iter 20 value 200.709512
## iter 30 value 178.292105
## iter 40 value 173.005691
## iter 50 value 169.393428
## iter 60 value 168.830785
## iter 70 value 168.494968
## iter 80 value 168.388928
## iter 90 value 168.240543
## iter 100 value 167.902889
## final value 167.902889
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 428.684450
## iter 10 value 311.583960
## iter 20 value 220.786845
## iter 30 value 191.796310
## iter 40 value 174.244849
## iter 50 value 169.141763
## iter 60 value 168.793239
## iter 70 value 168.778767
## iter 80 value 168.742918
## iter 90 value 168.697641
## iter 100 value 168.605657
## final value 168.605657
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 421.153706
## iter 10 value 234.019048
## iter 20 value 187.848026
## iter 30 value 169.251014
## iter 40 value 168.766656
## iter 50 value 168.547356
## iter 60 value 168.480099
## iter 70 value 168.334158
## iter 80 value 168.179246
## iter 90 value 168.111389
## iter 100 value 168.075185
## final value 168.075185
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 409.816466
## iter 10 value 312.143217
## iter 20 value 269.301190
## iter 30 value 218.569708
## iter 40 value 216.603919
## iter 50 value 201.449528
## iter 60 value 187.857935
## iter 70 value 178.035766
## iter 80 value 174.276538
## iter 90 value 170.408776
## iter 100 value 170.045344
## final value 170.045344
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 459.720566
## iter 10 value 373.883177
## iter 20 value 227.111765
## iter 30 value 223.651591
## iter 40 value 206.226382
## iter 50 value 174.251616
## iter 60 value 170.935150
## iter 70 value 169.027534
## iter 80 value 168.743533
## iter 90 value 168.646526
## iter 100 value 168.557634
## final value 168.557634
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 448.162974
## iter 10 value 295.198334
## iter 20 value 268.398942
## iter 30 value 266.128893
## iter 40 value 257.844459
## iter 50 value 254.923578
## iter 60 value 252.163057
## iter 70 value 251.759628
## iter 80 value 246.090797
## iter 90 value 242.203530
## iter 100 value 235.144072
## final value 235.144072
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 419.174904
## iter 10 value 314.891841
## iter 20 value 245.456863
## iter 30 value 234.046842
## iter 40 value 230.738205
## iter 50 value 230.154267
## iter 60 value 229.848752
## iter 70 value 229.812364
## iter 80 value 229.762058
## iter 90 value 229.748997
## iter 100 value 229.732458
## final value 229.732458
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 402.720407
## iter 10 value 230.149939
## iter 20 value 229.695658
## iter 30 value 229.672058
## iter 40 value 229.662746
## iter 50 value 229.653187
## iter 60 value 229.647309
## iter 70 value 229.644605
## iter 80 value 229.643497
## iter 90 value 229.643178
## iter 100 value 229.642738
## final value 229.642738
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 440.721698
## iter 10 value 393.285940
## iter 20 value 230.750274
## iter 30 value 230.005828
## iter 40 value 229.857851
## iter 50 value 229.820912
## iter 60 value 229.760166
## iter 70 value 229.740063
## final value 229.738938
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 423.569361
## iter 10 value 250.304866
## iter 20 value 230.321073
## iter 30 value 229.978133
## iter 40 value 229.797940
## iter 50 value 229.722447
## iter 60 value 229.718329
## final value 229.712283
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 396.286521
## iter 10 value 233.961391
## iter 20 value 229.644528
## iter 30 value 216.624579
## iter 40 value 186.541624
## iter 50 value 171.568650
## iter 60 value 164.967469
## iter 70 value 163.619669
## iter 80 value 163.365675
## iter 90 value 163.244980
## iter 100 value 163.164801
## final value 163.164801
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 407.379354
## iter 10 value 233.716296
## iter 20 value 165.388099
## iter 30 value 163.727221
## iter 40 value 163.651862
## iter 50 value 163.586984
## iter 60 value 163.572835
## iter 70 value 163.526738
## iter 80 value 163.522288
## iter 90 value 163.517468
## iter 100 value 163.506981
## final value 163.506981
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 399.502060
## iter 10 value 259.486618
## iter 20 value 221.167176
## iter 30 value 176.678370
## iter 40 value 168.675504
## iter 50 value 165.103285
## iter 60 value 163.719475
## iter 70 value 163.542218
## iter 80 value 163.519640
## iter 90 value 163.311281
## iter 100 value 163.046254
## final value 163.046254
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 416.666500
## iter 10 value 354.690709
## iter 20 value 228.042452
## iter 30 value 204.834611
## iter 40 value 181.314969
## iter 50 value 172.740640
## iter 60 value 168.052692
## iter 70 value 166.254032
## iter 80 value 165.562118
## iter 90 value 164.582065
## iter 100 value 164.100345
## final value 164.100345
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 422.277095
## iter 10 value 257.349682
## iter 20 value 230.563909
## iter 30 value 229.893712
## iter 40 value 229.745505
## iter 50 value 229.687408
## iter 60 value 229.679072
## iter 70 value 229.656885
## iter 80 value 229.383306
## iter 90 value 225.976887
## iter 100 value 164.738893
## final value 164.738893
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 419.566766
## iter 10 value 256.192392
## iter 20 value 226.332252
## iter 30 value 172.715735
## iter 40 value 164.780332
## iter 50 value 163.866890
## iter 60 value 163.621639
## iter 70 value 163.551525
## iter 80 value 163.446839
## iter 90 value 163.274834
## iter 100 value 163.106489
## final value 163.106489
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 431.751736
## iter 10 value 261.193863
## iter 20 value 229.564096
## iter 30 value 176.429737
## iter 40 value 164.630754
## iter 50 value 163.791720
## iter 60 value 163.638667
## iter 70 value 163.560272
## iter 80 value 163.483069
## iter 90 value 163.337915
## iter 100 value 163.150197
## final value 163.150197
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 446.615041
## iter 10 value 364.982785
## iter 20 value 231.760632
## iter 30 value 230.089230
## iter 40 value 226.281471
## iter 50 value 172.842447
## iter 60 value 165.324957
## iter 70 value 163.846594
## iter 80 value 163.309172
## iter 90 value 163.039889
## iter 100 value 162.939051
## final value 162.939051
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 437.402750
## iter 10 value 278.363113
## iter 20 value 228.684795
## iter 30 value 170.128943
## iter 40 value 165.174464
## iter 50 value 164.625457
## iter 60 value 164.266988
## iter 70 value 163.699181
## iter 80 value 163.638969
## iter 90 value 163.587680
## iter 100 value 163.541746
## final value 163.541746
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 401.719816
## iter 10 value 287.169484
## iter 20 value 206.281900
## iter 30 value 164.586190
## iter 40 value 163.784378
## iter 50 value 163.624618
## iter 60 value 163.576641
## iter 70 value 163.543463
## iter 80 value 163.462220
## iter 90 value 163.357819
## iter 100 value 163.232869
## final value 163.232869
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 421.285417
## iter 10 value 276.531999
## iter 20 value 258.417433
## final value 258.416450
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 408.213474
## iter 10 value 324.839331
## iter 20 value 258.449072
## iter 30 value 258.416452
## iter 30 value 258.416450
## iter 30 value 258.416450
## final value 258.416450
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 431.546671
## iter 10 value 337.488253
## iter 20 value 258.985528
## final value 258.897700
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 427.522488
## iter 10 value 278.915732
## iter 20 value 258.543602
## final value 258.416449
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 410.428628
## iter 10 value 336.358281
## iter 20 value 259.253541
## iter 30 value 258.897701
## iter 30 value 258.897699
## iter 30 value 258.897699
## final value 258.897699
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 409.578582
## iter 10 value 270.241016
## iter 20 value 256.974505
## iter 30 value 255.100764
## iter 40 value 255.005062
## iter 50 value 254.992793
## final value 254.989973
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 455.164216
## iter 10 value 325.322614
## iter 20 value 259.543753
## iter 30 value 256.867555
## iter 40 value 255.451239
## iter 50 value 255.103400
## iter 60 value 255.093534
## iter 70 value 255.025037
## iter 80 value 254.991983
## iter 90 value 254.990240
## final value 254.989967
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 452.613306
## iter 10 value 375.460954
## iter 20 value 263.235170
## iter 30 value 258.828897
## iter 40 value 256.653085
## iter 50 value 255.169811
## iter 60 value 255.066737
## iter 70 value 255.008992
## iter 80 value 254.993301
## iter 90 value 254.990300
## final value 254.989968
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 399.985110
## iter 10 value 280.641502
## iter 20 value 258.017863
## iter 30 value 256.781490
## iter 40 value 255.578480
## iter 50 value 255.041558
## iter 60 value 254.990194
## final value 254.989968
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 460.060184
## iter 10 value 263.852633
## iter 20 value 258.565079
## iter 30 value 255.900017
## iter 40 value 255.125166
## iter 50 value 255.068550
## iter 60 value 255.010231
## iter 70 value 254.989972
## iter 70 value 254.989971
## iter 70 value 254.989970
## final value 254.989970
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 448.667361
## iter 10 value 319.520493
## iter 20 value 256.559157
## iter 30 value 255.404141
## iter 40 value 255.136998
## iter 50 value 255.036359
## iter 60 value 254.953404
## iter 70 value 254.836199
## iter 80 value 254.712746
## iter 90 value 254.680601
## iter 100 value 254.660857
## final value 254.660857
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 413.784702
## iter 10 value 294.564287
## iter 20 value 263.569954
## iter 30 value 256.842448
## iter 40 value 255.449181
## iter 50 value 255.075054
## iter 60 value 254.844978
## iter 70 value 254.717843
## iter 80 value 254.663698
## iter 90 value 254.655356
## iter 100 value 254.651664
## final value 254.651664
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 402.938634
## iter 10 value 279.407911
## iter 20 value 262.476505
## iter 30 value 258.988485
## iter 40 value 256.166907
## iter 50 value 255.498668
## iter 60 value 255.139833
## iter 70 value 254.894941
## iter 80 value 254.711167
## iter 90 value 254.681546
## iter 100 value 254.671905
## final value 254.671905
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 425.189715
## iter 10 value 291.897486
## iter 20 value 257.348007
## iter 30 value 256.159686
## iter 40 value 254.974727
## iter 50 value 254.768518
## iter 60 value 254.688034
## iter 70 value 254.672040
## iter 80 value 254.657928
## iter 90 value 254.651622
## iter 100 value 254.651334
## final value 254.651334
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 439.604063
## iter 10 value 312.579728
## iter 20 value 256.288833
## iter 30 value 254.705708
## iter 40 value 254.688555
## iter 50 value 254.682757
## iter 60 value 254.670082
## iter 70 value 254.664900
## iter 80 value 254.653661
## iter 90 value 254.651469
## iter 100 value 254.651292
## final value 254.651292
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 408.549085
## iter 10 value 242.749410
## iter 20 value 230.339320
## iter 30 value 229.950375
## iter 40 value 229.830982
## iter 50 value 229.810699
## iter 60 value 229.799756
## iter 70 value 229.798699
## iter 80 value 229.788092
## iter 90 value 229.786454
## final value 229.786240
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 403.939774
## iter 10 value 346.728344
## iter 20 value 231.456362
## iter 30 value 230.499176
## iter 40 value 230.027050
## iter 50 value 229.860867
## iter 60 value 229.811765
## final value 229.806390
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 410.071621
## iter 10 value 380.750658
## iter 20 value 234.438127
## iter 30 value 230.582958
## iter 40 value 229.938730
## iter 50 value 229.889039
## iter 60 value 229.866778
## iter 70 value 229.839136
## iter 80 value 229.821462
## iter 90 value 229.819657
## iter 100 value 229.809718
## final value 229.809718
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 403.843495
## iter 10 value 256.591390
## iter 20 value 230.659434
## iter 30 value 230.268357
## iter 40 value 229.955874
## iter 50 value 229.867068
## iter 60 value 229.814208
## iter 70 value 229.810685
## iter 80 value 229.808236
## final value 229.806644
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 429.992886
## iter 10 value 251.034870
## iter 20 value 241.186582
## iter 30 value 233.803632
## iter 40 value 231.012776
## iter 50 value 230.095020
## iter 60 value 229.847132
## iter 70 value 229.815010
## iter 80 value 229.803193
## iter 90 value 229.795912
## iter 100 value 229.795127
## final value 229.795127
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 512.222302
## iter 10 value 271.531021
## iter 20 value 230.440248
## iter 30 value 227.754692
## iter 40 value 182.970235
## iter 50 value 167.309317
## iter 60 value 164.334732
## iter 70 value 164.032467
## iter 80 value 163.897818
## iter 90 value 163.878046
## iter 100 value 163.833228
## final value 163.833228
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 447.104085
## iter 10 value 251.058212
## iter 20 value 227.460250
## iter 30 value 164.967038
## iter 40 value 164.038940
## iter 50 value 163.810187
## iter 60 value 163.796800
## iter 70 value 163.751501
## iter 80 value 163.740907
## iter 90 value 163.739170
## iter 100 value 163.737503
## final value 163.737503
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 417.238278
## iter 10 value 271.050104
## iter 20 value 227.272932
## iter 30 value 225.426204
## iter 40 value 220.129530
## iter 50 value 181.056639
## iter 60 value 178.466220
## iter 70 value 176.557026
## iter 80 value 175.231142
## iter 90 value 174.559119
## iter 100 value 170.231812
## final value 170.231812
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 400.641872
## iter 10 value 274.059610
## iter 20 value 233.700062
## iter 30 value 230.149172
## iter 40 value 229.953375
## iter 50 value 167.823897
## iter 60 value 164.357364
## iter 70 value 164.015219
## iter 80 value 163.973068
## iter 90 value 163.804200
## iter 100 value 163.755330
## final value 163.755330
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 443.634742
## iter 10 value 256.429881
## iter 20 value 230.837271
## iter 30 value 222.568139
## iter 40 value 174.278127
## iter 50 value 164.380784
## iter 60 value 163.531370
## iter 70 value 163.284091
## iter 80 value 163.068485
## iter 90 value 162.938091
## iter 100 value 162.849512
## final value 162.849512
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 458.570157
## iter 10 value 323.852225
## iter 20 value 232.123647
## iter 30 value 229.165514
## iter 40 value 221.372911
## iter 50 value 171.562443
## iter 60 value 164.913712
## iter 70 value 163.669558
## iter 80 value 163.370557
## iter 90 value 163.177736
## iter 100 value 162.993613
## final value 162.993613
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 476.281472
## iter 10 value 244.172234
## iter 20 value 229.704834
## iter 30 value 210.509472
## iter 40 value 167.086515
## iter 50 value 164.310023
## iter 60 value 163.805162
## iter 70 value 163.780362
## iter 80 value 163.758492
## iter 90 value 163.724657
## iter 100 value 163.602141
## final value 163.602141
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 418.558028
## iter 10 value 306.013023
## iter 20 value 218.488835
## iter 30 value 172.672397
## iter 40 value 164.528765
## iter 50 value 163.758227
## iter 60 value 163.377342
## iter 70 value 163.211203
## iter 80 value 163.090982
## iter 90 value 162.947812
## iter 100 value 162.885928
## final value 162.885928
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 450.666875
## iter 10 value 325.600676
## iter 20 value 247.825513
## iter 30 value 228.198833
## iter 40 value 187.277120
## iter 50 value 169.808415
## iter 60 value 166.369977
## iter 70 value 164.243286
## iter 80 value 164.011476
## iter 90 value 163.844466
## iter 100 value 163.828926
## final value 163.828926
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 448.926080
## iter 10 value 243.441685
## iter 20 value 229.895897
## iter 30 value 228.982405
## iter 40 value 185.327798
## iter 50 value 168.741968
## iter 60 value 166.158022
## iter 70 value 164.354500
## iter 80 value 163.722723
## iter 90 value 163.617347
## iter 100 value 163.512003
## final value 163.512003
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 463.961061
## iter 10 value 375.158869
## iter 20 value 227.654393
## iter 30 value 227.422370
## iter 40 value 227.417960
## final value 227.417945
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 406.209941
## iter 10 value 327.531831
## iter 20 value 227.442147
## iter 30 value 227.418174
## final value 227.417945
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 418.591727
## iter 10 value 268.216731
## iter 20 value 227.449834
## iter 30 value 227.430318
## iter 40 value 227.417964
## final value 227.417949
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 403.840609
## iter 10 value 237.635192
## iter 20 value 227.673307
## iter 30 value 227.533442
## iter 40 value 227.507674
## iter 50 value 227.451466
## iter 60 value 227.429472
## final value 227.417945
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 410.815867
## iter 10 value 298.302192
## iter 20 value 234.956699
## iter 30 value 231.071799
## iter 40 value 229.124803
## iter 50 value 227.477867
## iter 60 value 227.418065
## final value 227.417974
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 436.942631
## iter 10 value 241.956298
## iter 20 value 221.233094
## iter 30 value 193.759879
## iter 40 value 181.622452
## iter 50 value 171.177836
## iter 60 value 166.734792
## iter 70 value 164.330694
## iter 80 value 163.340429
## iter 90 value 162.910715
## iter 100 value 161.662252
## final value 161.662252
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 446.544037
## iter 10 value 238.428562
## iter 20 value 222.179074
## iter 30 value 195.900795
## iter 40 value 177.718921
## iter 50 value 171.558897
## iter 60 value 168.457159
## iter 70 value 167.093460
## iter 80 value 166.465001
## iter 90 value 166.196903
## iter 100 value 165.967581
## final value 165.967581
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 495.999462
## iter 10 value 260.448778
## iter 20 value 228.287109
## iter 30 value 227.471322
## iter 40 value 227.391323
## iter 50 value 225.392968
## iter 60 value 191.638788
## iter 70 value 180.047952
## iter 80 value 174.841550
## iter 90 value 171.994756
## iter 100 value 169.780803
## final value 169.780803
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 489.266973
## iter 10 value 325.217699
## iter 20 value 243.385191
## iter 30 value 225.936727
## iter 40 value 195.367753
## iter 50 value 178.175351
## iter 60 value 170.075168
## iter 70 value 166.744551
## iter 80 value 165.602332
## iter 90 value 164.906624
## iter 100 value 164.104689
## final value 164.104689
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 406.450150
## iter 10 value 290.342755
## iter 20 value 227.549986
## iter 30 value 227.080523
## iter 40 value 201.637376
## iter 50 value 178.248815
## iter 60 value 172.567747
## iter 70 value 170.933637
## iter 80 value 166.655119
## iter 90 value 164.238218
## iter 100 value 162.602274
## final value 162.602274
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 405.554291
## iter 10 value 240.068492
## iter 20 value 208.197617
## iter 30 value 176.853693
## iter 40 value 169.004723
## iter 50 value 167.759577
## iter 60 value 167.022131
## iter 70 value 166.349768
## iter 80 value 165.087514
## iter 90 value 163.189086
## iter 100 value 162.530465
## final value 162.530465
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 405.337177
## iter 10 value 323.151014
## iter 20 value 231.355394
## iter 30 value 222.996905
## iter 40 value 186.708311
## iter 50 value 175.573553
## iter 60 value 172.914871
## iter 70 value 171.037091
## iter 80 value 169.913479
## iter 90 value 169.787984
## iter 100 value 169.712961
## final value 169.712961
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 458.491370
## iter 10 value 267.987353
## iter 20 value 228.000103
## iter 30 value 207.989797
## iter 40 value 187.055646
## iter 50 value 171.872933
## iter 60 value 168.079631
## iter 70 value 166.753440
## iter 80 value 166.013910
## iter 90 value 165.036375
## iter 100 value 163.388946
## final value 163.388946
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 415.837627
## iter 10 value 235.081702
## iter 20 value 222.632715
## iter 30 value 194.342487
## iter 40 value 174.259717
## iter 50 value 167.617333
## iter 60 value 165.341054
## iter 70 value 162.901319
## iter 80 value 161.694956
## iter 90 value 160.121906
## iter 100 value 159.360220
## final value 159.360220
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 439.470012
## iter 10 value 250.654755
## iter 20 value 226.447579
## iter 30 value 189.735602
## iter 40 value 174.198801
## iter 50 value 168.741835
## iter 60 value 165.667979
## iter 70 value 164.019044
## iter 80 value 162.671050
## iter 90 value 162.166286
## iter 100 value 161.332714
## final value 161.332714
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 435.626610
## iter 10 value 356.090234
## iter 20 value 259.138609
## iter 30 value 257.804987
## iter 30 value 257.804985
## iter 30 value 257.804985
## final value 257.804985
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 405.595964
## iter 10 value 335.680256
## iter 20 value 257.818026
## final value 257.804986
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 403.488136
## iter 10 value 296.349945
## iter 20 value 257.087848
## final value 257.086166
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 404.438962
## iter 10 value 275.421710
## iter 20 value 257.134598
## final value 257.086166
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 419.212187
## iter 10 value 284.799869
## iter 20 value 257.173032
## final value 257.086166
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 420.189001
## iter 10 value 284.738327
## iter 20 value 257.727675
## iter 30 value 254.941610
## iter 40 value 254.328764
## iter 50 value 254.147090
## iter 60 value 254.137623
## final value 254.135919
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 412.484623
## iter 10 value 286.680916
## iter 20 value 254.563996
## iter 30 value 254.298751
## iter 40 value 254.237953
## iter 50 value 254.224416
## iter 60 value 254.223827
## iter 70 value 254.219991
## final value 254.219610
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 412.950702
## iter 10 value 314.870675
## iter 20 value 259.081576
## iter 30 value 256.520587
## iter 40 value 254.965951
## iter 50 value 254.230229
## iter 60 value 254.220850
## iter 70 value 254.199852
## iter 80 value 254.185476
## iter 90 value 254.151478
## iter 100 value 254.136023
## final value 254.136023
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 459.910968
## iter 10 value 270.700246
## iter 20 value 255.772451
## iter 30 value 254.601658
## iter 40 value 254.239085
## iter 50 value 254.224555
## iter 60 value 254.224006
## iter 70 value 254.220392
## iter 80 value 254.219639
## final value 254.219628
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 426.518738
## iter 10 value 363.889789
## iter 20 value 264.047797
## iter 30 value 258.541057
## iter 40 value 257.314239
## iter 50 value 254.830492
## iter 60 value 254.216856
## iter 70 value 254.143493
## iter 80 value 254.140523
## iter 90 value 254.135968
## final value 254.135919
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 434.597263
## iter 10 value 346.989664
## iter 20 value 257.052424
## iter 30 value 255.089677
## iter 40 value 254.390369
## iter 50 value 254.216143
## iter 60 value 254.115405
## iter 70 value 254.024452
## iter 80 value 253.984082
## iter 90 value 253.978163
## final value 253.977004
## converged
## Fitting Repeat 2
##
## # weights: 27
## initial value 407.588401
## iter 10 value 286.700395
## iter 20 value 254.848078
## iter 30 value 254.162578
## iter 40 value 254.071690
## iter 50 value 254.041275
## iter 60 value 253.999972
## iter 70 value 253.990231
## iter 80 value 253.982115
## iter 90 value 253.980184
## iter 100 value 253.979076
## final value 253.979076
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 438.118483
## iter 10 value 324.712513
## iter 20 value 255.775259
## iter 30 value 254.393972
## iter 40 value 254.202686
## iter 50 value 254.189794
## iter 60 value 254.168400
## iter 70 value 254.118454
## iter 80 value 254.006249
## iter 90 value 253.986494
## iter 100 value 253.981310
## final value 253.981310
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 419.747596
## iter 10 value 272.257501
## iter 20 value 255.231341
## iter 30 value 254.450235
## iter 40 value 254.179734
## iter 50 value 254.091340
## iter 60 value 254.046488
## iter 70 value 254.001216
## iter 80 value 253.972598
## iter 90 value 253.962923
## iter 100 value 253.951524
## final value 253.951524
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 427.544984
## iter 10 value 278.937703
## iter 20 value 256.458190
## iter 30 value 254.814453
## iter 40 value 254.361714
## iter 50 value 254.292629
## iter 60 value 254.098704
## iter 70 value 254.033920
## iter 80 value 253.981406
## iter 90 value 253.977100
## iter 100 value 253.960771
## final value 253.960771
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 436.868463
## iter 10 value 369.706220
## iter 20 value 228.293450
## iter 30 value 227.470993
## iter 40 value 227.462059
## iter 50 value 227.459857
## final value 227.459844
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 419.303794
## iter 10 value 275.692678
## iter 20 value 240.099185
## iter 30 value 235.200196
## iter 40 value 232.640156
## iter 50 value 228.388109
## iter 60 value 227.496452
## iter 70 value 227.460991
## final value 227.459845
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 448.340575
## iter 10 value 319.171720
## iter 20 value 228.854795
## iter 30 value 228.158712
## iter 40 value 227.482616
## iter 50 value 227.460007
## final value 227.459868
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 443.397677
## iter 10 value 231.243037
## iter 20 value 227.722415
## iter 30 value 227.489292
## iter 40 value 227.457402
## final value 227.457060
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 409.606469
## iter 10 value 300.918557
## iter 20 value 228.685631
## iter 30 value 227.511787
## iter 40 value 227.478128
## iter 50 value 227.460584
## final value 227.459843
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 408.046542
## iter 10 value 289.588754
## iter 20 value 227.690146
## iter 30 value 196.307965
## iter 40 value 170.216112
## iter 50 value 168.764690
## iter 60 value 166.771671
## iter 70 value 165.157011
## iter 80 value 164.644221
## iter 90 value 164.047836
## iter 100 value 163.838005
## final value 163.838005
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 409.890877
## iter 10 value 247.032447
## iter 20 value 196.236545
## iter 30 value 176.283139
## iter 40 value 173.840216
## iter 50 value 169.814415
## iter 60 value 168.601404
## iter 70 value 168.260615
## iter 80 value 168.180780
## iter 90 value 167.971149
## iter 100 value 167.835158
## final value 167.835158
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 492.751206
## iter 10 value 259.450514
## iter 20 value 227.483653
## iter 30 value 217.662979
## iter 40 value 177.571134
## iter 50 value 173.533055
## iter 60 value 171.715815
## iter 70 value 171.583084
## iter 80 value 171.552540
## iter 90 value 171.524118
## iter 100 value 171.506278
## final value 171.506278
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 450.031366
## iter 10 value 303.253211
## iter 20 value 213.578658
## iter 30 value 179.394715
## iter 40 value 176.819425
## iter 50 value 174.239944
## iter 60 value 172.021207
## iter 70 value 171.648129
## iter 80 value 171.565864
## iter 90 value 171.510191
## iter 100 value 171.506026
## final value 171.506026
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 407.422077
## iter 10 value 260.239547
## iter 20 value 243.336380
## iter 30 value 230.015605
## iter 40 value 227.984548
## iter 50 value 227.848891
## iter 60 value 227.797556
## iter 70 value 227.667510
## iter 80 value 227.605187
## iter 90 value 227.587299
## iter 100 value 227.549965
## final value 227.549965
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 430.308674
## iter 10 value 287.597798
## iter 20 value 223.171827
## iter 30 value 174.294003
## iter 40 value 168.309437
## iter 50 value 166.075771
## iter 60 value 165.537132
## iter 70 value 165.313354
## iter 80 value 165.045398
## iter 90 value 164.934477
## iter 100 value 164.856773
## final value 164.856773
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 491.107909
## iter 10 value 258.177200
## iter 20 value 227.844155
## iter 30 value 227.577087
## iter 40 value 192.303663
## iter 50 value 172.163908
## iter 60 value 169.751694
## iter 70 value 167.467277
## iter 80 value 166.399950
## iter 90 value 165.387962
## iter 100 value 165.013104
## final value 165.013104
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 446.768419
## iter 10 value 266.496737
## iter 20 value 230.476438
## iter 30 value 226.294977
## iter 40 value 202.717980
## iter 50 value 181.298756
## iter 60 value 169.922961
## iter 70 value 167.653338
## iter 80 value 165.747569
## iter 90 value 165.588120
## iter 100 value 165.428843
## final value 165.428843
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 479.098104
## iter 10 value 238.392621
## iter 20 value 207.448816
## iter 30 value 181.684688
## iter 40 value 171.070653
## iter 50 value 168.544330
## iter 60 value 166.993707
## iter 70 value 165.326030
## iter 80 value 164.982765
## iter 90 value 164.663103
## iter 100 value 164.081818
## final value 164.081818
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 408.657782
## iter 10 value 243.323513
## iter 20 value 228.795261
## iter 30 value 227.641909
## iter 40 value 227.611137
## iter 50 value 227.562035
## iter 60 value 227.544177
## iter 70 value 227.522603
## iter 80 value 227.496327
## iter 90 value 226.691212
## iter 100 value 176.797031
## final value 176.797031
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 412.484205
## iter 10 value 307.774862
## iter 20 value 242.139822
## iter 30 value 224.447195
## iter 40 value 219.448601
## iter 50 value 218.268404
## iter 60 value 218.187635
## iter 70 value 218.130708
## iter 80 value 218.075726
## final value 218.070594
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 399.236768
## iter 10 value 290.736375
## iter 20 value 221.932452
## iter 30 value 218.920865
## iter 40 value 218.305493
## iter 50 value 218.187453
## iter 60 value 218.144495
## iter 70 value 218.128719
## iter 80 value 218.071852
## iter 90 value 218.068276
## iter 100 value 218.059503
## final value 218.059503
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 425.876288
## iter 10 value 279.763940
## iter 20 value 219.388569
## iter 30 value 218.431811
## iter 40 value 218.267233
## iter 50 value 218.168061
## iter 60 value 218.128480
## iter 70 value 218.103832
## iter 80 value 218.060211
## iter 90 value 218.050347
## iter 100 value 218.046855
## final value 218.046855
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 413.853565
## iter 10 value 313.811853
## iter 20 value 218.848330
## iter 30 value 218.344119
## iter 40 value 218.097027
## iter 50 value 218.042986
## final value 218.042783
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 414.345528
## iter 10 value 231.679813
## iter 20 value 218.286845
## iter 30 value 218.164953
## iter 40 value 218.088210
## iter 50 value 218.073607
## iter 60 value 218.064567
## iter 70 value 218.048482
## iter 80 value 218.041693
## iter 90 value 218.037900
## iter 100 value 218.013545
## final value 218.013545
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 421.391002
## iter 10 value 277.515095
## iter 20 value 217.864812
## iter 30 value 195.905312
## iter 40 value 174.455860
## iter 50 value 165.144845
## iter 60 value 162.780900
## iter 70 value 162.661271
## iter 80 value 162.625833
## iter 90 value 162.574896
## iter 100 value 162.518408
## final value 162.518408
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 412.913626
## iter 10 value 290.037799
## iter 20 value 217.996767
## iter 30 value 182.152451
## iter 40 value 173.151782
## iter 50 value 167.251492
## iter 60 value 163.373724
## iter 70 value 162.751230
## iter 80 value 162.620499
## iter 90 value 162.513755
## iter 100 value 162.476363
## final value 162.476363
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 424.924158
## iter 10 value 237.004157
## iter 20 value 219.153394
## iter 30 value 199.006140
## iter 40 value 171.299123
## iter 50 value 163.783536
## iter 60 value 162.485047
## iter 70 value 162.316946
## iter 80 value 162.193154
## iter 90 value 162.116341
## iter 100 value 161.869248
## final value 161.869248
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 412.114834
## iter 10 value 225.259989
## iter 20 value 218.189585
## iter 30 value 218.069887
## iter 40 value 218.066630
## iter 50 value 218.056900
## iter 60 value 218.012134
## iter 70 value 217.990786
## iter 80 value 217.987139
## iter 90 value 217.979243
## iter 100 value 217.966369
## final value 217.966369
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 475.394870
## iter 10 value 297.716053
## iter 20 value 248.207614
## iter 30 value 231.729188
## iter 40 value 219.031905
## iter 50 value 217.992318
## iter 60 value 217.970304
## iter 70 value 217.969445
## iter 80 value 217.963068
## iter 90 value 217.958799
## final value 217.957662
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 404.547112
## iter 10 value 263.007054
## iter 20 value 218.521869
## iter 30 value 217.610576
## iter 40 value 192.934340
## iter 50 value 173.766999
## iter 60 value 166.965286
## iter 70 value 163.597610
## iter 80 value 162.747529
## iter 90 value 162.655736
## iter 100 value 162.557610
## final value 162.557610
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 524.225886
## iter 10 value 285.212966
## iter 20 value 220.185619
## iter 30 value 218.051674
## iter 40 value 217.573462
## iter 50 value 214.685266
## iter 60 value 191.962750
## iter 70 value 169.399659
## iter 80 value 164.711690
## iter 90 value 162.681729
## iter 100 value 162.520614
## final value 162.520614
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 432.638692
## iter 10 value 302.947231
## iter 20 value 219.772329
## iter 30 value 214.616310
## iter 40 value 171.241384
## iter 50 value 163.658040
## iter 60 value 162.373106
## iter 70 value 161.720194
## iter 80 value 161.012010
## iter 90 value 160.211378
## iter 100 value 158.618328
## final value 158.618328
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 416.140029
## iter 10 value 233.299804
## iter 20 value 219.078361
## iter 30 value 196.436350
## iter 40 value 163.533287
## iter 50 value 162.891362
## iter 60 value 162.816600
## iter 70 value 162.635590
## iter 80 value 162.581526
## iter 90 value 162.497075
## iter 100 value 162.455490
## final value 162.455490
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 442.404871
## iter 10 value 243.177238
## iter 20 value 217.701923
## iter 30 value 194.336851
## iter 40 value 164.503737
## iter 50 value 163.177943
## iter 60 value 162.871353
## iter 70 value 162.696507
## iter 80 value 162.608980
## iter 90 value 162.561727
## iter 100 value 162.505434
## final value 162.505434
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 408.250410
## iter 10 value 344.401705
## iter 20 value 250.166614
## iter 30 value 250.030141
## iter 30 value 250.030141
## iter 30 value 250.030141
## final value 250.030141
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 402.881315
## iter 10 value 368.967208
## iter 20 value 253.016091
## iter 30 value 250.030646
## final value 250.030141
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 419.795761
## iter 10 value 368.703966
## iter 20 value 250.876957
## iter 30 value 250.030151
## final value 250.030141
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 413.226318
## iter 10 value 317.445303
## iter 20 value 250.645088
## final value 250.549994
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 405.807461
## iter 10 value 266.977199
## iter 20 value 250.550771
## final value 250.549998
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 401.785500
## iter 10 value 319.537348
## iter 20 value 252.687713
## iter 30 value 249.291263
## iter 40 value 247.590321
## iter 50 value 246.623511
## iter 60 value 246.585013
## iter 70 value 246.584121
## iter 80 value 246.580742
## iter 90 value 246.516868
## iter 100 value 246.478048
## final value 246.478048
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 413.488540
## iter 10 value 313.653986
## iter 20 value 249.801434
## iter 30 value 247.157394
## iter 40 value 246.687385
## iter 50 value 246.505768
## iter 60 value 246.481168
## iter 70 value 246.476154
## iter 70 value 246.476153
## iter 70 value 246.476153
## final value 246.476153
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 407.455466
## iter 10 value 281.887743
## iter 20 value 249.257304
## iter 30 value 246.837936
## iter 40 value 246.649788
## iter 50 value 246.586945
## iter 60 value 246.585280
## iter 70 value 246.510573
## iter 80 value 246.495696
## iter 90 value 246.477548
## final value 246.476153
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 443.086461
## iter 10 value 311.481486
## iter 20 value 251.376596
## iter 30 value 249.753525
## iter 40 value 248.070051
## iter 50 value 246.738976
## iter 60 value 246.587525
## iter 70 value 246.586692
## final value 246.586650
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 415.759709
## iter 10 value 286.900665
## iter 20 value 252.083146
## iter 30 value 250.166340
## iter 40 value 247.254914
## iter 50 value 246.599689
## iter 60 value 246.567559
## iter 70 value 246.527932
## iter 80 value 246.525039
## iter 90 value 246.524506
## final value 246.524398
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 413.608108
## iter 10 value 278.077580
## iter 20 value 249.877514
## iter 30 value 247.803423
## iter 40 value 246.650688
## iter 50 value 246.372021
## iter 60 value 246.259254
## iter 70 value 246.210383
## iter 80 value 246.200905
## iter 90 value 246.187286
## iter 100 value 246.178521
## final value 246.178521
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 477.789539
## iter 10 value 254.013434
## iter 20 value 246.577671
## iter 30 value 246.291468
## iter 40 value 246.233420
## iter 50 value 246.220342
## iter 60 value 246.206964
## iter 70 value 246.201695
## iter 80 value 246.194310
## iter 90 value 246.169155
## iter 100 value 246.165464
## final value 246.165464
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 406.692141
## iter 10 value 306.952992
## iter 20 value 249.090735
## iter 30 value 246.878189
## iter 40 value 246.521440
## iter 50 value 246.404617
## iter 60 value 246.300493
## iter 70 value 246.200920
## iter 80 value 246.180005
## iter 90 value 246.175993
## iter 100 value 246.174999
## final value 246.174999
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 403.998455
## iter 10 value 285.663707
## iter 20 value 255.672842
## iter 30 value 251.805298
## iter 40 value 250.572705
## iter 50 value 248.394121
## iter 60 value 247.059474
## iter 70 value 246.567939
## iter 80 value 246.465326
## iter 90 value 246.210720
## iter 100 value 246.182617
## final value 246.182617
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 410.247607
## iter 10 value 290.556761
## iter 20 value 251.787044
## iter 30 value 247.629050
## iter 40 value 246.680837
## iter 50 value 246.476253
## iter 60 value 246.374311
## iter 70 value 246.227964
## iter 80 value 246.184391
## iter 90 value 246.176666
## iter 100 value 246.175018
## final value 246.175018
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 422.345206
## iter 10 value 314.992439
## iter 20 value 218.838182
## iter 30 value 218.355768
## iter 40 value 218.229477
## iter 50 value 218.196222
## iter 60 value 218.172568
## iter 70 value 218.162207
## iter 80 value 218.149896
## iter 90 value 218.141997
## iter 100 value 218.139034
## final value 218.139034
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 433.365533
## iter 10 value 332.493412
## iter 20 value 225.095177
## iter 30 value 219.887277
## iter 40 value 218.461051
## iter 50 value 218.206231
## iter 60 value 218.191716
## iter 70 value 218.185606
## iter 80 value 218.184494
## iter 90 value 218.181823
## iter 100 value 218.179876
## final value 218.179876
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 422.690163
## iter 10 value 222.350141
## iter 20 value 218.263804
## iter 30 value 218.183422
## iter 40 value 218.157390
## iter 50 value 218.138993
## iter 60 value 218.137513
## final value 218.137473
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 476.618240
## iter 10 value 388.940443
## iter 20 value 231.085210
## iter 30 value 220.358945
## iter 40 value 218.469118
## iter 50 value 218.358725
## iter 60 value 218.227612
## iter 70 value 218.203118
## iter 80 value 218.189344
## iter 90 value 218.187181
## iter 100 value 218.184015
## final value 218.184015
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 433.499196
## iter 10 value 262.247365
## iter 20 value 219.279838
## iter 30 value 218.769850
## iter 40 value 218.658477
## iter 50 value 218.486160
## iter 60 value 218.338875
## iter 70 value 218.242609
## iter 80 value 218.216886
## iter 90 value 218.207750
## iter 100 value 218.195909
## final value 218.195909
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 408.097730
## iter 10 value 252.836023
## iter 20 value 200.000378
## iter 30 value 180.902607
## iter 40 value 168.956301
## iter 50 value 166.116028
## iter 60 value 164.569033
## iter 70 value 164.152942
## iter 80 value 163.430157
## iter 90 value 163.292929
## iter 100 value 162.969117
## final value 162.969117
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 414.233112
## iter 10 value 248.554267
## iter 20 value 219.328957
## iter 30 value 201.243848
## iter 40 value 166.693524
## iter 50 value 163.388003
## iter 60 value 162.922236
## iter 70 value 162.804711
## iter 80 value 162.754666
## iter 90 value 162.745555
## iter 100 value 162.738765
## final value 162.738765
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 400.972662
## iter 10 value 222.711486
## iter 20 value 217.739452
## iter 30 value 174.219179
## iter 40 value 168.111089
## iter 50 value 163.597946
## iter 60 value 163.065118
## iter 70 value 162.934275
## iter 80 value 162.901387
## iter 90 value 162.862585
## iter 100 value 162.824765
## final value 162.824765
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 510.577484
## iter 10 value 249.350565
## iter 20 value 219.576797
## iter 30 value 218.282661
## iter 40 value 197.474975
## iter 50 value 167.906970
## iter 60 value 163.005118
## iter 70 value 162.823988
## iter 80 value 162.768406
## iter 90 value 162.749059
## iter 100 value 162.734372
## final value 162.734372
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 412.880713
## iter 10 value 221.038043
## iter 20 value 218.301927
## iter 30 value 217.790429
## iter 40 value 177.359529
## iter 50 value 168.881658
## iter 60 value 164.499801
## iter 70 value 163.083725
## iter 80 value 162.807065
## iter 90 value 162.747745
## iter 100 value 162.742126
## final value 162.742126
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 448.950999
## iter 10 value 351.680602
## iter 20 value 220.593827
## iter 30 value 203.529966
## iter 40 value 168.208850
## iter 50 value 163.912993
## iter 60 value 162.796233
## iter 70 value 162.658789
## iter 80 value 161.982166
## iter 90 value 159.949898
## iter 100 value 158.936772
## final value 158.936772
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 416.360683
## iter 10 value 228.449178
## iter 20 value 217.860587
## iter 30 value 211.011488
## iter 40 value 164.477825
## iter 50 value 163.600541
## iter 60 value 162.764102
## iter 70 value 162.378779
## iter 80 value 162.049115
## iter 90 value 161.993803
## iter 100 value 161.869320
## final value 161.869320
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 428.198773
## iter 10 value 228.231737
## iter 20 value 218.670975
## iter 30 value 218.378889
## iter 40 value 218.256149
## iter 50 value 218.221945
## iter 60 value 218.205834
## iter 70 value 218.200402
## iter 80 value 218.157077
## iter 90 value 218.056559
## iter 100 value 208.567333
## final value 208.567333
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 502.112816
## iter 10 value 256.683172
## iter 20 value 218.754020
## iter 30 value 218.369006
## iter 40 value 218.107451
## iter 50 value 217.352483
## iter 60 value 207.963010
## iter 70 value 169.889254
## iter 80 value 164.076946
## iter 90 value 162.889635
## iter 100 value 162.743218
## final value 162.743218
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 421.281825
## iter 10 value 308.539893
## iter 20 value 217.597110
## iter 30 value 183.934581
## iter 40 value 164.609194
## iter 50 value 162.901091
## iter 60 value 162.778875
## iter 70 value 162.743471
## iter 80 value 162.704442
## iter 90 value 162.663088
## iter 100 value 162.526210
## final value 162.526210
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 420.180114
## iter 10 value 359.393241
## iter 20 value 239.148686
## iter 30 value 232.393328
## iter 40 value 231.399846
## iter 50 value 230.559711
## iter 60 value 230.446861
## iter 70 value 230.416995
## iter 80 value 230.368493
## iter 90 value 230.362121
## iter 100 value 230.351160
## final value 230.351160
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 421.632868
## iter 10 value 259.809194
## iter 20 value 233.692470
## iter 30 value 230.891432
## iter 40 value 230.445070
## iter 50 value 230.419969
## iter 60 value 230.372665
## iter 70 value 230.349883
## iter 80 value 230.345564
## iter 90 value 230.338335
## final value 230.336987
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 413.401551
## iter 10 value 285.856381
## iter 20 value 242.465670
## iter 30 value 230.364409
## iter 40 value 230.361559
## iter 50 value 230.355530
## iter 60 value 230.352289
## iter 70 value 230.351050
## iter 80 value 230.341342
## iter 90 value 230.338540
## final value 230.338174
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 428.183728
## iter 10 value 260.710212
## iter 20 value 231.134299
## iter 30 value 230.499683
## iter 40 value 230.420041
## iter 50 value 230.363878
## iter 60 value 230.356451
## iter 70 value 230.354432
## final value 230.341073
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 406.250910
## iter 10 value 248.905352
## iter 20 value 230.646643
## iter 30 value 230.495209
## iter 40 value 230.421143
## iter 50 value 230.375471
## iter 60 value 230.362968
## final value 230.361709
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 472.834019
## iter 10 value 271.079448
## iter 20 value 226.349761
## iter 30 value 186.039453
## iter 40 value 173.270786
## iter 50 value 172.339259
## iter 60 value 171.639324
## iter 70 value 171.212299
## iter 80 value 171.145299
## iter 90 value 171.018143
## iter 100 value 170.960209
## final value 170.960209
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 401.513800
## iter 10 value 328.279186
## iter 20 value 256.489731
## iter 30 value 239.538238
## iter 40 value 231.314645
## iter 50 value 230.733577
## iter 60 value 230.509365
## iter 70 value 230.438891
## iter 80 value 230.368701
## iter 90 value 230.290189
## iter 100 value 230.227722
## final value 230.227722
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 411.000495
## iter 10 value 340.974728
## iter 20 value 229.438027
## iter 30 value 186.707263
## iter 40 value 175.194802
## iter 50 value 173.321615
## iter 60 value 172.141936
## iter 70 value 171.482847
## iter 80 value 171.314609
## iter 90 value 171.097674
## iter 100 value 171.021979
## final value 171.021979
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 402.806949
## iter 10 value 234.645405
## iter 20 value 230.417178
## iter 30 value 228.690021
## iter 40 value 191.677653
## iter 50 value 174.871710
## iter 60 value 171.746662
## iter 70 value 171.189991
## iter 80 value 170.866422
## iter 90 value 170.761403
## iter 100 value 170.638191
## final value 170.638191
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 412.004622
## iter 10 value 291.521413
## iter 20 value 230.304533
## iter 30 value 226.866074
## iter 40 value 188.393373
## iter 50 value 181.630658
## iter 60 value 174.492349
## iter 70 value 173.035769
## iter 80 value 171.502038
## iter 90 value 170.812061
## iter 100 value 170.740116
## final value 170.740116
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 405.322984
## iter 10 value 275.067264
## iter 20 value 234.685384
## iter 30 value 225.207186
## iter 40 value 196.216781
## iter 50 value 179.868290
## iter 60 value 176.037381
## iter 70 value 173.225679
## iter 80 value 172.153116
## iter 90 value 170.564223
## iter 100 value 168.811423
## final value 168.811423
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 426.916605
## iter 10 value 247.873746
## iter 20 value 231.455630
## iter 30 value 228.053948
## iter 40 value 183.027717
## iter 50 value 174.085441
## iter 60 value 173.558106
## iter 70 value 172.415529
## iter 80 value 171.498276
## iter 90 value 170.816074
## iter 100 value 170.173388
## final value 170.173388
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 435.817117
## iter 10 value 292.884936
## iter 20 value 228.855352
## iter 30 value 183.485037
## iter 40 value 173.022507
## iter 50 value 171.820481
## iter 60 value 170.923722
## iter 70 value 170.772097
## iter 80 value 170.704908
## iter 90 value 170.635626
## iter 100 value 170.613716
## final value 170.613716
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 432.754231
## iter 10 value 256.005191
## iter 20 value 228.691784
## iter 30 value 177.947206
## iter 40 value 173.269384
## iter 50 value 171.095746
## iter 60 value 170.661198
## iter 70 value 170.190940
## iter 80 value 169.762792
## iter 90 value 169.087878
## iter 100 value 167.176251
## final value 167.176251
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 449.003752
## iter 10 value 362.638386
## iter 20 value 229.873569
## iter 30 value 199.117419
## iter 40 value 178.132681
## iter 50 value 172.354999
## iter 60 value 171.085943
## iter 70 value 171.010279
## iter 80 value 170.991952
## iter 90 value 170.944816
## iter 100 value 170.876622
## final value 170.876622
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 406.545457
## iter 10 value 373.097668
## iter 20 value 261.755776
## iter 30 value 261.202984
## final value 261.201651
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 405.830204
## iter 10 value 298.164340
## iter 20 value 261.937809
## final value 261.638363
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 411.726142
## iter 10 value 372.929684
## iter 20 value 263.542674
## iter 30 value 261.201680
## final value 261.201651
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 427.200580
## iter 10 value 291.899776
## iter 20 value 261.677711
## final value 261.638363
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 410.650210
## iter 10 value 360.910720
## iter 20 value 261.312872
## iter 30 value 261.201667
## final value 261.201651
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 421.943760
## iter 10 value 292.803503
## iter 20 value 258.433607
## iter 30 value 258.021580
## iter 40 value 257.935008
## iter 50 value 257.919552
## final value 257.919381
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 402.240182
## iter 10 value 299.678812
## iter 20 value 258.372070
## iter 30 value 257.912103
## iter 40 value 257.895669
## final value 257.895401
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 403.686873
## iter 10 value 294.639938
## iter 20 value 261.062550
## iter 30 value 258.775726
## iter 40 value 258.067484
## iter 50 value 257.919770
## iter 60 value 257.918738
## iter 70 value 257.909181
## iter 80 value 257.899938
## iter 90 value 257.888037
## final value 257.887352
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 532.129608
## iter 10 value 292.960988
## iter 20 value 258.201543
## iter 30 value 257.921769
## iter 40 value 257.891288
## iter 50 value 257.890246
## iter 60 value 257.887547
## final value 257.887351
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 406.769592
## iter 10 value 324.480220
## iter 20 value 262.693541
## iter 30 value 259.940695
## iter 40 value 258.646071
## iter 50 value 257.975359
## iter 60 value 257.919791
## final value 257.919392
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 424.145351
## iter 10 value 293.561255
## iter 20 value 259.324720
## iter 30 value 258.016838
## iter 40 value 257.870534
## iter 50 value 257.815894
## iter 60 value 257.732782
## iter 70 value 257.638616
## iter 80 value 257.570729
## iter 90 value 257.558422
## iter 100 value 257.544173
## final value 257.544173
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 428.771473
## iter 10 value 311.952713
## iter 20 value 258.574124
## iter 30 value 257.614355
## iter 40 value 257.570971
## iter 50 value 257.556807
## iter 60 value 257.550721
## iter 70 value 257.546257
## iter 80 value 257.542636
## final value 257.542437
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 482.536936
## iter 10 value 316.451865
## iter 20 value 259.373207
## iter 30 value 258.795747
## iter 40 value 258.318945
## iter 50 value 258.136440
## iter 60 value 257.984631
## iter 70 value 257.914377
## iter 80 value 257.683686
## iter 90 value 257.551532
## iter 100 value 257.545129
## final value 257.545129
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 444.210531
## iter 10 value 292.177774
## iter 20 value 258.675198
## iter 30 value 258.042555
## iter 40 value 257.893895
## iter 50 value 257.802342
## iter 60 value 257.604594
## iter 70 value 257.585197
## iter 80 value 257.570577
## iter 90 value 257.555026
## iter 100 value 257.543965
## final value 257.543965
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 401.876212
## iter 10 value 307.084250
## iter 20 value 257.743202
## iter 30 value 254.337069
## iter 40 value 253.862901
## iter 50 value 253.724967
## iter 60 value 253.636362
## iter 70 value 253.509007
## iter 80 value 253.487374
## iter 90 value 253.483455
## iter 100 value 253.482801
## final value 253.482801
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 410.452312
## iter 10 value 325.141615
## iter 20 value 298.907012
## iter 30 value 261.309571
## iter 40 value 254.667335
## iter 50 value 240.600727
## iter 60 value 231.828671
## iter 70 value 230.824091
## iter 80 value 230.545598
## iter 90 value 230.534995
## iter 100 value 230.520443
## final value 230.520443
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 404.431264
## iter 10 value 392.689792
## iter 20 value 230.726648
## iter 30 value 230.550564
## iter 40 value 230.439871
## iter 50 value 230.433933
## iter 60 value 230.423237
## iter 70 value 230.421697
## iter 80 value 230.420143
## iter 90 value 230.418343
## iter 100 value 230.417464
## final value 230.417464
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 409.910007
## iter 10 value 323.228899
## iter 20 value 304.824969
## iter 30 value 277.841620
## iter 40 value 231.438778
## iter 50 value 231.315299
## iter 60 value 231.219869
## iter 70 value 231.164936
## iter 80 value 231.088300
## iter 90 value 231.058308
## iter 100 value 230.972847
## final value 230.972847
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 422.066456
## iter 10 value 237.509781
## iter 20 value 230.716553
## iter 30 value 230.476681
## iter 40 value 230.471153
## iter 50 value 230.443077
## iter 60 value 230.441422
## final value 230.441209
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 440.678990
## iter 10 value 246.712096
## iter 20 value 231.241743
## iter 30 value 230.664428
## iter 40 value 230.526151
## iter 50 value 230.469814
## iter 60 value 230.457878
## iter 70 value 230.447511
## iter 80 value 230.442551
## iter 90 value 230.440976
## iter 100 value 230.440776
## final value 230.440776
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 432.323328
## iter 10 value 256.976269
## iter 20 value 227.771355
## iter 30 value 194.496938
## iter 40 value 175.237345
## iter 50 value 172.230975
## iter 60 value 171.722503
## iter 70 value 171.544301
## iter 80 value 171.387248
## iter 90 value 171.376414
## iter 100 value 171.374704
## final value 171.374704
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 406.038476
## iter 10 value 268.648911
## iter 20 value 228.378590
## iter 30 value 198.243922
## iter 40 value 176.581352
## iter 50 value 172.701932
## iter 60 value 171.951959
## iter 70 value 171.500205
## iter 80 value 171.466609
## iter 90 value 171.437176
## iter 100 value 171.417759
## final value 171.417759
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 405.182796
## iter 10 value 245.687687
## iter 20 value 207.324129
## iter 30 value 174.643286
## iter 40 value 171.150799
## iter 50 value 170.923261
## iter 60 value 170.843929
## iter 70 value 170.769683
## iter 80 value 170.630822
## iter 90 value 170.530223
## iter 100 value 170.271101
## final value 170.271101
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 402.153025
## iter 10 value 249.725974
## iter 20 value 225.622406
## iter 30 value 184.892590
## iter 40 value 171.158496
## iter 50 value 170.800309
## iter 60 value 170.760430
## iter 70 value 170.674491
## iter 80 value 170.577679
## iter 90 value 170.557830
## iter 100 value 170.556920
## final value 170.556920
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 431.591695
## iter 10 value 327.629186
## iter 20 value 224.094585
## iter 30 value 188.304004
## iter 40 value 176.699530
## iter 50 value 173.352557
## iter 60 value 171.816795
## iter 70 value 171.108881
## iter 80 value 171.038580
## iter 90 value 170.957889
## iter 100 value 170.883534
## final value 170.883534
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 398.905794
## iter 10 value 236.569454
## iter 20 value 222.818428
## iter 30 value 178.571362
## iter 40 value 171.010298
## iter 50 value 170.788004
## iter 60 value 170.685627
## iter 70 value 170.608684
## iter 80 value 170.510575
## iter 90 value 170.416971
## iter 100 value 170.299800
## final value 170.299800
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 419.305846
## iter 10 value 291.788205
## iter 20 value 230.298371
## iter 30 value 192.698490
## iter 40 value 174.191716
## iter 50 value 171.925163
## iter 60 value 171.184316
## iter 70 value 170.973808
## iter 80 value 170.709893
## iter 90 value 170.554977
## iter 100 value 169.982642
## final value 169.982642
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 414.144843
## iter 10 value 329.598663
## iter 20 value 234.486237
## iter 30 value 209.678456
## iter 40 value 173.486577
## iter 50 value 171.402361
## iter 60 value 170.929641
## iter 70 value 170.725372
## iter 80 value 170.580964
## iter 90 value 170.452367
## iter 100 value 170.135106
## final value 170.135106
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 424.657683
## iter 10 value 315.979438
## iter 20 value 223.550808
## iter 30 value 182.100234
## iter 40 value 171.870681
## iter 50 value 171.492374
## iter 60 value 170.933426
## iter 70 value 170.756266
## iter 80 value 170.477806
## iter 90 value 169.890245
## iter 100 value 169.364024
## final value 169.364024
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 428.455181
## iter 10 value 325.608773
## iter 20 value 230.665574
## iter 30 value 230.404828
## iter 40 value 230.137131
## iter 50 value 229.086127
## iter 60 value 216.239997
## iter 70 value 177.359122
## iter 80 value 172.138458
## iter 90 value 171.494557
## iter 100 value 171.207110
## final value 171.207110
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 408.435526
## iter 10 value 195.474888
## iter 20 value 192.331715
## iter 30 value 192.234088
## iter 40 value 192.173346
## iter 50 value 192.152997
## iter 60 value 192.145831
## iter 70 value 192.134979
## final value 192.134147
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 419.392489
## iter 10 value 246.742863
## iter 20 value 212.760115
## iter 30 value 205.700490
## iter 40 value 197.260554
## iter 50 value 195.212161
## iter 60 value 192.550147
## iter 70 value 192.214204
## iter 80 value 192.194569
## iter 90 value 192.155908
## iter 100 value 192.145997
## final value 192.145997
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 7
## initial value 442.268479
## iter 10 value 328.726442
## iter 20 value 193.384798
## iter 30 value 192.421784
## iter 40 value 192.220742
## iter 50 value 192.165545
## iter 60 value 192.152474
## iter 70 value 192.128348
## final value 192.126857
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 467.146596
## iter 10 value 268.661673
## iter 20 value 192.425746
## iter 30 value 192.298967
## iter 40 value 192.172909
## iter 50 value 192.165939
## iter 60 value 192.147759
## iter 70 value 192.139766
## iter 80 value 192.136268
## iter 90 value 192.130441
## iter 100 value 192.129691
## final value 192.129691
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 397.060089
## iter 10 value 351.483343
## iter 20 value 194.869390
## iter 30 value 193.045341
## iter 40 value 192.299710
## iter 50 value 192.165114
## iter 60 value 192.158394
## iter 70 value 192.142690
## iter 80 value 192.139295
## iter 90 value 192.138254
## iter 100 value 192.132528
## final value 192.132528
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 424.127981
## iter 10 value 213.037325
## iter 20 value 192.455277
## iter 30 value 192.246082
## iter 40 value 192.153442
## iter 50 value 192.148486
## iter 60 value 192.125603
## iter 70 value 192.110377
## final value 192.107014
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 419.088657
## iter 10 value 211.234284
## iter 20 value 193.381519
## iter 30 value 192.158430
## iter 40 value 191.932256
## iter 50 value 191.832722
## iter 60 value 190.614836
## iter 70 value 175.536804
## iter 80 value 171.116863
## iter 90 value 166.129938
## iter 100 value 164.777496
## final value 164.777496
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 401.200261
## iter 10 value 213.693853
## iter 20 value 169.263716
## iter 30 value 148.306135
## iter 40 value 147.494800
## iter 50 value 146.296346
## iter 60 value 145.409341
## iter 70 value 145.124091
## iter 80 value 144.921279
## iter 90 value 144.549492
## iter 100 value 144.460860
## final value 144.460860
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 475.867173
## iter 10 value 305.270855
## iter 20 value 252.047810
## iter 30 value 218.698760
## iter 40 value 199.066714
## iter 50 value 194.066724
## iter 60 value 193.294433
## iter 70 value 192.819644
## iter 80 value 192.489101
## iter 90 value 192.221521
## iter 100 value 192.152214
## final value 192.152214
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 431.439237
## iter 10 value 202.560930
## iter 20 value 192.028741
## iter 30 value 172.298707
## iter 40 value 150.111486
## iter 50 value 147.701749
## iter 60 value 145.950876
## iter 70 value 144.430245
## iter 80 value 144.092640
## iter 90 value 144.042149
## iter 100 value 144.025898
## final value 144.025898
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 428.575404
## iter 10 value 306.558424
## iter 20 value 203.193112
## iter 30 value 192.187583
## iter 40 value 149.254817
## iter 50 value 145.255706
## iter 60 value 144.118454
## iter 70 value 143.812058
## iter 80 value 143.332626
## iter 90 value 142.668423
## iter 100 value 141.396580
## final value 141.396580
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 436.076995
## iter 10 value 278.848799
## iter 20 value 192.581688
## iter 30 value 177.175009
## iter 40 value 150.503146
## iter 50 value 145.847840
## iter 60 value 143.556619
## iter 70 value 143.081257
## iter 80 value 142.328458
## iter 90 value 140.390735
## iter 100 value 139.991956
## final value 139.991956
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 413.638366
## iter 10 value 267.804299
## iter 20 value 198.746035
## iter 30 value 192.088640
## iter 40 value 192.043923
## iter 50 value 191.638487
## iter 60 value 162.280963
## iter 70 value 145.783115
## iter 80 value 143.500627
## iter 90 value 143.087408
## iter 100 value 142.780360
## final value 142.780360
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 401.566836
## iter 10 value 242.939328
## iter 20 value 192.479226
## iter 30 value 192.074953
## iter 40 value 192.041953
## iter 50 value 191.641237
## iter 60 value 188.478187
## iter 70 value 155.880519
## iter 80 value 153.087390
## iter 90 value 148.881737
## iter 100 value 146.097421
## final value 146.097421
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 395.796258
## iter 10 value 201.552697
## iter 20 value 192.318379
## iter 30 value 167.558077
## iter 40 value 147.351357
## iter 50 value 145.321717
## iter 60 value 143.507807
## iter 70 value 142.909921
## iter 80 value 141.566321
## iter 90 value 140.705828
## iter 100 value 140.020969
## final value 140.020969
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 425.762533
## iter 10 value 368.929453
## iter 20 value 228.692288
## iter 30 value 227.244577
## final value 227.244224
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 452.669834
## iter 10 value 394.207084
## iter 20 value 228.312154
## iter 30 value 227.470506
## final value 227.466766
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 425.872424
## iter 10 value 256.150298
## iter 20 value 227.498774
## final value 227.466766
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 422.930471
## iter 10 value 289.808722
## iter 20 value 227.654636
## iter 30 value 227.466780
## final value 227.466767
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 415.087032
## iter 10 value 230.865867
## iter 20 value 227.466787
## final value 227.466769
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 402.783491
## iter 10 value 245.484287
## iter 20 value 227.404042
## iter 30 value 224.675079
## iter 40 value 223.827885
## iter 50 value 223.364646
## iter 60 value 223.339771
## iter 70 value 223.307565
## final value 223.307220
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 449.883710
## iter 10 value 341.511738
## iter 20 value 238.834500
## iter 30 value 226.071872
## iter 40 value 224.546820
## iter 50 value 223.447082
## iter 60 value 223.401519
## iter 70 value 223.399484
## iter 80 value 223.369474
## iter 90 value 223.346620
## iter 100 value 223.308109
## final value 223.308109
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 415.361844
## iter 10 value 248.052269
## iter 20 value 223.451260
## iter 30 value 223.393405
## iter 40 value 223.369191
## iter 50 value 223.355697
## iter 60 value 223.316121
## final value 223.307124
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 443.343028
## iter 10 value 353.066282
## iter 20 value 228.284599
## iter 30 value 226.645140
## iter 40 value 224.576660
## iter 50 value 223.652624
## iter 60 value 223.400063
## iter 70 value 223.392051
## iter 80 value 223.334735
## iter 90 value 223.318885
## iter 100 value 223.307721
## final value 223.307721
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 426.509518
## iter 10 value 255.066463
## iter 20 value 227.264587
## iter 30 value 224.675340
## iter 40 value 223.678452
## iter 50 value 223.407409
## iter 60 value 223.404374
## iter 70 value 223.387505
## iter 80 value 223.358500
## iter 90 value 223.314688
## iter 100 value 223.307149
## final value 223.307149
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 402.483032
## iter 10 value 278.590890
## iter 20 value 225.246535
## iter 30 value 223.710277
## iter 40 value 223.314640
## iter 50 value 223.234056
## iter 60 value 223.142335
## iter 70 value 223.068890
## iter 80 value 223.029752
## iter 90 value 223.021813
## iter 100 value 223.010096
## final value 223.010096
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 431.450110
## iter 10 value 292.093594
## iter 20 value 225.549753
## iter 30 value 223.402512
## iter 40 value 223.238640
## iter 50 value 223.202360
## iter 60 value 223.163729
## iter 70 value 223.110256
## iter 80 value 223.032715
## iter 90 value 223.027890
## iter 100 value 223.001436
## final value 223.001436
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 470.850502
## iter 10 value 251.200835
## iter 20 value 224.961928
## iter 30 value 223.800817
## iter 40 value 223.204485
## iter 50 value 223.094528
## iter 60 value 223.034176
## iter 70 value 223.014591
## iter 80 value 223.010829
## final value 223.009744
## converged
## Fitting Repeat 4
##
## # weights: 27
## initial value 424.464332
## iter 10 value 294.710692
## iter 20 value 224.592796
## iter 30 value 223.523493
## iter 40 value 223.146589
## iter 50 value 223.084849
## iter 60 value 223.055887
## iter 70 value 223.014539
## iter 80 value 223.000787
## iter 90 value 222.990946
## iter 100 value 222.989319
## final value 222.989319
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 416.440755
## iter 10 value 258.976143
## iter 20 value 227.259545
## iter 30 value 224.857335
## iter 40 value 224.091945
## iter 50 value 223.487993
## iter 60 value 223.238040
## iter 70 value 223.107394
## iter 80 value 223.022062
## iter 90 value 223.016298
## iter 100 value 223.000751
## final value 223.000751
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 408.536810
## iter 10 value 232.172280
## iter 20 value 192.829066
## iter 30 value 192.356170
## iter 40 value 192.236123
## iter 50 value 192.204121
## iter 60 value 192.202113
## iter 70 value 192.201144
## iter 80 value 192.200252
## iter 80 value 192.200250
## final value 192.200250
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 408.667648
## iter 10 value 265.536140
## iter 20 value 194.840478
## iter 30 value 192.206644
## iter 40 value 192.200928
## iter 50 value 192.197802
## iter 60 value 192.197664
## final value 192.197479
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 410.863496
## iter 10 value 320.884885
## iter 20 value 192.470612
## iter 30 value 192.327996
## iter 40 value 192.228203
## iter 50 value 192.221708
## iter 60 value 192.214536
## iter 70 value 192.214250
## iter 80 value 192.213744
## final value 192.213506
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 437.809787
## iter 10 value 311.822625
## iter 20 value 210.263353
## iter 30 value 193.904692
## iter 40 value 192.712856
## iter 50 value 192.305111
## iter 60 value 192.246488
## iter 70 value 192.224774
## iter 80 value 192.222556
## iter 90 value 192.220155
## iter 100 value 192.217399
## final value 192.217399
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 404.769754
## iter 10 value 235.605388
## iter 20 value 192.540740
## iter 30 value 192.213574
## final value 192.213349
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 461.574265
## iter 10 value 314.744733
## iter 20 value 194.428847
## iter 30 value 192.656021
## iter 40 value 191.952514
## iter 50 value 163.362381
## iter 60 value 149.860299
## iter 70 value 148.156339
## iter 80 value 146.892096
## iter 90 value 144.906304
## iter 100 value 144.647214
## final value 144.647214
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 405.902652
## iter 10 value 296.612514
## iter 20 value 281.816265
## iter 30 value 278.411800
## iter 40 value 268.737043
## iter 50 value 267.239483
## iter 60 value 255.924672
## iter 70 value 222.223033
## iter 80 value 218.521254
## iter 90 value 217.814989
## iter 100 value 194.049227
## final value 194.049227
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 406.239825
## iter 10 value 196.156833
## iter 20 value 147.161162
## iter 30 value 144.971767
## iter 40 value 144.583069
## iter 50 value 143.759132
## iter 60 value 143.373591
## iter 70 value 142.461367
## iter 80 value 141.800898
## iter 90 value 141.580262
## iter 100 value 141.241929
## final value 141.241929
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 427.866637
## iter 10 value 205.284244
## iter 20 value 192.507435
## iter 30 value 186.407393
## iter 40 value 152.773136
## iter 50 value 148.650038
## iter 60 value 146.169710
## iter 70 value 145.018839
## iter 80 value 144.632757
## iter 90 value 144.478770
## iter 100 value 144.432292
## final value 144.432292
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 401.028812
## iter 10 value 232.497791
## iter 20 value 192.580849
## iter 30 value 192.263231
## iter 40 value 169.122506
## iter 50 value 152.865123
## iter 60 value 147.641815
## iter 70 value 146.282434
## iter 80 value 144.630082
## iter 90 value 143.970987
## iter 100 value 143.672930
## final value 143.672930
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 499.958985
## iter 10 value 285.065063
## iter 20 value 193.237532
## iter 30 value 164.955326
## iter 40 value 148.450474
## iter 50 value 144.802543
## iter 60 value 143.525183
## iter 70 value 143.094013
## iter 80 value 142.228980
## iter 90 value 141.322412
## iter 100 value 140.391572
## final value 140.391572
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 399.447170
## iter 10 value 203.888064
## iter 20 value 189.886902
## iter 30 value 155.335597
## iter 40 value 146.181349
## iter 50 value 144.278252
## iter 60 value 142.841248
## iter 70 value 142.247556
## iter 80 value 141.583173
## iter 90 value 141.403875
## iter 100 value 141.020386
## final value 141.020386
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 434.223635
## iter 10 value 198.432357
## iter 20 value 183.220497
## iter 30 value 146.594088
## iter 40 value 145.678442
## iter 50 value 144.983827
## iter 60 value 144.802989
## iter 70 value 144.705326
## iter 80 value 144.625356
## iter 90 value 144.596131
## iter 100 value 144.542493
## final value 144.542493
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 438.669986
## iter 10 value 303.713342
## iter 20 value 214.506753
## iter 30 value 191.378168
## iter 40 value 163.743272
## iter 50 value 154.944490
## iter 60 value 149.332460
## iter 70 value 145.712978
## iter 80 value 144.637370
## iter 90 value 144.216782
## iter 100 value 143.800980
## final value 143.800980
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 401.056737
## iter 10 value 196.083579
## iter 20 value 186.702803
## iter 30 value 155.215890
## iter 40 value 143.947512
## iter 50 value 142.777329
## iter 60 value 142.434055
## iter 70 value 142.039047
## iter 80 value 141.107358
## iter 90 value 140.783950
## iter 100 value 140.639245
## final value 140.639245
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 407.171736
## iter 10 value 285.497339
## iter 20 value 209.906564
## iter 30 value 209.331591
## iter 40 value 209.127063
## iter 50 value 209.085932
## iter 60 value 209.046768
## iter 70 value 209.040871
## iter 80 value 209.017392
## iter 90 value 209.010913
## final value 209.007902
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 430.059913
## iter 10 value 233.340942
## iter 20 value 209.638215
## iter 30 value 209.281822
## iter 40 value 209.096393
## iter 50 value 209.075479
## iter 60 value 209.054015
## iter 70 value 209.047470
## iter 80 value 209.037205
## iter 90 value 209.028066
## final value 209.026000
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 429.215016
## iter 10 value 354.035993
## iter 20 value 210.552346
## iter 30 value 209.394621
## iter 40 value 209.202060
## iter 50 value 209.132868
## iter 60 value 209.081796
## iter 70 value 209.067526
## iter 80 value 209.054830
## iter 90 value 209.041523
## iter 100 value 209.034101
## final value 209.034101
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 425.792469
## iter 10 value 326.379234
## iter 20 value 210.275832
## iter 30 value 209.411402
## iter 40 value 209.133203
## iter 50 value 209.068832
## iter 60 value 209.044852
## iter 70 value 209.040303
## iter 80 value 209.032594
## iter 90 value 209.024456
## iter 100 value 209.019725
## final value 209.019725
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 7
## initial value 425.091119
## iter 10 value 344.020964
## iter 20 value 295.211164
## iter 30 value 291.151203
## iter 40 value 287.363579
## iter 50 value 251.743366
## iter 60 value 235.364397
## iter 70 value 220.341725
## iter 80 value 211.914869
## iter 90 value 210.118788
## iter 100 value 209.185340
## final value 209.185340
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 417.217936
## iter 10 value 302.363960
## iter 20 value 292.479452
## iter 30 value 292.474743
## iter 40 value 292.416908
## iter 50 value 292.050932
## iter 60 value 292.000126
## final value 292.000008
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 489.818412
## iter 10 value 329.332459
## iter 20 value 217.558947
## iter 30 value 208.870615
## iter 40 value 208.406405
## iter 50 value 190.696089
## iter 60 value 171.950485
## iter 70 value 165.978408
## iter 80 value 165.520040
## iter 90 value 163.609320
## iter 100 value 162.562573
## final value 162.562573
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 408.552175
## iter 10 value 269.036007
## iter 20 value 202.642403
## iter 30 value 166.472896
## iter 40 value 160.455485
## iter 50 value 159.642022
## iter 60 value 159.239683
## iter 70 value 159.082200
## iter 80 value 159.010777
## iter 90 value 158.956124
## iter 100 value 158.938544
## final value 158.938544
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 448.957903
## iter 10 value 238.941101
## iter 20 value 210.843244
## iter 30 value 209.062776
## iter 40 value 208.146389
## iter 50 value 206.435353
## iter 60 value 204.120694
## iter 70 value 201.740647
## iter 80 value 194.806208
## iter 90 value 174.986536
## iter 100 value 167.562151
## final value 167.562151
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 420.151191
## iter 10 value 257.955335
## iter 20 value 216.202099
## iter 30 value 192.247969
## iter 40 value 165.424393
## iter 50 value 162.142682
## iter 60 value 160.545119
## iter 70 value 159.603328
## iter 80 value 159.379569
## iter 90 value 159.348269
## iter 100 value 159.228269
## final value 159.228269
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 450.766845
## iter 10 value 254.218572
## iter 20 value 208.698758
## iter 30 value 173.390740
## iter 40 value 164.875331
## iter 50 value 161.360823
## iter 60 value 159.040277
## iter 70 value 158.832164
## iter 80 value 158.791316
## iter 90 value 158.763343
## iter 100 value 158.705294
## final value 158.705294
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 446.141552
## iter 10 value 275.075162
## iter 20 value 208.953959
## iter 30 value 178.676260
## iter 40 value 165.565937
## iter 50 value 161.746682
## iter 60 value 160.886935
## iter 70 value 160.145122
## iter 80 value 159.480553
## iter 90 value 159.351367
## iter 100 value 159.188988
## final value 159.188988
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 438.857473
## iter 10 value 386.232378
## iter 20 value 214.908418
## iter 30 value 207.656313
## iter 40 value 207.528855
## iter 50 value 207.396572
## iter 60 value 206.971658
## iter 70 value 205.026972
## iter 80 value 186.061921
## iter 90 value 169.228175
## iter 100 value 167.455212
## final value 167.455212
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 409.824049
## iter 10 value 229.468720
## iter 20 value 211.373084
## iter 30 value 209.220295
## iter 40 value 209.154198
## iter 50 value 208.580468
## iter 60 value 203.678971
## iter 70 value 180.368486
## iter 80 value 166.524402
## iter 90 value 164.029774
## iter 100 value 162.069512
## final value 162.069512
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 407.543267
## iter 10 value 323.743833
## iter 20 value 310.965391
## iter 30 value 224.905916
## iter 40 value 210.692709
## iter 50 value 209.665830
## iter 60 value 208.888732
## iter 70 value 208.015512
## iter 80 value 207.908840
## iter 90 value 207.755043
## iter 100 value 207.685677
## final value 207.685677
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 410.914592
## iter 10 value 283.088575
## iter 20 value 241.413177
## final value 241.327217
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 456.784331
## iter 10 value 349.744574
## iter 20 value 242.457501
## iter 30 value 241.270629
## iter 30 value 241.270628
## iter 30 value 241.270628
## final value 241.270628
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 414.927340
## iter 10 value 257.850633
## iter 20 value 241.330610
## final value 241.327217
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 442.701797
## iter 10 value 382.107372
## iter 20 value 243.275404
## iter 30 value 241.278697
## final value 241.270628
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 414.097844
## iter 10 value 337.279300
## iter 20 value 241.442506
## iter 30 value 241.327217
## iter 30 value 241.327216
## iter 30 value 241.327216
## final value 241.327216
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 423.052219
## iter 10 value 305.592707
## iter 20 value 237.720436
## iter 30 value 237.449312
## iter 40 value 237.424523
## iter 50 value 237.407857
## iter 60 value 237.393054
## final value 237.392994
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 436.704795
## iter 10 value 354.539763
## iter 20 value 240.034959
## iter 30 value 238.039740
## iter 40 value 237.603161
## iter 50 value 237.407960
## iter 60 value 237.366751
## final value 237.365984
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 404.940768
## iter 10 value 309.591189
## iter 20 value 244.667458
## iter 30 value 241.720273
## iter 40 value 239.209955
## iter 50 value 237.530657
## iter 60 value 237.465873
## iter 70 value 237.464608
## iter 80 value 237.461707
## iter 90 value 237.392315
## iter 100 value 237.368221
## final value 237.368221
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 404.546112
## iter 10 value 263.983681
## iter 20 value 243.241113
## iter 30 value 238.914936
## iter 40 value 237.812994
## iter 50 value 237.398683
## iter 60 value 237.394475
## final value 237.392993
## converged
## Fitting Repeat 5
##
## # weights: 17
## initial value 450.712976
## iter 10 value 327.148446
## iter 20 value 245.484801
## iter 30 value 237.929435
## iter 40 value 237.508980
## iter 50 value 237.420559
## iter 60 value 237.399135
## iter 70 value 237.392995
## iter 70 value 237.392993
## iter 70 value 237.392993
## final value 237.392993
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 473.494674
## iter 10 value 284.977343
## iter 20 value 244.670792
## iter 30 value 239.342435
## iter 40 value 237.736672
## iter 50 value 237.172323
## iter 60 value 237.075708
## iter 70 value 237.048073
## iter 80 value 237.044429
## iter 90 value 237.038445
## iter 100 value 237.027554
## final value 237.027554
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 447.596968
## iter 10 value 305.189694
## iter 20 value 245.751219
## iter 30 value 241.585433
## iter 40 value 238.136096
## iter 50 value 237.611199
## iter 60 value 237.292985
## iter 70 value 237.067546
## iter 80 value 237.025955
## iter 90 value 237.024146
## final value 237.023369
## converged
## Fitting Repeat 3
##
## # weights: 27
## initial value 441.582810
## iter 10 value 256.416045
## iter 20 value 238.264967
## iter 30 value 237.691001
## iter 40 value 237.279299
## iter 50 value 237.114315
## iter 60 value 237.089635
## iter 70 value 237.042372
## iter 80 value 237.013399
## iter 90 value 237.010353
## iter 100 value 237.009599
## final value 237.009599
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 462.419217
## iter 10 value 333.247899
## iter 20 value 238.377447
## iter 30 value 237.536336
## iter 40 value 237.464893
## iter 50 value 237.380754
## iter 60 value 237.101309
## iter 70 value 237.041914
## iter 80 value 237.033494
## iter 90 value 237.026020
## final value 237.023385
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 444.960684
## iter 10 value 343.271832
## iter 20 value 250.667083
## iter 30 value 241.016130
## iter 40 value 239.140373
## iter 50 value 237.866291
## iter 60 value 237.502371
## iter 70 value 237.315544
## iter 80 value 237.107906
## iter 90 value 237.051055
## iter 100 value 237.033899
## final value 237.033899
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 425.033702
## iter 10 value 246.168425
## iter 20 value 209.473476
## iter 30 value 209.231664
## iter 40 value 209.128383
## iter 50 value 209.121108
## iter 60 value 209.118147
## final value 209.115292
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 437.024893
## iter 10 value 334.299165
## iter 20 value 209.572986
## iter 30 value 209.174054
## iter 40 value 209.158795
## iter 50 value 209.136348
## iter 60 value 209.118555
## iter 70 value 209.114305
## iter 80 value 209.110196
## final value 209.109626
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 432.102736
## iter 10 value 377.048161
## iter 20 value 209.403256
## iter 30 value 209.214370
## iter 40 value 209.162761
## iter 50 value 209.126858
## iter 60 value 209.120389
## iter 70 value 209.113325
## iter 80 value 209.107910
## iter 90 value 209.107460
## iter 100 value 209.106055
## final value 209.106055
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 424.559995
## iter 10 value 312.759212
## iter 20 value 219.677218
## iter 30 value 213.422865
## iter 40 value 210.419342
## iter 50 value 209.275055
## iter 60 value 209.175850
## iter 70 value 209.118513
## iter 80 value 209.114066
## iter 80 value 209.114066
## final value 209.114066
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 422.146433
## iter 10 value 211.908365
## iter 20 value 209.652218
## iter 30 value 209.293170
## iter 40 value 209.197672
## iter 50 value 209.113987
## iter 60 value 209.105544
## final value 209.104718
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 411.270585
## iter 10 value 218.750997
## iter 20 value 207.037282
## iter 30 value 163.731949
## iter 40 value 162.497308
## iter 50 value 162.295852
## iter 60 value 162.200914
## iter 70 value 162.170291
## iter 80 value 162.135396
## iter 90 value 162.078056
## iter 100 value 161.538538
## final value 161.538538
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 438.557336
## iter 10 value 248.008143
## iter 20 value 193.728089
## iter 30 value 163.612324
## iter 40 value 160.421029
## iter 50 value 160.076131
## iter 60 value 159.619977
## iter 70 value 159.472295
## iter 80 value 159.439099
## iter 90 value 159.416694
## iter 100 value 159.399814
## final value 159.399814
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 418.578657
## iter 10 value 244.299447
## iter 20 value 216.575540
## iter 30 value 211.146179
## iter 40 value 209.372150
## iter 50 value 209.191788
## iter 60 value 209.167264
## iter 70 value 209.128280
## iter 80 value 209.124900
## iter 80 value 209.124899
## final value 209.124899
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 433.191274
## iter 10 value 261.928816
## iter 20 value 209.033762
## iter 30 value 182.749993
## iter 40 value 166.917345
## iter 50 value 164.558465
## iter 60 value 162.648795
## iter 70 value 161.974117
## iter 80 value 161.610489
## iter 90 value 161.470977
## iter 100 value 161.309075
## final value 161.309075
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 416.369359
## iter 10 value 282.785916
## iter 20 value 223.228655
## iter 30 value 211.872037
## iter 40 value 210.112443
## iter 50 value 209.783048
## iter 60 value 209.603871
## iter 70 value 209.472356
## iter 80 value 209.442917
## iter 90 value 209.376646
## iter 100 value 209.355126
## final value 209.355126
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 434.573155
## iter 10 value 218.420734
## iter 20 value 209.450086
## iter 30 value 182.826295
## iter 40 value 164.178318
## iter 50 value 162.592652
## iter 60 value 162.003132
## iter 70 value 161.910023
## iter 80 value 161.799923
## iter 90 value 161.777880
## iter 100 value 161.737379
## final value 161.737379
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 406.124623
## iter 10 value 242.053037
## iter 20 value 201.300979
## iter 30 value 175.823158
## iter 40 value 164.875533
## iter 50 value 161.470883
## iter 60 value 160.964176
## iter 70 value 160.540123
## iter 80 value 160.240567
## iter 90 value 160.013149
## iter 100 value 159.883165
## final value 159.883165
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 416.256350
## iter 10 value 212.436167
## iter 20 value 167.206665
## iter 30 value 162.078238
## iter 40 value 160.646904
## iter 50 value 159.680658
## iter 60 value 159.550243
## iter 70 value 159.441998
## iter 80 value 159.398199
## iter 90 value 159.322440
## iter 100 value 159.067146
## final value 159.067146
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 421.645592
## iter 10 value 231.635674
## iter 20 value 206.470222
## iter 30 value 172.303860
## iter 40 value 161.713625
## iter 50 value 160.057289
## iter 60 value 159.729724
## iter 70 value 159.596666
## iter 80 value 159.454952
## iter 90 value 159.427329
## iter 100 value 159.297528
## final value 159.297528
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 422.549800
## iter 10 value 256.044329
## iter 20 value 209.509886
## iter 30 value 200.801135
## iter 40 value 167.072625
## iter 50 value 163.480196
## iter 60 value 161.950731
## iter 70 value 161.891238
## iter 80 value 161.833743
## iter 90 value 161.807559
## iter 100 value 161.729408
## final value 161.729408
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 410.092538
## iter 10 value 258.174647
## iter 20 value 233.525672
## iter 30 value 233.237824
## iter 40 value 233.234530
## iter 50 value 233.208613
## iter 60 value 233.205419
## iter 70 value 233.202792
## iter 80 value 233.201342
## iter 90 value 233.200523
## iter 100 value 233.195839
## final value 233.195839
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 406.104862
## iter 10 value 316.204571
## iter 20 value 234.152620
## iter 30 value 233.444896
## iter 40 value 233.298231
## iter 50 value 233.218275
## iter 60 value 233.210804
## iter 70 value 233.205325
## iter 80 value 233.203168
## iter 90 value 233.202226
## final value 233.201366
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 407.307414
## iter 10 value 355.308506
## iter 20 value 242.908206
## iter 30 value 234.001697
## iter 40 value 233.285784
## iter 50 value 233.236762
## iter 60 value 233.214047
## iter 70 value 233.208391
## iter 80 value 233.204994
## iter 90 value 233.200296
## iter 100 value 233.199626
## final value 233.199626
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 7
## initial value 427.735294
## iter 10 value 268.873793
## iter 20 value 234.018828
## iter 30 value 233.274947
## iter 40 value 233.258357
## iter 50 value 233.202919
## iter 60 value 233.201352
## iter 70 value 233.200711
## iter 80 value 233.199506
## iter 80 value 233.199506
## final value 233.199506
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 436.315555
## iter 10 value 365.340147
## iter 20 value 286.486963
## iter 30 value 251.046937
## iter 40 value 235.598320
## iter 50 value 233.333111
## iter 60 value 233.310882
## iter 70 value 233.225068
## iter 80 value 233.218759
## iter 90 value 233.203257
## iter 100 value 233.198115
## final value 233.198115
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 442.570109
## iter 10 value 245.828919
## iter 20 value 232.699318
## iter 30 value 223.000141
## iter 40 value 187.425188
## iter 50 value 186.588703
## iter 60 value 186.201186
## iter 70 value 185.980750
## iter 80 value 185.822604
## iter 90 value 185.190458
## iter 100 value 184.820481
## final value 184.820481
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 418.608616
## iter 10 value 306.757073
## iter 20 value 237.775251
## iter 30 value 233.441511
## iter 40 value 233.251486
## iter 50 value 233.227511
## iter 60 value 233.206390
## iter 70 value 233.194512
## iter 80 value 233.190652
## iter 90 value 233.186941
## final value 233.186862
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 410.267481
## iter 10 value 236.672868
## iter 20 value 232.660358
## iter 30 value 199.400110
## iter 40 value 191.761539
## iter 50 value 189.223926
## iter 60 value 188.517107
## iter 70 value 188.367304
## iter 80 value 188.327533
## iter 90 value 188.216762
## iter 100 value 188.100259
## final value 188.100259
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 417.564370
## iter 10 value 336.705308
## iter 20 value 227.775901
## iter 30 value 190.496850
## iter 40 value 187.479152
## iter 50 value 186.573019
## iter 60 value 186.131282
## iter 70 value 185.935878
## iter 80 value 185.885627
## iter 90 value 185.506332
## iter 100 value 184.679929
## final value 184.679929
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 400.249202
## iter 10 value 234.427870
## iter 20 value 233.188228
## iter 30 value 232.604288
## iter 40 value 217.612435
## iter 50 value 187.686093
## iter 60 value 186.685553
## iter 70 value 186.506418
## iter 80 value 186.364806
## iter 90 value 186.293870
## iter 100 value 186.218726
## final value 186.218726
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 480.772326
## iter 10 value 301.616093
## iter 20 value 232.322267
## iter 30 value 202.697776
## iter 40 value 187.332173
## iter 50 value 187.081543
## iter 60 value 186.894784
## iter 70 value 186.654439
## iter 80 value 186.254153
## iter 90 value 185.743389
## iter 100 value 185.519137
## final value 185.519137
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 416.306126
## iter 10 value 236.202730
## iter 20 value 227.586960
## iter 30 value 192.434923
## iter 40 value 187.684320
## iter 50 value 186.793860
## iter 60 value 186.507897
## iter 70 value 186.369876
## iter 80 value 186.309303
## iter 90 value 186.248003
## iter 100 value 186.196178
## final value 186.196178
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 503.210684
## iter 10 value 237.824040
## iter 20 value 222.977897
## iter 30 value 190.995952
## iter 40 value 187.010765
## iter 50 value 186.541545
## iter 60 value 186.007802
## iter 70 value 185.737703
## iter 80 value 185.554107
## iter 90 value 185.069186
## iter 100 value 184.522989
## final value 184.522989
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 427.749325
## iter 10 value 318.230096
## iter 20 value 267.857363
## iter 30 value 255.200969
## iter 40 value 239.208796
## iter 50 value 234.326732
## iter 60 value 233.562452
## iter 70 value 233.242640
## iter 80 value 233.187944
## iter 90 value 233.184271
## final value 233.184247
## converged
## Fitting Repeat 5
##
## # weights: 27
## initial value 465.485479
## iter 10 value 243.430528
## iter 20 value 231.388724
## iter 30 value 192.015243
## iter 40 value 187.530819
## iter 50 value 186.782466
## iter 60 value 186.553194
## iter 70 value 186.356815
## iter 80 value 186.303739
## iter 90 value 186.209753
## iter 100 value 186.143775
## final value 186.143775
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 414.489572
## iter 10 value 370.747350
## iter 20 value 265.325230
## iter 30 value 263.689423
## final value 263.687099
## converged
## Fitting Repeat 2
##
## # weights: 7
## initial value 402.699946
## iter 10 value 265.981271
## iter 20 value 263.698169
## final value 263.687099
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 409.331497
## iter 10 value 282.071583
## iter 20 value 263.771672
## final value 263.687099
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 425.855776
## iter 10 value 343.107854
## iter 20 value 263.957994
## iter 30 value 263.687099
## iter 30 value 263.687099
## iter 30 value 263.687099
## final value 263.687099
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 415.233957
## iter 10 value 315.692226
## iter 20 value 264.844335
## final value 263.687099
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 424.949190
## iter 10 value 369.150820
## iter 20 value 274.142727
## iter 30 value 263.272826
## iter 40 value 260.275896
## iter 50 value 260.187235
## iter 60 value 260.159429
## iter 70 value 260.136250
## final value 260.135788
## converged
## Fitting Repeat 2
##
## # weights: 17
## initial value 434.552727
## iter 10 value 291.486098
## iter 20 value 262.072881
## iter 30 value 260.875666
## iter 40 value 260.280284
## iter 50 value 260.165999
## iter 60 value 260.155382
## iter 70 value 260.148151
## final value 260.148147
## converged
## Fitting Repeat 3
##
## # weights: 17
## initial value 424.142444
## iter 10 value 327.129091
## iter 20 value 264.625929
## iter 30 value 261.477632
## iter 40 value 260.242004
## iter 50 value 260.148540
## iter 60 value 260.137875
## final value 260.135784
## converged
## Fitting Repeat 4
##
## # weights: 17
## initial value 413.326959
## iter 10 value 300.621665
## iter 20 value 262.049765
## iter 30 value 260.818719
## iter 40 value 260.416490
## iter 50 value 260.205761
## iter 60 value 260.202076
## iter 70 value 260.176561
## iter 80 value 260.144758
## iter 90 value 260.139982
## iter 100 value 260.135786
## final value 260.135786
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 432.440677
## iter 10 value 349.574636
## iter 20 value 265.695922
## iter 30 value 260.850567
## iter 40 value 260.311225
## iter 50 value 260.205345
## iter 60 value 260.197444
## iter 70 value 260.179422
## iter 80 value 260.152335
## iter 90 value 260.150264
## final value 260.148149
## converged
## Fitting Repeat 1
##
## # weights: 27
## initial value 466.465815
## iter 10 value 310.852001
## iter 20 value 263.746885
## iter 30 value 261.375758
## iter 40 value 260.439439
## iter 50 value 260.090827
## iter 60 value 259.981672
## iter 70 value 259.910562
## iter 80 value 259.875809
## iter 90 value 259.874388
## iter 100 value 259.863121
## final value 259.863121
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 411.922841
## iter 10 value 297.472771
## iter 20 value 261.601525
## iter 30 value 260.518740
## iter 40 value 260.213432
## iter 50 value 260.182396
## iter 60 value 260.122913
## iter 70 value 259.987731
## iter 80 value 259.871052
## iter 90 value 259.862705
## iter 100 value 259.854877
## final value 259.854877
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 410.771297
## iter 10 value 314.156251
## iter 20 value 263.613222
## iter 30 value 261.333865
## iter 40 value 260.943534
## iter 50 value 260.640276
## iter 60 value 260.333019
## iter 70 value 260.196186
## iter 80 value 260.008217
## iter 90 value 259.873940
## iter 100 value 259.859065
## final value 259.859065
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 449.357410
## iter 10 value 356.946261
## iter 20 value 264.200285
## iter 30 value 260.417287
## iter 40 value 260.125229
## iter 50 value 260.059684
## iter 60 value 260.019858
## iter 70 value 259.989978
## iter 80 value 259.874340
## iter 90 value 259.863886
## iter 100 value 259.854750
## final value 259.854750
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 405.461136
## iter 10 value 284.947317
## iter 20 value 262.465564
## iter 30 value 260.307762
## iter 40 value 259.406885
## iter 50 value 258.840926
## iter 60 value 258.105178
## iter 70 value 257.349293
## iter 80 value 256.990344
## iter 90 value 256.930793
## iter 100 value 256.919141
## final value 256.919141
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 7
## initial value 417.870241
## iter 10 value 270.395089
## iter 20 value 235.981095
## iter 30 value 234.319059
## iter 40 value 233.353659
## iter 50 value 233.299571
## iter 60 value 233.261994
## iter 70 value 233.260132
## iter 80 value 233.258741
## iter 90 value 233.256364
## iter 100 value 233.256064
## final value 233.256064
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 7
## initial value 426.160018
## iter 10 value 369.942150
## iter 20 value 236.210679
## iter 30 value 233.314593
## iter 40 value 233.265224
## iter 50 value 233.263094
## iter 60 value 233.257114
## final value 233.255893
## converged
## Fitting Repeat 3
##
## # weights: 7
## initial value 408.163344
## iter 10 value 318.259509
## iter 20 value 266.394454
## iter 30 value 262.055520
## iter 40 value 244.147626
## iter 50 value 239.698038
## iter 60 value 234.446983
## iter 70 value 233.505542
## iter 80 value 233.295946
## iter 90 value 233.273333
## final value 233.260717
## converged
## Fitting Repeat 4
##
## # weights: 7
## initial value 422.009501
## iter 10 value 367.775739
## iter 20 value 233.371260
## iter 30 value 233.303207
## iter 40 value 233.269266
## iter 50 value 233.264427
## iter 60 value 233.260419
## final value 233.259916
## converged
## Fitting Repeat 5
##
## # weights: 7
## initial value 419.018015
## iter 10 value 287.971415
## iter 20 value 233.323787
## iter 30 value 233.303673
## iter 40 value 233.269878
## iter 50 value 233.262276
## iter 60 value 233.259188
## final value 233.259110
## converged
## Fitting Repeat 1
##
## # weights: 17
## initial value 413.499239
## iter 10 value 308.548835
## iter 20 value 243.305129
## iter 30 value 235.745658
## iter 40 value 233.684937
## iter 50 value 233.486015
## iter 60 value 233.451827
## iter 70 value 233.372977
## iter 80 value 233.346052
## iter 90 value 233.330367
## iter 100 value 233.324375
## final value 233.324375
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 405.270608
## iter 10 value 238.195474
## iter 20 value 224.460065
## iter 30 value 192.850005
## iter 40 value 187.462916
## iter 50 value 187.005767
## iter 60 value 186.762081
## iter 70 value 186.514087
## iter 80 value 186.464910
## iter 90 value 186.384483
## iter 100 value 186.281227
## final value 186.281227
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 428.565864
## iter 10 value 273.083512
## iter 20 value 233.012820
## iter 30 value 214.312828
## iter 40 value 191.069359
## iter 50 value 187.983954
## iter 60 value 187.264318
## iter 70 value 186.903647
## iter 80 value 186.767377
## iter 90 value 186.641245
## iter 100 value 186.560642
## final value 186.560642
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 406.607909
## iter 10 value 267.024964
## iter 20 value 201.481734
## iter 30 value 190.747942
## iter 40 value 187.173173
## iter 50 value 186.515279
## iter 60 value 186.078924
## iter 70 value 185.883894
## iter 80 value 185.738853
## iter 90 value 185.148842
## iter 100 value 184.373401
## final value 184.373401
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 429.079595
## iter 10 value 308.004488
## iter 20 value 250.714872
## iter 30 value 237.624490
## iter 40 value 234.139290
## iter 50 value 233.594592
## iter 60 value 233.473841
## iter 70 value 233.456811
## iter 80 value 233.365424
## iter 90 value 233.309035
## iter 100 value 233.299328
## final value 233.299328
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 27
## initial value 425.266130
## iter 10 value 358.447501
## iter 20 value 252.468357
## iter 30 value 235.203030
## iter 40 value 219.651337
## iter 50 value 189.074574
## iter 60 value 187.054087
## iter 70 value 186.546093
## iter 80 value 186.359612
## iter 90 value 186.279958
## iter 100 value 186.191956
## final value 186.191956
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 27
## initial value 426.099951
## iter 10 value 320.876972
## iter 20 value 254.736670
## iter 30 value 238.723620
## iter 40 value 236.891629
## iter 50 value 234.958417
## iter 60 value 218.724546
## iter 70 value 198.080597
## iter 80 value 195.628785
## iter 90 value 193.178262
## iter 100 value 188.474337
## final value 188.474337
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 27
## initial value 401.157321
## iter 10 value 315.548039
## iter 20 value 256.058790
## iter 30 value 246.789245
## iter 40 value 237.273243
## iter 50 value 236.133814
## iter 60 value 232.491788
## iter 70 value 213.175564
## iter 80 value 207.180022
## iter 90 value 197.393711
## iter 100 value 192.247025
## final value 192.247025
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 27
## initial value 405.757512
## iter 10 value 239.081138
## iter 20 value 233.074184
## iter 30 value 231.220317
## iter 40 value 188.603920
## iter 50 value 187.066728
## iter 60 value 186.923096
## iter 70 value 186.669276
## iter 80 value 186.588595
## iter 90 value 186.510604
## iter 100 value 186.288404
## final value 186.288404
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 27
## initial value 440.875866
## iter 10 value 268.171168
## iter 20 value 223.377547
## iter 30 value 191.968079
## iter 40 value 187.993665
## iter 50 value 187.077650
## iter 60 value 186.928218
## iter 70 value 186.854166
## iter 80 value 186.800261
## iter 90 value 186.708325
## iter 100 value 186.664242
## final value 186.664242
## stopped after 100 iterations
## Fitting Repeat 1
##
## # weights: 17
## initial value 402.650170
## iter 10 value 239.910604
## iter 20 value 228.989319
## iter 30 value 210.617404
## iter 40 value 179.720363
## iter 50 value 176.034241
## iter 60 value 174.424415
## iter 70 value 174.242180
## iter 80 value 174.178573
## iter 90 value 174.067669
## iter 100 value 174.026314
## final value 174.026314
## stopped after 100 iterations
## Fitting Repeat 2
##
## # weights: 17
## initial value 407.742897
## iter 10 value 243.851131
## iter 20 value 224.526433
## iter 30 value 179.469913
## iter 40 value 177.522099
## iter 50 value 175.068513
## iter 60 value 173.579291
## iter 70 value 173.513703
## iter 80 value 173.481438
## iter 90 value 173.403329
## iter 100 value 173.335369
## final value 173.335369
## stopped after 100 iterations
## Fitting Repeat 3
##
## # weights: 17
## initial value 404.498653
## iter 10 value 254.381118
## iter 20 value 232.512427
## iter 30 value 230.266467
## iter 40 value 229.937687
## iter 50 value 229.522337
## iter 60 value 226.575924
## iter 70 value 187.454497
## iter 80 value 181.066632
## iter 90 value 177.038129
## iter 100 value 175.619475
## final value 175.619475
## stopped after 100 iterations
## Fitting Repeat 4
##
## # weights: 17
## initial value 452.921369
## iter 10 value 251.238083
## iter 20 value 229.852411
## iter 30 value 227.981443
## iter 40 value 209.042607
## iter 50 value 185.378249
## iter 60 value 175.371700
## iter 70 value 174.947409
## iter 80 value 174.694446
## iter 90 value 174.459875
## iter 100 value 174.324010
## final value 174.324010
## stopped after 100 iterations
## Fitting Repeat 5
##
## # weights: 17
## initial value 412.538952
## iter 10 value 246.581111
## iter 20 value 228.645911
## iter 30 value 187.701330
## iter 40 value 178.617167
## iter 50 value 175.098679
## iter 60 value 173.257648
## iter 70 value 173.102642
## iter 80 value 173.097158
## iter 90 value 173.067381
## iter 100 value 173.022245
## final value 173.022245
## stopped after 100 iterations
## [1] "mlp"
## [1] "monmlp"
## ** Ensemble 1
## 0.5650904
## ** 0.5650904
##
## ** Ensemble 1
## 0.4468529
## ** 0.4468529
##
## ** Ensemble 1
## 0.4234825
## ** 0.4234825
##
## ** Ensemble 1
## 0.5671791
## ** 0.5671791
##
## ** Ensemble 1
## 0.4666353
## ** 0.4666353
##
## ** Ensemble 1
## 0.4413243
## ** 0.4413243
##
## ** Ensemble 1
## 0.5966755
## ** 0.5966755
##
## ** Ensemble 1
## 0.4681114
## ** 0.4681114
##
## ** Ensemble 1
## 0.4426144
## ** 0.4426144
##
## ** Ensemble 1
## 0.5099163
## ** 0.5099163
##
## ** Ensemble 1
## 0.3813041
## ** 0.3813041
##
## ** Ensemble 1
## 0.3536631
## ** 0.3536631
##
## ** Ensemble 1
## 0.5870448
## ** 0.5870448
##
## ** Ensemble 1
## 0.4426924
## ** 0.4426924
##
## ** Ensemble 1
## 0.4273253
## ** 0.4273253
##
## ** Ensemble 1
## 0.5590184
## ** 0.5590184
##
## ** Ensemble 1
## 0.4482791
## ** 0.4482791
##
## ** Ensemble 1
## 0.4345956
## ** 0.4345956
##
## ** Ensemble 1
## 0.5741628
## ** 0.5741628
##
## ** Ensemble 1
## 0.4163254
## ** 0.4163254
##
## ** Ensemble 1
## 0.3914547
## ** 0.3914547
##
## ** Ensemble 1
## 0.5962694
## ** 0.5962694
##
## ** Ensemble 1
## 0.4437906
## ** 0.4437906
##
## ** Ensemble 1
## 0.4342396
## ** 0.4342396
##
## ** Ensemble 1
## 0.5534097
## ** 0.5534097
##
## ** Ensemble 1
## 0.4075735
## ** 0.4075735
##
## ** Ensemble 1
## 0.3983453
## ** 0.3983453
##
## ** Ensemble 1
## 0.5702727
## ** 0.5702727
##
## ** Ensemble 1
## 0.4143229
## ** 0.4143229
##
## ** Ensemble 1
## 0.3924902
## ** 0.3924902
##
## ** Ensemble 1
## 0.5932968
## ** 0.5932968
##
## ** Ensemble 1
## 0.4689001
## ** 0.4689001
##
## ** Ensemble 1
## 0.4449659
## ** 0.4449659
##
## ** Ensemble 1
## 0.5854919
## ** 0.5854919
##
## ** Ensemble 1
## 0.4362667
## ** 0.4362667
##
## ** Ensemble 1
## 0.4085503
## ** 0.4085503
##
## ** Ensemble 1
## 0.5986158
## ** 0.5986158
##
## ** Ensemble 1
## 0.4529955
## ** 0.4529955
##
## ** Ensemble 1
## 0.4083867
## ** 0.4083867
##
## ** Ensemble 1
## 0.6122039
## ** 0.6122039
##
## ** Ensemble 1
## 0.5957444
## ** 0.5957444
##
## ** Ensemble 1
## 0.4186496
## ** 0.4186496
##
## ** Ensemble 1
## 0.56004
## ** 0.56004
##
## ** Ensemble 1
## 0.398661
## ** 0.398661
##
## ** Ensemble 1
## 0.3926989
## ** 0.3926989
##
## ** Ensemble 1
## 0.5423852
## ** 0.5423852
##
## ** Ensemble 1
## 0.4291737
## ** 0.4291737
##
## ** Ensemble 1
## 0.4138618
## ** 0.4138618
##
## ** Ensemble 1
## 0.6006389
## ** 0.6006389
##
## ** Ensemble 1
## 0.4699572
## ** 0.4699572
##
## ** Ensemble 1
## 0.4489593
## ** 0.4489593
##
## ** Ensemble 1
## 0.6081373
## ** 0.6081373
##
## ** Ensemble 1
## 0.4548977
## ** 0.4548977
##
## ** Ensemble 1
## 0.4311419
## ** 0.4311419
##
## ** Ensemble 1
## 0.5492261
## ** 0.5492261
##
## ** Ensemble 1
## 0.3770256
## ** 0.3770256
##
## ** Ensemble 1
## 0.3674743
## ** 0.3674743
##
## ** Ensemble 1
## 0.5606842
## ** 0.5606842
##
## ** Ensemble 1
## 0.4284221
## ** 0.4284221
##
## ** Ensemble 1
## 0.4063609
## ** 0.4063609
##
## ** Ensemble 1
## 0.5974212
## ** 0.5974212
##
## ** Ensemble 1
## 0.425973
## ** 0.425973
##
## ** Ensemble 1
## 0.4088576
## ** 0.4088576
##
## ** Ensemble 1
## 0.5984095
## ** 0.5984095
##
## ** Ensemble 1
## 0.4491176
## ** 0.4491176
##
## ** Ensemble 1
## 0.4242122
## ** 0.4242122
##
## ** Ensemble 1
## 0.5783237
## ** 0.5783237
##
## ** Ensemble 1
## 0.4214252
## ** 0.4214252
##
## ** Ensemble 1
## 0.4034361
## ** 0.4034361
##
## ** Ensemble 1
## 0.6154374
## ** 0.6154374
##
## ** Ensemble 1
## 0.4765455
## ** 0.4765455
##
## ** Ensemble 1
## 0.445054
## ** 0.445054
##
## ** Ensemble 1
## 0.6035911
## ** 0.6035911
##
## ** Ensemble 1
## 0.4467982
## ** 0.4467982
##
## ** Ensemble 1
## 0.4270636
## ** 0.4270636
##
## ** Ensemble 1
## 0.4246003
## ** 0.4246003
##
## [1] "adaboost"
## [1] "gbm"
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3203 nan 0.1000 0.0321
## 2 1.2639 nan 0.1000 0.0255
## 3 1.2223 nan 0.1000 0.0195
## 4 1.1835 nan 0.1000 0.0194
## 5 1.1466 nan 0.1000 0.0152
## 6 1.1171 nan 0.1000 0.0129
## 7 1.0906 nan 0.1000 0.0112
## 8 1.0689 nan 0.1000 0.0095
## 9 1.0495 nan 0.1000 0.0077
## 10 1.0310 nan 0.1000 0.0069
## 20 0.8905 nan 0.1000 0.0043
## 40 0.7510 nan 0.1000 0.0015
## 60 0.6741 nan 0.1000 0.0005
## 80 0.6328 nan 0.1000 -0.0001
## 100 0.6025 nan 0.1000 -0.0003
## 120 0.5786 nan 0.1000 0.0006
## 140 0.5642 nan 0.1000 -0.0004
## 150 0.5581 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2949 nan 0.1000 0.0437
## 2 1.2208 nan 0.1000 0.0353
## 3 1.1642 nan 0.1000 0.0268
## 4 1.1153 nan 0.1000 0.0250
## 5 1.0688 nan 0.1000 0.0218
## 6 1.0300 nan 0.1000 0.0175
## 7 0.9972 nan 0.1000 0.0162
## 8 0.9705 nan 0.1000 0.0127
## 9 0.9416 nan 0.1000 0.0132
## 10 0.9152 nan 0.1000 0.0117
## 20 0.7561 nan 0.1000 0.0037
## 40 0.6167 nan 0.1000 0.0012
## 60 0.5524 nan 0.1000 -0.0001
## 80 0.5158 nan 0.1000 -0.0003
## 100 0.4918 nan 0.1000 -0.0001
## 120 0.4702 nan 0.1000 -0.0013
## 140 0.4583 nan 0.1000 -0.0010
## 150 0.4483 nan 0.1000 -0.0007
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2917 nan 0.1000 0.0480
## 2 1.2147 nan 0.1000 0.0351
## 3 1.1496 nan 0.1000 0.0317
## 4 1.0909 nan 0.1000 0.0251
## 5 1.0453 nan 0.1000 0.0222
## 6 1.0021 nan 0.1000 0.0175
## 7 0.9561 nan 0.1000 0.0214
## 8 0.9264 nan 0.1000 0.0131
## 9 0.8999 nan 0.1000 0.0115
## 10 0.8716 nan 0.1000 0.0141
## 20 0.6730 nan 0.1000 0.0027
## 40 0.5493 nan 0.1000 0.0004
## 60 0.5009 nan 0.1000 -0.0009
## 80 0.4665 nan 0.1000 -0.0016
## 100 0.4364 nan 0.1000 -0.0004
## 120 0.4138 nan 0.1000 -0.0009
## 140 0.3911 nan 0.1000 -0.0002
## 150 0.3835 nan 0.1000 -0.0011
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3161 nan 0.1000 0.0318
## 2 1.2664 nan 0.1000 0.0234
## 3 1.2176 nan 0.1000 0.0223
## 4 1.1824 nan 0.1000 0.0144
## 5 1.1500 nan 0.1000 0.0134
## 6 1.1211 nan 0.1000 0.0144
## 7 1.0989 nan 0.1000 0.0119
## 8 1.0773 nan 0.1000 0.0101
## 9 1.0579 nan 0.1000 0.0093
## 10 1.0429 nan 0.1000 0.0074
## 20 0.9140 nan 0.1000 0.0032
## 40 0.7801 nan 0.1000 0.0008
## 60 0.7166 nan 0.1000 0.0002
## 80 0.6807 nan 0.1000 0.0002
## 100 0.6542 nan 0.1000 -0.0005
## 120 0.6388 nan 0.1000 0.0001
## 140 0.6262 nan 0.1000 -0.0009
## 150 0.6199 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3094 nan 0.1000 0.0405
## 2 1.2369 nan 0.1000 0.0320
## 3 1.1849 nan 0.1000 0.0256
## 4 1.1349 nan 0.1000 0.0204
## 5 1.0932 nan 0.1000 0.0186
## 6 1.0527 nan 0.1000 0.0164
## 7 1.0169 nan 0.1000 0.0153
## 8 0.9875 nan 0.1000 0.0134
## 9 0.9616 nan 0.1000 0.0108
## 10 0.9349 nan 0.1000 0.0117
## 20 0.7912 nan 0.1000 0.0043
## 40 0.6765 nan 0.1000 -0.0014
## 60 0.6269 nan 0.1000 -0.0000
## 80 0.5961 nan 0.1000 0.0003
## 100 0.5722 nan 0.1000 -0.0001
## 120 0.5495 nan 0.1000 -0.0015
## 140 0.5306 nan 0.1000 -0.0005
## 150 0.5228 nan 0.1000 -0.0015
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2958 nan 0.1000 0.0409
## 2 1.2227 nan 0.1000 0.0316
## 3 1.1614 nan 0.1000 0.0276
## 4 1.1114 nan 0.1000 0.0220
## 5 1.0567 nan 0.1000 0.0255
## 6 1.0142 nan 0.1000 0.0197
## 7 0.9821 nan 0.1000 0.0137
## 8 0.9473 nan 0.1000 0.0171
## 9 0.9236 nan 0.1000 0.0101
## 10 0.9007 nan 0.1000 0.0084
## 20 0.7339 nan 0.1000 0.0041
## 40 0.6221 nan 0.1000 -0.0002
## 60 0.5740 nan 0.1000 -0.0007
## 80 0.5369 nan 0.1000 -0.0006
## 100 0.5004 nan 0.1000 -0.0008
## 120 0.4785 nan 0.1000 -0.0008
## 140 0.4532 nan 0.1000 -0.0009
## 150 0.4460 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3185 nan 0.1000 0.0367
## 2 1.2568 nan 0.1000 0.0303
## 3 1.2046 nan 0.1000 0.0239
## 4 1.1665 nan 0.1000 0.0208
## 5 1.1283 nan 0.1000 0.0168
## 6 1.0986 nan 0.1000 0.0134
## 7 1.0720 nan 0.1000 0.0109
## 8 1.0486 nan 0.1000 0.0106
## 9 1.0300 nan 0.1000 0.0074
## 10 1.0131 nan 0.1000 0.0072
## 20 0.8936 nan 0.1000 0.0035
## 40 0.7716 nan 0.1000 0.0008
## 60 0.7081 nan 0.1000 0.0000
## 80 0.6666 nan 0.1000 -0.0002
## 100 0.6415 nan 0.1000 -0.0010
## 120 0.6228 nan 0.1000 -0.0004
## 140 0.6106 nan 0.1000 0.0005
## 150 0.6047 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2978 nan 0.1000 0.0427
## 2 1.2283 nan 0.1000 0.0351
## 3 1.1699 nan 0.1000 0.0290
## 4 1.1204 nan 0.1000 0.0234
## 5 1.0736 nan 0.1000 0.0199
## 6 1.0394 nan 0.1000 0.0169
## 7 1.0087 nan 0.1000 0.0156
## 8 0.9813 nan 0.1000 0.0128
## 9 0.9545 nan 0.1000 0.0128
## 10 0.9330 nan 0.1000 0.0093
## 20 0.7844 nan 0.1000 0.0024
## 40 0.6528 nan 0.1000 0.0006
## 60 0.5985 nan 0.1000 -0.0002
## 80 0.5704 nan 0.1000 -0.0005
## 100 0.5515 nan 0.1000 -0.0011
## 120 0.5280 nan 0.1000 -0.0009
## 140 0.5093 nan 0.1000 0.0003
## 150 0.4989 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3001 nan 0.1000 0.0413
## 2 1.2242 nan 0.1000 0.0395
## 3 1.1582 nan 0.1000 0.0286
## 4 1.1003 nan 0.1000 0.0285
## 5 1.0489 nan 0.1000 0.0227
## 6 1.0078 nan 0.1000 0.0178
## 7 0.9666 nan 0.1000 0.0185
## 8 0.9342 nan 0.1000 0.0148
## 9 0.9072 nan 0.1000 0.0127
## 10 0.8800 nan 0.1000 0.0118
## 20 0.7271 nan 0.1000 0.0045
## 40 0.6090 nan 0.1000 0.0006
## 60 0.5530 nan 0.1000 -0.0002
## 80 0.5155 nan 0.1000 -0.0002
## 100 0.4882 nan 0.1000 -0.0003
## 120 0.4618 nan 0.1000 -0.0011
## 140 0.4389 nan 0.1000 -0.0011
## 150 0.4293 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3191 nan 0.1000 0.0312
## 2 1.2600 nan 0.1000 0.0286
## 3 1.2157 nan 0.1000 0.0209
## 4 1.1747 nan 0.1000 0.0196
## 5 1.1427 nan 0.1000 0.0160
## 6 1.1136 nan 0.1000 0.0131
## 7 1.0915 nan 0.1000 0.0100
## 8 1.0691 nan 0.1000 0.0068
## 9 1.0487 nan 0.1000 0.0100
## 10 1.0306 nan 0.1000 0.0085
## 20 0.8935 nan 0.1000 0.0038
## 40 0.7560 nan 0.1000 0.0020
## 60 0.6812 nan 0.1000 0.0001
## 80 0.6316 nan 0.1000 0.0005
## 100 0.6019 nan 0.1000 0.0004
## 120 0.5821 nan 0.1000 -0.0001
## 140 0.5698 nan 0.1000 0.0003
## 150 0.5636 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2953 nan 0.1000 0.0425
## 2 1.2220 nan 0.1000 0.0340
## 3 1.1653 nan 0.1000 0.0254
## 4 1.1082 nan 0.1000 0.0266
## 5 1.0663 nan 0.1000 0.0204
## 6 1.0289 nan 0.1000 0.0196
## 7 0.9925 nan 0.1000 0.0151
## 8 0.9609 nan 0.1000 0.0128
## 9 0.9363 nan 0.1000 0.0098
## 10 0.9130 nan 0.1000 0.0109
## 20 0.7581 nan 0.1000 0.0050
## 40 0.6265 nan 0.1000 0.0012
## 60 0.5701 nan 0.1000 -0.0003
## 80 0.5327 nan 0.1000 -0.0001
## 100 0.5103 nan 0.1000 -0.0006
## 120 0.4859 nan 0.1000 -0.0009
## 140 0.4697 nan 0.1000 -0.0006
## 150 0.4609 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2888 nan 0.1000 0.0476
## 2 1.2054 nan 0.1000 0.0400
## 3 1.1419 nan 0.1000 0.0288
## 4 1.0853 nan 0.1000 0.0262
## 5 1.0381 nan 0.1000 0.0227
## 6 0.9929 nan 0.1000 0.0209
## 7 0.9569 nan 0.1000 0.0166
## 8 0.9189 nan 0.1000 0.0191
## 9 0.8911 nan 0.1000 0.0129
## 10 0.8580 nan 0.1000 0.0145
## 20 0.6892 nan 0.1000 0.0071
## 40 0.5668 nan 0.1000 0.0005
## 60 0.5157 nan 0.1000 -0.0004
## 80 0.4782 nan 0.1000 -0.0009
## 100 0.4464 nan 0.1000 -0.0014
## 120 0.4187 nan 0.1000 -0.0004
## 140 0.3985 nan 0.1000 -0.0005
## 150 0.3890 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3188 nan 0.1000 0.0313
## 2 1.2666 nan 0.1000 0.0255
## 3 1.2200 nan 0.1000 0.0210
## 4 1.1852 nan 0.1000 0.0173
## 5 1.1558 nan 0.1000 0.0146
## 6 1.1371 nan 0.1000 0.0065
## 7 1.1108 nan 0.1000 0.0116
## 8 1.0864 nan 0.1000 0.0099
## 9 1.0707 nan 0.1000 0.0059
## 10 1.0547 nan 0.1000 0.0070
## 20 0.9288 nan 0.1000 0.0030
## 40 0.8015 nan 0.1000 0.0022
## 60 0.7343 nan 0.1000 0.0013
## 80 0.6943 nan 0.1000 -0.0001
## 100 0.6667 nan 0.1000 -0.0004
## 120 0.6487 nan 0.1000 -0.0000
## 140 0.6353 nan 0.1000 -0.0005
## 150 0.6292 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3018 nan 0.1000 0.0414
## 2 1.2397 nan 0.1000 0.0315
## 3 1.1830 nan 0.1000 0.0279
## 4 1.1348 nan 0.1000 0.0233
## 5 1.0924 nan 0.1000 0.0190
## 6 1.0604 nan 0.1000 0.0148
## 7 1.0339 nan 0.1000 0.0126
## 8 1.0040 nan 0.1000 0.0126
## 9 0.9797 nan 0.1000 0.0099
## 10 0.9533 nan 0.1000 0.0108
## 20 0.8078 nan 0.1000 0.0028
## 40 0.6853 nan 0.1000 0.0013
## 60 0.6329 nan 0.1000 -0.0001
## 80 0.5996 nan 0.1000 -0.0008
## 100 0.5712 nan 0.1000 0.0004
## 120 0.5509 nan 0.1000 -0.0009
## 140 0.5364 nan 0.1000 -0.0006
## 150 0.5283 nan 0.1000 -0.0005
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3019 nan 0.1000 0.0424
## 2 1.2336 nan 0.1000 0.0341
## 3 1.1723 nan 0.1000 0.0292
## 4 1.1180 nan 0.1000 0.0246
## 5 1.0691 nan 0.1000 0.0235
## 6 1.0315 nan 0.1000 0.0175
## 7 0.9928 nan 0.1000 0.0179
## 8 0.9627 nan 0.1000 0.0129
## 9 0.9354 nan 0.1000 0.0111
## 10 0.9130 nan 0.1000 0.0103
## 20 0.7382 nan 0.1000 0.0045
## 40 0.6337 nan 0.1000 -0.0001
## 60 0.5869 nan 0.1000 -0.0009
## 80 0.5469 nan 0.1000 -0.0002
## 100 0.5200 nan 0.1000 -0.0008
## 120 0.4965 nan 0.1000 -0.0008
## 140 0.4752 nan 0.1000 -0.0004
## 150 0.4624 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3240 nan 0.1000 0.0289
## 2 1.2696 nan 0.1000 0.0239
## 3 1.2263 nan 0.1000 0.0209
## 4 1.1945 nan 0.1000 0.0163
## 5 1.1629 nan 0.1000 0.0142
## 6 1.1412 nan 0.1000 0.0101
## 7 1.1217 nan 0.1000 0.0085
## 8 1.0979 nan 0.1000 0.0104
## 9 1.0778 nan 0.1000 0.0081
## 10 1.0615 nan 0.1000 0.0067
## 20 0.9385 nan 0.1000 0.0047
## 40 0.8103 nan 0.1000 0.0010
## 60 0.7390 nan 0.1000 0.0007
## 80 0.6964 nan 0.1000 -0.0003
## 100 0.6692 nan 0.1000 -0.0002
## 120 0.6480 nan 0.1000 0.0001
## 140 0.6356 nan 0.1000 0.0003
## 150 0.6317 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3102 nan 0.1000 0.0400
## 2 1.2414 nan 0.1000 0.0322
## 3 1.1900 nan 0.1000 0.0267
## 4 1.1447 nan 0.1000 0.0205
## 5 1.1023 nan 0.1000 0.0193
## 6 1.0674 nan 0.1000 0.0168
## 7 1.0381 nan 0.1000 0.0122
## 8 1.0129 nan 0.1000 0.0129
## 9 0.9873 nan 0.1000 0.0125
## 10 0.9672 nan 0.1000 0.0088
## 20 0.8096 nan 0.1000 0.0035
## 40 0.6811 nan 0.1000 0.0006
## 60 0.6288 nan 0.1000 -0.0002
## 80 0.5982 nan 0.1000 -0.0006
## 100 0.5793 nan 0.1000 -0.0007
## 120 0.5589 nan 0.1000 -0.0009
## 140 0.5393 nan 0.1000 -0.0007
## 150 0.5301 nan 0.1000 -0.0010
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3031 nan 0.1000 0.0403
## 2 1.2262 nan 0.1000 0.0344
## 3 1.1637 nan 0.1000 0.0292
## 4 1.1159 nan 0.1000 0.0211
## 5 1.0724 nan 0.1000 0.0207
## 6 1.0354 nan 0.1000 0.0185
## 7 1.0040 nan 0.1000 0.0142
## 8 0.9752 nan 0.1000 0.0128
## 9 0.9509 nan 0.1000 0.0111
## 10 0.9162 nan 0.1000 0.0146
## 20 0.7515 nan 0.1000 0.0056
## 40 0.6301 nan 0.1000 0.0022
## 60 0.5846 nan 0.1000 -0.0016
## 80 0.5476 nan 0.1000 -0.0006
## 100 0.5158 nan 0.1000 -0.0008
## 120 0.4905 nan 0.1000 -0.0005
## 140 0.4688 nan 0.1000 -0.0008
## 150 0.4589 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3170 nan 0.1000 0.0291
## 2 1.2658 nan 0.1000 0.0251
## 3 1.2219 nan 0.1000 0.0231
## 4 1.1842 nan 0.1000 0.0192
## 5 1.1485 nan 0.1000 0.0155
## 6 1.1212 nan 0.1000 0.0146
## 7 1.0958 nan 0.1000 0.0117
## 8 1.0741 nan 0.1000 0.0098
## 9 1.0522 nan 0.1000 0.0104
## 10 1.0351 nan 0.1000 0.0068
## 20 0.9070 nan 0.1000 0.0040
## 40 0.7857 nan 0.1000 0.0017
## 60 0.7236 nan 0.1000 0.0008
## 80 0.6851 nan 0.1000 -0.0006
## 100 0.6577 nan 0.1000 0.0003
## 120 0.6446 nan 0.1000 -0.0003
## 140 0.6327 nan 0.1000 -0.0004
## 150 0.6276 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2996 nan 0.1000 0.0412
## 2 1.2294 nan 0.1000 0.0335
## 3 1.1703 nan 0.1000 0.0274
## 4 1.1238 nan 0.1000 0.0227
## 5 1.0838 nan 0.1000 0.0187
## 6 1.0475 nan 0.1000 0.0158
## 7 1.0169 nan 0.1000 0.0131
## 8 0.9863 nan 0.1000 0.0146
## 9 0.9623 nan 0.1000 0.0112
## 10 0.9417 nan 0.1000 0.0108
## 20 0.7997 nan 0.1000 0.0048
## 40 0.6800 nan 0.1000 0.0005
## 60 0.6364 nan 0.1000 -0.0009
## 80 0.6059 nan 0.1000 0.0002
## 100 0.5861 nan 0.1000 -0.0006
## 120 0.5680 nan 0.1000 -0.0013
## 140 0.5480 nan 0.1000 -0.0002
## 150 0.5401 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2902 nan 0.1000 0.0420
## 2 1.2183 nan 0.1000 0.0325
## 3 1.1583 nan 0.1000 0.0266
## 4 1.1018 nan 0.1000 0.0253
## 5 1.0481 nan 0.1000 0.0214
## 6 1.0081 nan 0.1000 0.0173
## 7 0.9717 nan 0.1000 0.0143
## 8 0.9428 nan 0.1000 0.0134
## 9 0.9146 nan 0.1000 0.0126
## 10 0.8876 nan 0.1000 0.0085
## 20 0.7364 nan 0.1000 0.0040
## 40 0.6382 nan 0.1000 -0.0006
## 60 0.5903 nan 0.1000 -0.0004
## 80 0.5526 nan 0.1000 0.0000
## 100 0.5285 nan 0.1000 -0.0028
## 120 0.5028 nan 0.1000 -0.0002
## 140 0.4817 nan 0.1000 -0.0006
## 150 0.4700 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3222 nan 0.1000 0.0263
## 2 1.2680 nan 0.1000 0.0251
## 3 1.2253 nan 0.1000 0.0203
## 4 1.1914 nan 0.1000 0.0155
## 5 1.1640 nan 0.1000 0.0144
## 6 1.1397 nan 0.1000 0.0116
## 7 1.1238 nan 0.1000 0.0062
## 8 1.1017 nan 0.1000 0.0091
## 9 1.0832 nan 0.1000 0.0077
## 10 1.0629 nan 0.1000 0.0083
## 20 0.9452 nan 0.1000 0.0034
## 40 0.8189 nan 0.1000 0.0017
## 60 0.7488 nan 0.1000 0.0010
## 80 0.7058 nan 0.1000 -0.0001
## 100 0.6768 nan 0.1000 -0.0004
## 120 0.6586 nan 0.1000 -0.0002
## 140 0.6457 nan 0.1000 -0.0009
## 150 0.6397 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2978 nan 0.1000 0.0366
## 2 1.2383 nan 0.1000 0.0301
## 3 1.1899 nan 0.1000 0.0227
## 4 1.1478 nan 0.1000 0.0160
## 5 1.1125 nan 0.1000 0.0168
## 6 1.0819 nan 0.1000 0.0138
## 7 1.0557 nan 0.1000 0.0110
## 8 1.0275 nan 0.1000 0.0121
## 9 1.0005 nan 0.1000 0.0109
## 10 0.9769 nan 0.1000 0.0099
## 20 0.8244 nan 0.1000 0.0026
## 40 0.6952 nan 0.1000 -0.0008
## 60 0.6508 nan 0.1000 0.0004
## 80 0.6239 nan 0.1000 -0.0015
## 100 0.5985 nan 0.1000 -0.0019
## 120 0.5792 nan 0.1000 -0.0013
## 140 0.5633 nan 0.1000 -0.0003
## 150 0.5543 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2946 nan 0.1000 0.0391
## 2 1.2305 nan 0.1000 0.0311
## 3 1.1719 nan 0.1000 0.0274
## 4 1.1145 nan 0.1000 0.0274
## 5 1.0700 nan 0.1000 0.0209
## 6 1.0355 nan 0.1000 0.0146
## 7 1.0055 nan 0.1000 0.0149
## 8 0.9782 nan 0.1000 0.0125
## 9 0.9498 nan 0.1000 0.0137
## 10 0.9229 nan 0.1000 0.0124
## 20 0.7602 nan 0.1000 0.0030
## 40 0.6494 nan 0.1000 0.0004
## 60 0.6009 nan 0.1000 0.0004
## 80 0.5660 nan 0.1000 -0.0002
## 100 0.5391 nan 0.1000 -0.0013
## 120 0.5160 nan 0.1000 -0.0010
## 140 0.4927 nan 0.1000 -0.0005
## 150 0.4813 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3139 nan 0.1000 0.0332
## 2 1.2622 nan 0.1000 0.0278
## 3 1.2137 nan 0.1000 0.0247
## 4 1.1724 nan 0.1000 0.0203
## 5 1.1345 nan 0.1000 0.0170
## 6 1.1075 nan 0.1000 0.0143
## 7 1.0815 nan 0.1000 0.0114
## 8 1.0575 nan 0.1000 0.0123
## 9 1.0338 nan 0.1000 0.0098
## 10 1.0154 nan 0.1000 0.0076
## 20 0.8823 nan 0.1000 0.0039
## 40 0.7486 nan 0.1000 0.0013
## 60 0.6858 nan 0.1000 -0.0000
## 80 0.6486 nan 0.1000 -0.0003
## 100 0.6283 nan 0.1000 -0.0004
## 120 0.6148 nan 0.1000 -0.0005
## 140 0.6043 nan 0.1000 -0.0002
## 150 0.6000 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2949 nan 0.1000 0.0415
## 2 1.2279 nan 0.1000 0.0342
## 3 1.1721 nan 0.1000 0.0278
## 4 1.1207 nan 0.1000 0.0246
## 5 1.0779 nan 0.1000 0.0211
## 6 1.0410 nan 0.1000 0.0178
## 7 1.0093 nan 0.1000 0.0154
## 8 0.9822 nan 0.1000 0.0125
## 9 0.9547 nan 0.1000 0.0139
## 10 0.9267 nan 0.1000 0.0120
## 20 0.7719 nan 0.1000 0.0019
## 40 0.6528 nan 0.1000 0.0003
## 60 0.6098 nan 0.1000 -0.0001
## 80 0.5862 nan 0.1000 -0.0001
## 100 0.5667 nan 0.1000 -0.0015
## 120 0.5496 nan 0.1000 -0.0015
## 140 0.5330 nan 0.1000 -0.0002
## 150 0.5248 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2890 nan 0.1000 0.0460
## 2 1.2133 nan 0.1000 0.0386
## 3 1.1428 nan 0.1000 0.0348
## 4 1.0908 nan 0.1000 0.0254
## 5 1.0450 nan 0.1000 0.0203
## 6 1.0040 nan 0.1000 0.0184
## 7 0.9643 nan 0.1000 0.0202
## 8 0.9342 nan 0.1000 0.0154
## 9 0.9061 nan 0.1000 0.0126
## 10 0.8795 nan 0.1000 0.0105
## 20 0.7190 nan 0.1000 0.0021
## 40 0.6125 nan 0.1000 -0.0003
## 60 0.5728 nan 0.1000 -0.0008
## 80 0.5428 nan 0.1000 -0.0015
## 100 0.5137 nan 0.1000 -0.0015
## 120 0.4914 nan 0.1000 -0.0017
## 140 0.4705 nan 0.1000 -0.0013
## 150 0.4619 nan 0.1000 -0.0005
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3251 nan 0.1000 0.0317
## 2 1.2714 nan 0.1000 0.0260
## 3 1.2244 nan 0.1000 0.0225
## 4 1.1864 nan 0.1000 0.0180
## 5 1.1566 nan 0.1000 0.0146
## 6 1.1276 nan 0.1000 0.0138
## 7 1.1021 nan 0.1000 0.0109
## 8 1.0797 nan 0.1000 0.0084
## 9 1.0593 nan 0.1000 0.0076
## 10 1.0424 nan 0.1000 0.0067
## 20 0.9243 nan 0.1000 0.0042
## 40 0.7999 nan 0.1000 0.0017
## 60 0.7330 nan 0.1000 0.0009
## 80 0.6893 nan 0.1000 -0.0002
## 100 0.6650 nan 0.1000 0.0003
## 120 0.6479 nan 0.1000 0.0001
## 140 0.6350 nan 0.1000 0.0002
## 150 0.6295 nan 0.1000 0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3116 nan 0.1000 0.0352
## 2 1.2471 nan 0.1000 0.0312
## 3 1.1882 nan 0.1000 0.0250
## 4 1.1419 nan 0.1000 0.0197
## 5 1.1034 nan 0.1000 0.0174
## 6 1.0677 nan 0.1000 0.0171
## 7 1.0381 nan 0.1000 0.0123
## 8 1.0124 nan 0.1000 0.0121
## 9 0.9876 nan 0.1000 0.0105
## 10 0.9648 nan 0.1000 0.0106
## 20 0.8082 nan 0.1000 0.0050
## 40 0.6820 nan 0.1000 0.0010
## 60 0.6288 nan 0.1000 0.0003
## 80 0.5957 nan 0.1000 -0.0002
## 100 0.5664 nan 0.1000 -0.0002
## 120 0.5437 nan 0.1000 -0.0010
## 140 0.5263 nan 0.1000 -0.0001
## 150 0.5168 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2978 nan 0.1000 0.0418
## 2 1.2269 nan 0.1000 0.0330
## 3 1.1651 nan 0.1000 0.0277
## 4 1.1191 nan 0.1000 0.0210
## 5 1.0700 nan 0.1000 0.0208
## 6 1.0283 nan 0.1000 0.0201
## 7 0.9885 nan 0.1000 0.0168
## 8 0.9567 nan 0.1000 0.0117
## 9 0.9249 nan 0.1000 0.0134
## 10 0.8999 nan 0.1000 0.0103
## 20 0.7405 nan 0.1000 0.0041
## 40 0.6317 nan 0.1000 -0.0009
## 60 0.5812 nan 0.1000 0.0002
## 80 0.5397 nan 0.1000 0.0004
## 100 0.5047 nan 0.1000 -0.0008
## 120 0.4759 nan 0.1000 -0.0004
## 140 0.4537 nan 0.1000 -0.0000
## 150 0.4454 nan 0.1000 -0.0010
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3264 nan 0.1000 0.0304
## 2 1.2747 nan 0.1000 0.0255
## 3 1.2332 nan 0.1000 0.0195
## 4 1.1925 nan 0.1000 0.0170
## 5 1.1598 nan 0.1000 0.0154
## 6 1.1355 nan 0.1000 0.0129
## 7 1.1090 nan 0.1000 0.0101
## 8 1.0891 nan 0.1000 0.0083
## 9 1.0697 nan 0.1000 0.0091
## 10 1.0539 nan 0.1000 0.0064
## 20 0.9321 nan 0.1000 0.0045
## 40 0.7960 nan 0.1000 0.0016
## 60 0.7240 nan 0.1000 0.0004
## 80 0.6790 nan 0.1000 0.0005
## 100 0.6490 nan 0.1000 -0.0006
## 120 0.6314 nan 0.1000 -0.0004
## 140 0.6180 nan 0.1000 0.0002
## 150 0.6129 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3116 nan 0.1000 0.0332
## 2 1.2470 nan 0.1000 0.0312
## 3 1.1968 nan 0.1000 0.0238
## 4 1.1523 nan 0.1000 0.0219
## 5 1.1133 nan 0.1000 0.0165
## 6 1.0699 nan 0.1000 0.0178
## 7 1.0407 nan 0.1000 0.0130
## 8 1.0144 nan 0.1000 0.0122
## 9 0.9906 nan 0.1000 0.0100
## 10 0.9627 nan 0.1000 0.0120
## 20 0.8002 nan 0.1000 0.0025
## 40 0.6732 nan 0.1000 0.0006
## 60 0.6203 nan 0.1000 0.0001
## 80 0.5931 nan 0.1000 -0.0017
## 100 0.5706 nan 0.1000 -0.0003
## 120 0.5495 nan 0.1000 -0.0009
## 140 0.5317 nan 0.1000 -0.0012
## 150 0.5225 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3006 nan 0.1000 0.0350
## 2 1.2308 nan 0.1000 0.0341
## 3 1.1645 nan 0.1000 0.0316
## 4 1.1170 nan 0.1000 0.0235
## 5 1.0699 nan 0.1000 0.0219
## 6 1.0237 nan 0.1000 0.0194
## 7 0.9867 nan 0.1000 0.0165
## 8 0.9524 nan 0.1000 0.0145
## 9 0.9288 nan 0.1000 0.0099
## 10 0.8993 nan 0.1000 0.0132
## 20 0.7317 nan 0.1000 0.0026
## 40 0.6147 nan 0.1000 0.0013
## 60 0.5643 nan 0.1000 -0.0007
## 80 0.5312 nan 0.1000 -0.0014
## 100 0.5066 nan 0.1000 -0.0008
## 120 0.4811 nan 0.1000 -0.0008
## 140 0.4616 nan 0.1000 -0.0012
## 150 0.4516 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3211 nan 0.1000 0.0294
## 2 1.2714 nan 0.1000 0.0242
## 3 1.2285 nan 0.1000 0.0205
## 4 1.1851 nan 0.1000 0.0200
## 5 1.1568 nan 0.1000 0.0139
## 6 1.1262 nan 0.1000 0.0150
## 7 1.1031 nan 0.1000 0.0114
## 8 1.0799 nan 0.1000 0.0086
## 9 1.0611 nan 0.1000 0.0087
## 10 1.0404 nan 0.1000 0.0099
## 20 0.9060 nan 0.1000 0.0030
## 40 0.7588 nan 0.1000 0.0008
## 60 0.6824 nan 0.1000 0.0005
## 80 0.6411 nan 0.1000 0.0004
## 100 0.6123 nan 0.1000 -0.0003
## 120 0.5947 nan 0.1000 -0.0008
## 140 0.5813 nan 0.1000 -0.0004
## 150 0.5754 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3039 nan 0.1000 0.0416
## 2 1.2391 nan 0.1000 0.0313
## 3 1.1867 nan 0.1000 0.0251
## 4 1.1360 nan 0.1000 0.0232
## 5 1.0858 nan 0.1000 0.0226
## 6 1.0436 nan 0.1000 0.0194
## 7 1.0133 nan 0.1000 0.0131
## 8 0.9836 nan 0.1000 0.0126
## 9 0.9563 nan 0.1000 0.0120
## 10 0.9328 nan 0.1000 0.0079
## 20 0.7571 nan 0.1000 0.0039
## 40 0.6290 nan 0.1000 0.0012
## 60 0.5748 nan 0.1000 0.0004
## 80 0.5468 nan 0.1000 -0.0010
## 100 0.5269 nan 0.1000 -0.0017
## 120 0.5083 nan 0.1000 -0.0007
## 140 0.4908 nan 0.1000 -0.0010
## 150 0.4818 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2938 nan 0.1000 0.0441
## 2 1.2186 nan 0.1000 0.0363
## 3 1.1491 nan 0.1000 0.0336
## 4 1.0884 nan 0.1000 0.0255
## 5 1.0439 nan 0.1000 0.0225
## 6 1.0040 nan 0.1000 0.0175
## 7 0.9648 nan 0.1000 0.0166
## 8 0.9332 nan 0.1000 0.0144
## 9 0.9000 nan 0.1000 0.0153
## 10 0.8733 nan 0.1000 0.0106
## 20 0.6952 nan 0.1000 0.0015
## 40 0.5781 nan 0.1000 0.0015
## 60 0.5309 nan 0.1000 -0.0009
## 80 0.4968 nan 0.1000 -0.0000
## 100 0.4708 nan 0.1000 -0.0008
## 120 0.4511 nan 0.1000 -0.0020
## 140 0.4323 nan 0.1000 -0.0017
## 150 0.4229 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3084 nan 0.1000 0.0352
## 2 1.2550 nan 0.1000 0.0222
## 3 1.2035 nan 0.1000 0.0249
## 4 1.1628 nan 0.1000 0.0206
## 5 1.1269 nan 0.1000 0.0172
## 6 1.0965 nan 0.1000 0.0138
## 7 1.0702 nan 0.1000 0.0117
## 8 1.0485 nan 0.1000 0.0104
## 9 1.0291 nan 0.1000 0.0084
## 10 1.0128 nan 0.1000 0.0077
## 20 0.9011 nan 0.1000 0.0029
## 40 0.7758 nan 0.1000 0.0018
## 60 0.7128 nan 0.1000 0.0008
## 80 0.6810 nan 0.1000 -0.0001
## 100 0.6590 nan 0.1000 0.0003
## 120 0.6435 nan 0.1000 -0.0007
## 140 0.6312 nan 0.1000 -0.0003
## 150 0.6271 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3027 nan 0.1000 0.0390
## 2 1.2310 nan 0.1000 0.0329
## 3 1.1728 nan 0.1000 0.0260
## 4 1.1279 nan 0.1000 0.0232
## 5 1.0862 nan 0.1000 0.0195
## 6 1.0533 nan 0.1000 0.0138
## 7 1.0260 nan 0.1000 0.0137
## 8 1.0001 nan 0.1000 0.0116
## 9 0.9720 nan 0.1000 0.0091
## 10 0.9422 nan 0.1000 0.0122
## 20 0.7924 nan 0.1000 0.0053
## 40 0.6731 nan 0.1000 0.0009
## 60 0.6205 nan 0.1000 -0.0004
## 80 0.5958 nan 0.1000 0.0006
## 100 0.5758 nan 0.1000 -0.0015
## 120 0.5555 nan 0.1000 -0.0004
## 140 0.5375 nan 0.1000 -0.0001
## 150 0.5290 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2970 nan 0.1000 0.0386
## 2 1.2207 nan 0.1000 0.0362
## 3 1.1555 nan 0.1000 0.0315
## 4 1.0963 nan 0.1000 0.0273
## 5 1.0445 nan 0.1000 0.0215
## 6 1.0038 nan 0.1000 0.0184
## 7 0.9727 nan 0.1000 0.0141
## 8 0.9368 nan 0.1000 0.0145
## 9 0.9063 nan 0.1000 0.0142
## 10 0.8819 nan 0.1000 0.0106
## 20 0.7197 nan 0.1000 0.0019
## 40 0.6131 nan 0.1000 -0.0001
## 60 0.5671 nan 0.1000 -0.0002
## 80 0.5318 nan 0.1000 -0.0006
## 100 0.5040 nan 0.1000 -0.0013
## 120 0.4798 nan 0.1000 -0.0009
## 140 0.4583 nan 0.1000 -0.0012
## 150 0.4457 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3176 nan 0.1000 0.0318
## 2 1.2598 nan 0.1000 0.0243
## 3 1.2136 nan 0.1000 0.0218
## 4 1.1721 nan 0.1000 0.0192
## 5 1.1403 nan 0.1000 0.0159
## 6 1.1129 nan 0.1000 0.0136
## 7 1.0940 nan 0.1000 0.0091
## 8 1.0732 nan 0.1000 0.0094
## 9 1.0548 nan 0.1000 0.0092
## 10 1.0375 nan 0.1000 0.0075
## 20 0.9092 nan 0.1000 0.0042
## 40 0.7861 nan 0.1000 0.0008
## 60 0.7219 nan 0.1000 0.0002
## 80 0.6781 nan 0.1000 -0.0006
## 100 0.6464 nan 0.1000 -0.0004
## 120 0.6276 nan 0.1000 -0.0002
## 140 0.6159 nan 0.1000 -0.0006
## 150 0.6106 nan 0.1000 0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3042 nan 0.1000 0.0397
## 2 1.2385 nan 0.1000 0.0340
## 3 1.1823 nan 0.1000 0.0256
## 4 1.1322 nan 0.1000 0.0212
## 5 1.0874 nan 0.1000 0.0204
## 6 1.0494 nan 0.1000 0.0176
## 7 1.0197 nan 0.1000 0.0120
## 8 0.9947 nan 0.1000 0.0107
## 9 0.9677 nan 0.1000 0.0111
## 10 0.9450 nan 0.1000 0.0109
## 20 0.7950 nan 0.1000 0.0043
## 40 0.6615 nan 0.1000 0.0015
## 60 0.6098 nan 0.1000 -0.0007
## 80 0.5768 nan 0.1000 -0.0005
## 100 0.5512 nan 0.1000 -0.0012
## 120 0.5302 nan 0.1000 -0.0007
## 140 0.5156 nan 0.1000 0.0004
## 150 0.5077 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2932 nan 0.1000 0.0438
## 2 1.2217 nan 0.1000 0.0352
## 3 1.1593 nan 0.1000 0.0310
## 4 1.1093 nan 0.1000 0.0250
## 5 1.0630 nan 0.1000 0.0206
## 6 1.0225 nan 0.1000 0.0176
## 7 0.9867 nan 0.1000 0.0166
## 8 0.9536 nan 0.1000 0.0146
## 9 0.9236 nan 0.1000 0.0128
## 10 0.8978 nan 0.1000 0.0117
## 20 0.7239 nan 0.1000 0.0048
## 40 0.6093 nan 0.1000 -0.0015
## 60 0.5584 nan 0.1000 -0.0004
## 80 0.5188 nan 0.1000 -0.0010
## 100 0.4913 nan 0.1000 -0.0004
## 120 0.4665 nan 0.1000 -0.0006
## 140 0.4357 nan 0.1000 -0.0003
## 150 0.4238 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3223 nan 0.1000 0.0288
## 2 1.2727 nan 0.1000 0.0232
## 3 1.2323 nan 0.1000 0.0198
## 4 1.1976 nan 0.1000 0.0160
## 5 1.1689 nan 0.1000 0.0129
## 6 1.1405 nan 0.1000 0.0126
## 7 1.1164 nan 0.1000 0.0103
## 8 1.0957 nan 0.1000 0.0081
## 9 1.0775 nan 0.1000 0.0092
## 10 1.0616 nan 0.1000 0.0069
## 20 0.9290 nan 0.1000 0.0042
## 40 0.7840 nan 0.1000 0.0016
## 60 0.6997 nan 0.1000 0.0008
## 80 0.6545 nan 0.1000 -0.0000
## 100 0.6280 nan 0.1000 0.0004
## 120 0.6086 nan 0.1000 -0.0005
## 140 0.5965 nan 0.1000 -0.0003
## 150 0.5902 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3133 nan 0.1000 0.0336
## 2 1.2514 nan 0.1000 0.0292
## 3 1.1895 nan 0.1000 0.0284
## 4 1.1450 nan 0.1000 0.0213
## 5 1.0971 nan 0.1000 0.0206
## 6 1.0649 nan 0.1000 0.0152
## 7 1.0313 nan 0.1000 0.0159
## 8 1.0026 nan 0.1000 0.0133
## 9 0.9766 nan 0.1000 0.0100
## 10 0.9528 nan 0.1000 0.0108
## 20 0.7767 nan 0.1000 0.0046
## 40 0.6437 nan 0.1000 0.0014
## 60 0.5926 nan 0.1000 -0.0000
## 80 0.5649 nan 0.1000 -0.0013
## 100 0.5385 nan 0.1000 0.0000
## 120 0.5221 nan 0.1000 0.0000
## 140 0.5027 nan 0.1000 -0.0004
## 150 0.4934 nan 0.1000 -0.0005
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3005 nan 0.1000 0.0370
## 2 1.2320 nan 0.1000 0.0305
## 3 1.1705 nan 0.1000 0.0271
## 4 1.1086 nan 0.1000 0.0306
## 5 1.0618 nan 0.1000 0.0219
## 6 1.0189 nan 0.1000 0.0191
## 7 0.9766 nan 0.1000 0.0188
## 8 0.9329 nan 0.1000 0.0196
## 9 0.8956 nan 0.1000 0.0156
## 10 0.8648 nan 0.1000 0.0139
## 20 0.7012 nan 0.1000 0.0039
## 40 0.5853 nan 0.1000 0.0000
## 60 0.5414 nan 0.1000 0.0005
## 80 0.5040 nan 0.1000 -0.0005
## 100 0.4717 nan 0.1000 -0.0010
## 120 0.4471 nan 0.1000 -0.0007
## 140 0.4250 nan 0.1000 -0.0001
## 150 0.4136 nan 0.1000 -0.0018
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3181 nan 0.1000 0.0326
## 2 1.2640 nan 0.1000 0.0253
## 3 1.2204 nan 0.1000 0.0217
## 4 1.1844 nan 0.1000 0.0171
## 5 1.1664 nan 0.1000 0.0077
## 6 1.1327 nan 0.1000 0.0138
## 7 1.1085 nan 0.1000 0.0103
## 8 1.0865 nan 0.1000 0.0117
## 9 1.0656 nan 0.1000 0.0099
## 10 1.0492 nan 0.1000 0.0074
## 20 0.9328 nan 0.1000 0.0036
## 40 0.8075 nan 0.1000 0.0013
## 60 0.7426 nan 0.1000 0.0005
## 80 0.7075 nan 0.1000 0.0000
## 100 0.6882 nan 0.1000 -0.0005
## 120 0.6736 nan 0.1000 -0.0007
## 140 0.6605 nan 0.1000 -0.0001
## 150 0.6541 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3004 nan 0.1000 0.0430
## 2 1.2292 nan 0.1000 0.0346
## 3 1.1715 nan 0.1000 0.0271
## 4 1.1282 nan 0.1000 0.0191
## 5 1.0861 nan 0.1000 0.0220
## 6 1.0467 nan 0.1000 0.0175
## 7 1.0157 nan 0.1000 0.0149
## 8 0.9910 nan 0.1000 0.0108
## 9 0.9722 nan 0.1000 0.0078
## 10 0.9493 nan 0.1000 0.0091
## 20 0.8168 nan 0.1000 0.0042
## 40 0.7112 nan 0.1000 -0.0017
## 60 0.6597 nan 0.1000 -0.0005
## 80 0.6302 nan 0.1000 -0.0025
## 100 0.5962 nan 0.1000 -0.0006
## 120 0.5712 nan 0.1000 -0.0006
## 140 0.5514 nan 0.1000 -0.0006
## 150 0.5418 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2998 nan 0.1000 0.0416
## 2 1.2254 nan 0.1000 0.0354
## 3 1.1591 nan 0.1000 0.0304
## 4 1.1062 nan 0.1000 0.0258
## 5 1.0612 nan 0.1000 0.0208
## 6 1.0256 nan 0.1000 0.0175
## 7 0.9873 nan 0.1000 0.0162
## 8 0.9524 nan 0.1000 0.0151
## 9 0.9282 nan 0.1000 0.0117
## 10 0.9098 nan 0.1000 0.0062
## 20 0.7586 nan 0.1000 0.0028
## 40 0.6501 nan 0.1000 -0.0001
## 60 0.5922 nan 0.1000 -0.0009
## 80 0.5534 nan 0.1000 -0.0001
## 100 0.5209 nan 0.1000 -0.0008
## 120 0.4939 nan 0.1000 -0.0001
## 140 0.4702 nan 0.1000 -0.0010
## 150 0.4607 nan 0.1000 -0.0015
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3271 nan 0.1000 0.0274
## 2 1.2811 nan 0.1000 0.0233
## 3 1.2386 nan 0.1000 0.0190
## 4 1.2057 nan 0.1000 0.0146
## 5 1.1791 nan 0.1000 0.0126
## 6 1.1544 nan 0.1000 0.0121
## 7 1.1382 nan 0.1000 0.0066
## 8 1.1192 nan 0.1000 0.0088
## 9 1.0988 nan 0.1000 0.0091
## 10 1.0829 nan 0.1000 0.0069
## 20 0.9521 nan 0.1000 0.0038
## 40 0.8169 nan 0.1000 0.0028
## 60 0.7413 nan 0.1000 0.0010
## 80 0.6980 nan 0.1000 0.0009
## 100 0.6719 nan 0.1000 -0.0008
## 120 0.6540 nan 0.1000 0.0000
## 140 0.6403 nan 0.1000 -0.0007
## 150 0.6349 nan 0.1000 -0.0011
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3078 nan 0.1000 0.0362
## 2 1.2544 nan 0.1000 0.0250
## 3 1.1990 nan 0.1000 0.0258
## 4 1.1484 nan 0.1000 0.0229
## 5 1.1092 nan 0.1000 0.0171
## 6 1.0754 nan 0.1000 0.0144
## 7 1.0464 nan 0.1000 0.0141
## 8 1.0198 nan 0.1000 0.0131
## 9 0.9915 nan 0.1000 0.0134
## 10 0.9707 nan 0.1000 0.0097
## 20 0.8185 nan 0.1000 0.0045
## 40 0.6891 nan 0.1000 0.0005
## 60 0.6370 nan 0.1000 -0.0003
## 80 0.6002 nan 0.1000 0.0003
## 100 0.5704 nan 0.1000 -0.0006
## 120 0.5507 nan 0.1000 -0.0016
## 140 0.5319 nan 0.1000 -0.0012
## 150 0.5220 nan 0.1000 -0.0010
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3040 nan 0.1000 0.0352
## 2 1.2362 nan 0.1000 0.0320
## 3 1.1796 nan 0.1000 0.0277
## 4 1.1281 nan 0.1000 0.0244
## 5 1.0877 nan 0.1000 0.0160
## 6 1.0445 nan 0.1000 0.0198
## 7 1.0147 nan 0.1000 0.0115
## 8 0.9843 nan 0.1000 0.0122
## 9 0.9559 nan 0.1000 0.0123
## 10 0.9338 nan 0.1000 0.0082
## 20 0.7602 nan 0.1000 0.0008
## 40 0.6410 nan 0.1000 0.0003
## 60 0.5914 nan 0.1000 0.0001
## 80 0.5495 nan 0.1000 -0.0013
## 100 0.5185 nan 0.1000 -0.0008
## 120 0.4918 nan 0.1000 -0.0012
## 140 0.4682 nan 0.1000 -0.0015
## 150 0.4594 nan 0.1000 -0.0023
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3236 nan 0.1000 0.0301
## 2 1.2744 nan 0.1000 0.0244
## 3 1.2337 nan 0.1000 0.0179
## 4 1.1959 nan 0.1000 0.0180
## 5 1.1639 nan 0.1000 0.0146
## 6 1.1398 nan 0.1000 0.0119
## 7 1.1180 nan 0.1000 0.0095
## 8 1.0981 nan 0.1000 0.0067
## 9 1.0803 nan 0.1000 0.0070
## 10 1.0663 nan 0.1000 0.0049
## 20 0.9484 nan 0.1000 0.0041
## 40 0.8242 nan 0.1000 0.0011
## 60 0.7558 nan 0.1000 -0.0003
## 80 0.7128 nan 0.1000 -0.0003
## 100 0.6859 nan 0.1000 0.0004
## 120 0.6701 nan 0.1000 -0.0009
## 140 0.6587 nan 0.1000 -0.0005
## 150 0.6536 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3089 nan 0.1000 0.0370
## 2 1.2499 nan 0.1000 0.0256
## 3 1.1983 nan 0.1000 0.0247
## 4 1.1523 nan 0.1000 0.0203
## 5 1.1145 nan 0.1000 0.0180
## 6 1.0755 nan 0.1000 0.0167
## 7 1.0419 nan 0.1000 0.0119
## 8 1.0116 nan 0.1000 0.0138
## 9 0.9858 nan 0.1000 0.0114
## 10 0.9656 nan 0.1000 0.0086
## 20 0.8250 nan 0.1000 0.0042
## 40 0.7081 nan 0.1000 0.0011
## 60 0.6514 nan 0.1000 0.0003
## 80 0.6225 nan 0.1000 -0.0013
## 100 0.5996 nan 0.1000 -0.0005
## 120 0.5760 nan 0.1000 -0.0011
## 140 0.5546 nan 0.1000 -0.0006
## 150 0.5473 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3052 nan 0.1000 0.0377
## 2 1.2361 nan 0.1000 0.0312
## 3 1.1788 nan 0.1000 0.0260
## 4 1.1322 nan 0.1000 0.0232
## 5 1.0829 nan 0.1000 0.0230
## 6 1.0478 nan 0.1000 0.0148
## 7 1.0088 nan 0.1000 0.0179
## 8 0.9742 nan 0.1000 0.0155
## 9 0.9476 nan 0.1000 0.0113
## 10 0.9206 nan 0.1000 0.0116
## 20 0.7667 nan 0.1000 0.0035
## 40 0.6583 nan 0.1000 -0.0015
## 60 0.6044 nan 0.1000 -0.0001
## 80 0.5624 nan 0.1000 -0.0014
## 100 0.5327 nan 0.1000 -0.0005
## 120 0.5066 nan 0.1000 -0.0006
## 140 0.4799 nan 0.1000 -0.0014
## 150 0.4653 nan 0.1000 0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3189 nan 0.1000 0.0334
## 2 1.2657 nan 0.1000 0.0246
## 3 1.2187 nan 0.1000 0.0201
## 4 1.1798 nan 0.1000 0.0176
## 5 1.1479 nan 0.1000 0.0141
## 6 1.1217 nan 0.1000 0.0128
## 7 1.0990 nan 0.1000 0.0113
## 8 1.0855 nan 0.1000 0.0056
## 9 1.0725 nan 0.1000 0.0060
## 10 1.0517 nan 0.1000 0.0085
## 20 0.9304 nan 0.1000 0.0036
## 40 0.7992 nan 0.1000 0.0018
## 60 0.7232 nan 0.1000 0.0012
## 80 0.6745 nan 0.1000 0.0003
## 100 0.6456 nan 0.1000 0.0000
## 120 0.6250 nan 0.1000 -0.0009
## 140 0.6120 nan 0.1000 -0.0005
## 150 0.6073 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3046 nan 0.1000 0.0398
## 2 1.2360 nan 0.1000 0.0330
## 3 1.1763 nan 0.1000 0.0263
## 4 1.1304 nan 0.1000 0.0223
## 5 1.0919 nan 0.1000 0.0167
## 6 1.0606 nan 0.1000 0.0154
## 7 1.0330 nan 0.1000 0.0112
## 8 1.0053 nan 0.1000 0.0115
## 9 0.9837 nan 0.1000 0.0084
## 10 0.9630 nan 0.1000 0.0086
## 20 0.8019 nan 0.1000 0.0027
## 40 0.6677 nan 0.1000 0.0014
## 60 0.6199 nan 0.1000 0.0001
## 80 0.5944 nan 0.1000 -0.0006
## 100 0.5739 nan 0.1000 -0.0009
## 120 0.5593 nan 0.1000 -0.0006
## 140 0.5428 nan 0.1000 -0.0010
## 150 0.5352 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2974 nan 0.1000 0.0418
## 2 1.2293 nan 0.1000 0.0346
## 3 1.1697 nan 0.1000 0.0284
## 4 1.1211 nan 0.1000 0.0239
## 5 1.0779 nan 0.1000 0.0227
## 6 1.0388 nan 0.1000 0.0182
## 7 0.9998 nan 0.1000 0.0180
## 8 0.9672 nan 0.1000 0.0150
## 9 0.9417 nan 0.1000 0.0106
## 10 0.9192 nan 0.1000 0.0105
## 20 0.7377 nan 0.1000 0.0036
## 40 0.6180 nan 0.1000 -0.0005
## 60 0.5785 nan 0.1000 -0.0011
## 80 0.5488 nan 0.1000 -0.0009
## 100 0.5260 nan 0.1000 -0.0016
## 120 0.5008 nan 0.1000 -0.0006
## 140 0.4790 nan 0.1000 -0.0010
## 150 0.4671 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3271 nan 0.1000 0.0296
## 2 1.2749 nan 0.1000 0.0244
## 3 1.2361 nan 0.1000 0.0178
## 4 1.2020 nan 0.1000 0.0164
## 5 1.1761 nan 0.1000 0.0126
## 6 1.1499 nan 0.1000 0.0102
## 7 1.1273 nan 0.1000 0.0086
## 8 1.1083 nan 0.1000 0.0076
## 9 1.0891 nan 0.1000 0.0072
## 10 1.0727 nan 0.1000 0.0062
## 20 0.9456 nan 0.1000 0.0038
## 40 0.8105 nan 0.1000 0.0016
## 60 0.7409 nan 0.1000 0.0015
## 80 0.7017 nan 0.1000 -0.0015
## 100 0.6756 nan 0.1000 -0.0006
## 120 0.6525 nan 0.1000 0.0006
## 140 0.6386 nan 0.1000 -0.0003
## 150 0.6342 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3066 nan 0.1000 0.0395
## 2 1.2436 nan 0.1000 0.0312
## 3 1.1983 nan 0.1000 0.0212
## 4 1.1500 nan 0.1000 0.0241
## 5 1.1086 nan 0.1000 0.0199
## 6 1.0690 nan 0.1000 0.0162
## 7 1.0380 nan 0.1000 0.0138
## 8 1.0108 nan 0.1000 0.0118
## 9 0.9867 nan 0.1000 0.0106
## 10 0.9681 nan 0.1000 0.0082
## 20 0.8157 nan 0.1000 0.0054
## 40 0.6921 nan 0.1000 0.0017
## 60 0.6354 nan 0.1000 0.0011
## 80 0.6046 nan 0.1000 -0.0011
## 100 0.5806 nan 0.1000 -0.0003
## 120 0.5565 nan 0.1000 -0.0002
## 140 0.5310 nan 0.1000 -0.0005
## 150 0.5228 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3044 nan 0.1000 0.0420
## 2 1.2378 nan 0.1000 0.0324
## 3 1.1812 nan 0.1000 0.0267
## 4 1.1293 nan 0.1000 0.0225
## 5 1.0809 nan 0.1000 0.0230
## 6 1.0419 nan 0.1000 0.0158
## 7 1.0034 nan 0.1000 0.0177
## 8 0.9752 nan 0.1000 0.0121
## 9 0.9468 nan 0.1000 0.0132
## 10 0.9251 nan 0.1000 0.0102
## 20 0.7451 nan 0.1000 0.0048
## 40 0.6328 nan 0.1000 -0.0004
## 60 0.5785 nan 0.1000 -0.0003
## 80 0.5383 nan 0.1000 -0.0010
## 100 0.5090 nan 0.1000 -0.0011
## 120 0.4809 nan 0.1000 -0.0010
## 140 0.4563 nan 0.1000 -0.0014
## 150 0.4468 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3193 nan 0.1000 0.0325
## 2 1.2653 nan 0.1000 0.0272
## 3 1.2212 nan 0.1000 0.0222
## 4 1.1851 nan 0.1000 0.0180
## 5 1.1524 nan 0.1000 0.0154
## 6 1.1231 nan 0.1000 0.0141
## 7 1.0999 nan 0.1000 0.0113
## 8 1.0801 nan 0.1000 0.0096
## 9 1.0647 nan 0.1000 0.0066
## 10 1.0479 nan 0.1000 0.0071
## 20 0.9156 nan 0.1000 0.0041
## 40 0.7693 nan 0.1000 0.0027
## 60 0.6910 nan 0.1000 0.0005
## 80 0.6435 nan 0.1000 -0.0005
## 100 0.6119 nan 0.1000 -0.0002
## 120 0.5897 nan 0.1000 -0.0004
## 140 0.5767 nan 0.1000 -0.0001
## 150 0.5715 nan 0.1000 -0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2943 nan 0.1000 0.0412
## 2 1.2353 nan 0.1000 0.0293
## 3 1.1738 nan 0.1000 0.0294
## 4 1.1306 nan 0.1000 0.0195
## 5 1.0929 nan 0.1000 0.0190
## 6 1.0489 nan 0.1000 0.0200
## 7 1.0158 nan 0.1000 0.0160
## 8 0.9872 nan 0.1000 0.0130
## 9 0.9621 nan 0.1000 0.0135
## 10 0.9337 nan 0.1000 0.0132
## 20 0.7680 nan 0.1000 0.0067
## 40 0.6228 nan 0.1000 0.0002
## 60 0.5680 nan 0.1000 0.0005
## 80 0.5379 nan 0.1000 -0.0012
## 100 0.5199 nan 0.1000 -0.0006
## 120 0.4972 nan 0.1000 -0.0013
## 140 0.4787 nan 0.1000 -0.0006
## 150 0.4693 nan 0.1000 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2913 nan 0.1000 0.0461
## 2 1.2141 nan 0.1000 0.0358
## 3 1.1515 nan 0.1000 0.0313
## 4 1.0971 nan 0.1000 0.0253
## 5 1.0438 nan 0.1000 0.0257
## 6 1.0006 nan 0.1000 0.0193
## 7 0.9644 nan 0.1000 0.0165
## 8 0.9250 nan 0.1000 0.0167
## 9 0.8975 nan 0.1000 0.0121
## 10 0.8697 nan 0.1000 0.0119
## 20 0.6851 nan 0.1000 0.0057
## 40 0.5667 nan 0.1000 -0.0002
## 60 0.5147 nan 0.1000 -0.0001
## 80 0.4839 nan 0.1000 0.0005
## 100 0.4564 nan 0.1000 -0.0027
## 120 0.4318 nan 0.1000 -0.0008
## 140 0.4126 nan 0.1000 -0.0011
## 150 0.4055 nan 0.1000 -0.0014
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3196 nan 0.1000 0.0326
## 2 1.2679 nan 0.1000 0.0262
## 3 1.2229 nan 0.1000 0.0226
## 4 1.1857 nan 0.1000 0.0188
## 5 1.1501 nan 0.1000 0.0157
## 6 1.1208 nan 0.1000 0.0123
## 7 1.0984 nan 0.1000 0.0102
## 8 1.0809 nan 0.1000 0.0063
## 9 1.0603 nan 0.1000 0.0086
## 10 1.0408 nan 0.1000 0.0087
## 20 0.9191 nan 0.1000 0.0047
## 40 0.7926 nan 0.1000 0.0014
## 60 0.7283 nan 0.1000 0.0007
## 80 0.6879 nan 0.1000 -0.0001
## 100 0.6628 nan 0.1000 -0.0008
## 120 0.6486 nan 0.1000 -0.0000
## 140 0.6359 nan 0.1000 -0.0010
## 150 0.6316 nan 0.1000 -0.0012
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3039 nan 0.1000 0.0385
## 2 1.2389 nan 0.1000 0.0331
## 3 1.1834 nan 0.1000 0.0244
## 4 1.1385 nan 0.1000 0.0218
## 5 1.0949 nan 0.1000 0.0198
## 6 1.0588 nan 0.1000 0.0154
## 7 1.0281 nan 0.1000 0.0130
## 8 1.0005 nan 0.1000 0.0105
## 9 0.9765 nan 0.1000 0.0116
## 10 0.9490 nan 0.1000 0.0127
## 20 0.8043 nan 0.1000 0.0023
## 40 0.6887 nan 0.1000 0.0001
## 60 0.6382 nan 0.1000 -0.0002
## 80 0.6050 nan 0.1000 0.0009
## 100 0.5788 nan 0.1000 -0.0003
## 120 0.5583 nan 0.1000 -0.0008
## 140 0.5415 nan 0.1000 -0.0013
## 150 0.5345 nan 0.1000 -0.0010
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2927 nan 0.1000 0.0446
## 2 1.2158 nan 0.1000 0.0362
## 3 1.1576 nan 0.1000 0.0279
## 4 1.1122 nan 0.1000 0.0214
## 5 1.0709 nan 0.1000 0.0196
## 6 1.0286 nan 0.1000 0.0179
## 7 0.9881 nan 0.1000 0.0156
## 8 0.9536 nan 0.1000 0.0155
## 9 0.9264 nan 0.1000 0.0117
## 10 0.9023 nan 0.1000 0.0073
## 20 0.7412 nan 0.1000 0.0043
## 40 0.6384 nan 0.1000 -0.0004
## 60 0.5932 nan 0.1000 -0.0007
## 80 0.5537 nan 0.1000 -0.0002
## 100 0.5218 nan 0.1000 -0.0009
## 120 0.4936 nan 0.1000 -0.0013
## 140 0.4689 nan 0.1000 -0.0005
## 150 0.4573 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3184 nan 0.1000 0.0284
## 2 1.2703 nan 0.1000 0.0246
## 3 1.2279 nan 0.1000 0.0197
## 4 1.1922 nan 0.1000 0.0157
## 5 1.1620 nan 0.1000 0.0140
## 6 1.1352 nan 0.1000 0.0097
## 7 1.1153 nan 0.1000 0.0106
## 8 1.0951 nan 0.1000 0.0094
## 9 1.0777 nan 0.1000 0.0075
## 10 1.0610 nan 0.1000 0.0075
## 20 0.9365 nan 0.1000 0.0030
## 40 0.8075 nan 0.1000 0.0018
## 60 0.7447 nan 0.1000 -0.0001
## 80 0.7091 nan 0.1000 0.0004
## 100 0.6861 nan 0.1000 -0.0002
## 120 0.6723 nan 0.1000 -0.0015
## 140 0.6612 nan 0.1000 -0.0006
## 150 0.6563 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2997 nan 0.1000 0.0385
## 2 1.2334 nan 0.1000 0.0303
## 3 1.1791 nan 0.1000 0.0264
## 4 1.1329 nan 0.1000 0.0225
## 5 1.0953 nan 0.1000 0.0177
## 6 1.0610 nan 0.1000 0.0159
## 7 1.0351 nan 0.1000 0.0116
## 8 1.0111 nan 0.1000 0.0099
## 9 0.9851 nan 0.1000 0.0112
## 10 0.9646 nan 0.1000 0.0086
## 20 0.8207 nan 0.1000 0.0040
## 40 0.7036 nan 0.1000 0.0003
## 60 0.6604 nan 0.1000 -0.0015
## 80 0.6289 nan 0.1000 -0.0005
## 100 0.6026 nan 0.1000 -0.0003
## 120 0.5783 nan 0.1000 -0.0022
## 140 0.5605 nan 0.1000 -0.0004
## 150 0.5521 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2972 nan 0.1000 0.0395
## 2 1.2237 nan 0.1000 0.0371
## 3 1.1623 nan 0.1000 0.0290
## 4 1.1083 nan 0.1000 0.0272
## 5 1.0653 nan 0.1000 0.0195
## 6 1.0267 nan 0.1000 0.0180
## 7 0.9938 nan 0.1000 0.0150
## 8 0.9671 nan 0.1000 0.0119
## 9 0.9371 nan 0.1000 0.0143
## 10 0.9114 nan 0.1000 0.0104
## 20 0.7536 nan 0.1000 0.0040
## 40 0.6542 nan 0.1000 -0.0009
## 60 0.6067 nan 0.1000 0.0002
## 80 0.5703 nan 0.1000 -0.0020
## 100 0.5392 nan 0.1000 -0.0011
## 120 0.5148 nan 0.1000 -0.0012
## 140 0.4924 nan 0.1000 -0.0011
## 150 0.4819 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3213 nan 0.1000 0.0306
## 2 1.2724 nan 0.1000 0.0236
## 3 1.2313 nan 0.1000 0.0209
## 4 1.1955 nan 0.1000 0.0175
## 5 1.1651 nan 0.1000 0.0134
## 6 1.1386 nan 0.1000 0.0123
## 7 1.1172 nan 0.1000 0.0103
## 8 1.0971 nan 0.1000 0.0085
## 9 1.0806 nan 0.1000 0.0061
## 10 1.0640 nan 0.1000 0.0076
## 20 0.9503 nan 0.1000 0.0041
## 40 0.8226 nan 0.1000 0.0006
## 60 0.7537 nan 0.1000 0.0004
## 80 0.7128 nan 0.1000 0.0007
## 100 0.6878 nan 0.1000 -0.0002
## 120 0.6686 nan 0.1000 -0.0003
## 140 0.6533 nan 0.1000 -0.0003
## 150 0.6474 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3027 nan 0.1000 0.0387
## 2 1.2411 nan 0.1000 0.0280
## 3 1.1834 nan 0.1000 0.0260
## 4 1.1391 nan 0.1000 0.0210
## 5 1.1036 nan 0.1000 0.0175
## 6 1.0738 nan 0.1000 0.0162
## 7 1.0472 nan 0.1000 0.0129
## 8 1.0222 nan 0.1000 0.0100
## 9 0.9979 nan 0.1000 0.0107
## 10 0.9769 nan 0.1000 0.0089
## 20 0.8318 nan 0.1000 0.0055
## 40 0.6960 nan 0.1000 0.0009
## 60 0.6419 nan 0.1000 0.0000
## 80 0.6075 nan 0.1000 -0.0005
## 100 0.5845 nan 0.1000 -0.0001
## 120 0.5600 nan 0.1000 0.0001
## 140 0.5426 nan 0.1000 -0.0003
## 150 0.5336 nan 0.1000 -0.0007
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2979 nan 0.1000 0.0406
## 2 1.2238 nan 0.1000 0.0319
## 3 1.1657 nan 0.1000 0.0280
## 4 1.1155 nan 0.1000 0.0237
## 5 1.0694 nan 0.1000 0.0187
## 6 1.0349 nan 0.1000 0.0161
## 7 1.0049 nan 0.1000 0.0143
## 8 0.9749 nan 0.1000 0.0135
## 9 0.9501 nan 0.1000 0.0113
## 10 0.9261 nan 0.1000 0.0108
## 20 0.7660 nan 0.1000 0.0054
## 40 0.6521 nan 0.1000 0.0006
## 60 0.5998 nan 0.1000 -0.0015
## 80 0.5589 nan 0.1000 -0.0010
## 100 0.5260 nan 0.1000 -0.0010
## 120 0.4977 nan 0.1000 -0.0006
## 140 0.4733 nan 0.1000 -0.0004
## 150 0.4594 nan 0.1000 0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3104 nan 0.1000 0.0343
## 2 1.2561 nan 0.1000 0.0277
## 3 1.2100 nan 0.1000 0.0220
## 4 1.1724 nan 0.1000 0.0173
## 5 1.1399 nan 0.1000 0.0165
## 6 1.1117 nan 0.1000 0.0140
## 7 1.0901 nan 0.1000 0.0105
## 8 1.0672 nan 0.1000 0.0086
## 9 1.0494 nan 0.1000 0.0086
## 10 1.0327 nan 0.1000 0.0075
## 20 0.9184 nan 0.1000 0.0016
## 40 0.7957 nan 0.1000 0.0018
## 60 0.7389 nan 0.1000 0.0002
## 80 0.7049 nan 0.1000 -0.0005
## 100 0.6889 nan 0.1000 0.0003
## 120 0.6759 nan 0.1000 0.0000
## 140 0.6661 nan 0.1000 -0.0006
## 150 0.6622 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3043 nan 0.1000 0.0393
## 2 1.2377 nan 0.1000 0.0299
## 3 1.1840 nan 0.1000 0.0256
## 4 1.1326 nan 0.1000 0.0222
## 5 1.0954 nan 0.1000 0.0165
## 6 1.0609 nan 0.1000 0.0160
## 7 1.0297 nan 0.1000 0.0141
## 8 1.0047 nan 0.1000 0.0113
## 9 0.9835 nan 0.1000 0.0108
## 10 0.9614 nan 0.1000 0.0081
## 20 0.8146 nan 0.1000 0.0035
## 40 0.6987 nan 0.1000 0.0006
## 60 0.6562 nan 0.1000 -0.0017
## 80 0.6282 nan 0.1000 -0.0008
## 100 0.6050 nan 0.1000 -0.0012
## 120 0.5820 nan 0.1000 -0.0010
## 140 0.5605 nan 0.1000 -0.0007
## 150 0.5522 nan 0.1000 -0.0007
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.2967 nan 0.1000 0.0404
## 2 1.2294 nan 0.1000 0.0338
## 3 1.1676 nan 0.1000 0.0290
## 4 1.1117 nan 0.1000 0.0258
## 5 1.0694 nan 0.1000 0.0196
## 6 1.0315 nan 0.1000 0.0167
## 7 0.9970 nan 0.1000 0.0152
## 8 0.9627 nan 0.1000 0.0150
## 9 0.9397 nan 0.1000 0.0099
## 10 0.9118 nan 0.1000 0.0133
## 20 0.7600 nan 0.1000 0.0047
## 40 0.6488 nan 0.1000 -0.0017
## 60 0.5998 nan 0.1000 -0.0001
## 80 0.5633 nan 0.1000 -0.0011
## 100 0.5317 nan 0.1000 -0.0007
## 120 0.5046 nan 0.1000 -0.0003
## 140 0.4821 nan 0.1000 -0.0012
## 150 0.4727 nan 0.1000 -0.0015
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 1.3016 nan 0.1000 0.0384
## 2 1.2490 nan 0.1000 0.0251
## 3 1.1930 nan 0.1000 0.0281
## 4 1.1436 nan 0.1000 0.0218
## 5 1.1045 nan 0.1000 0.0173
## 6 1.0685 nan 0.1000 0.0168
## 7 1.0370 nan 0.1000 0.0142
## 8 1.0125 nan 0.1000 0.0101
## 9 0.9897 nan 0.1000 0.0097
## 10 0.9720 nan 0.1000 0.0087
## 20 0.8233 nan 0.1000 0.0031
## 40 0.7088 nan 0.1000 -0.0007
## 60 0.6670 nan 0.1000 -0.0010
## 80 0.6445 nan 0.1000 -0.0007
## 100 0.6310 nan 0.1000 -0.0010
##
## [1] "svmRadial"
## [1] "svmRadialCost"
## [1] "svmRadialSigma"
Did you train all of the models? Yes
sapply or map to create a matrix of predictions for the test set. You should end up with a matrix with length(mnist_27$test$y) rows and length(models).What are the dimensions of the matrix of predictions? - Number of rows: 200 - Number of columns: 23
## [1] 200 23
## glm lda naive_bayes svmLinear gamboost
## 0.750 0.750 0.795 0.755 0.825
## gamLoess qda knn kknn loclda
## 0.845 0.820 0.840 0.790 0.850
## gam rf ranger wsrf Rborist
## 0.845 0.780 0.785 0.795 0.775
## avNNet mlp monmlp adaboost gbm
## 0.840 0.755 0.825 0.785 0.835
## svmRadial svmRadialCost svmRadialSigma
## 0.845 0.845 0.820
## [1] 0.8065217
What is the accuracy of the ensemble? - 0.845
votes <- rowMeans(pred == "7")
y_hat <- ifelse(votes > 0.5, "7", "2")
mean(y_hat == mnist_27$test$y)## [1] 0.84
How many of the individual methods do better than the ensemble? 1
Which individual methods perform better than the ensemble?
loclda## [1] 5
## [1] "gamLoess" "loclda" "gam" "svmRadial"
## [5] "svmRadialCost"
What is the mean accuracy of the new estimates? - 0.8123296
## [1] 0.8123296
What is the accuracy of the ensemble now? - 0.85
ind <- acc_hat >= 0.8
votes <- rowMeans(pred[,ind] == "7")
y_hat <- ifelse(votes>=0.5, 7, 2)
mean(y_hat == mnist_27$test$y)## [1] 0.85
## [1] 189 500
We want to get an idea of which observations are close to each other, but, as you can see from the dimensions, the predictors are 500-dimensional, making plotting difficult. Plot the first two principal components with color representing tissue type.
Which tissue is in a cluster by itself?
liverpc <- prcomp(tissue_gene_expression$x)
data.frame(pc_1 = pc$x[,1], pc_2 = pc$x[,2],
tissue = tissue_gene_expression$y) %>%
ggplot(aes(pc_1, pc_2, color = tissue)) +
geom_point()What is the correlation? - 0.5969088
avgs <- rowMeans(tissue_gene_expression$x)
data.frame(pc_1 = pc$x[,1], avg = avgs,
tissue = tissue_gene_expression$y) %>%
ggplot(aes(avgs, pc_1, color = tissue)) +
geom_point()## [1] 0.5969088
#BLANK
x <- with(tissue_gene_expression, sweep(x, 1, rowMeans(x)))
pc <- prcomp(x)
data.frame(pc_1 = pc$x[,1], pc_2 = pc$x[,2],
tissue = tissue_gene_expression$y) %>%
ggplot(aes(pc_1, pc_2, color = tissue)) +
geom_point()Which line of code should be used to replace #BLANK in the code block above?
A. x <- with(tissue_gene_expression, sweep(x, 1, mean(x)))
B. x <- sweep(x, 1, rowMeans(tissue_gene_expression$x))
C. x <- tissue_gene_expression$x - mean(tissue_gene_expression$x)
D. x <- with(tissue_gene_expression, sweep(x, 1, rowMeans(x)))
For the 7th PC, which two tissues have the greatest median difference?
liverplacentasummary function.How many PCs are required to reach a cumulative percent variance explained greater than 50%? - 3
The following exercises all work with the movielens data, which can be loaded using the following code:
Q1. Compute the number of ratings for each movie and then plot it against the year the movie came out. Use the square root transformation on the counts.
What year has the highest median number of ratings? - 1995
movielens %>% group_by(movieId) %>%
summarize(n = n(), year = as.character(first(year))) %>%
qplot(year, n, data = ., geom = "boxplot") +
coord_trans(y = "sqrt") +
theme(axis.text.x = element_text(angle = 90, hjust = 1))Q2. We see that, on average, movies that came out after 1993 get more ratings. We also see that with newer movies, starting in 1993, the number of ratings decreases with year: the more recent a movie is, the less time users have had to rate it.
Among movies that came out in 1993 or later, what are the 25 movies with the most ratings per year, and what is the average rating of each of the top 25 movies?
What is the average rating for the movie The Shawshank Redemption? - 4.49
What is the average number of ratings per year for the movie Forrest Gump? - 14.2
movielens %>%
filter(year >= 1993) %>%
group_by(movieId) %>%
summarize(n = n(), years = 2018 - first(year),
title = title[1],
rating = mean(rating)) %>%
mutate(rate = n/years) %>%
top_n(25, rate) %>%
arrange(desc(rate)) Q3. From the table constructed in Q2, we can see that the most frequently rated movies tend to have above average ratings. This is not surprising: more people watch popular movies. To confirm this, stratify the post-1993 movies by ratings per year and compute their average ratings. Make a plot of average rating versus ratings per year and show an estimate of the trend.
What type of trend do you observe?
A. There is no relationship between how often a movie is rated and its average rating.
B. Movies with very few and very many ratings have the highest average ratings.
C. The more often a movie is rated, the higher its average rating.
D. The more often a movie is rated, the lower its average rating.
movielens %>%
filter(year >= 1993) %>%
group_by(movieId) %>%
summarize(n = n(), years = 2017 - first(year),
title = title[1],
rating = mean(rating)) %>%
mutate(rate = n/years) %>%
ggplot(aes(rate, rating)) +
geom_point() +
geom_smooth()Q4. Suppose you are doing a predictive analysis in which you need to fill in the missing ratings with some value.
Given your observations in the exercise in Q3, which of the following strategies would be most appropriate?
A. Fill in the missing values with the average rating across all movies.
B. Fill in the missing values with 0.
C. Fill in the missing values with a lower value than the average rating across all movies.
D. Fill in the value with a higher value than the average rating across all movies.
E. None of the above.
Explanation: Because a lack of ratings is associated with lower ratings, it would be most appropriate to fill in the missing value with a lower value than the average. You should try out different values to fill in the missing value and evaluate prediction in a test set.
Q5. The movielens dataset also includes a time stamp. This variable represents the time and data in which the rating was provided. The units are seconds since January 1, 1970. Create a new column date with the date.
Which code correctly creates this new column?
A. movielens <- mutate(movielens, date = as.date(timestamp))
B. movielens <- mutate(movielens, date = as_datetime(timestamp))
C. movielens <- mutate(movielens, date = as.data(timestamp))
D. movielens <- mutate(movielens, date = timestamp)
Q6. Compute the average rating for each week and plot this average against day. Hint: use the round_date function before you group_by.
What type of trend do you observe?
A. There is strong evidence of a time effect on average rating.
B. There is some evidence of a time effect on average rating.
C. There is no evidence of a time effect on average rating.
movielens %>% mutate(date = round_date(date, unit = "week")) %>%
group_by(date) %>%
summarize(rating = mean(rating)) %>%
ggplot(aes(date, rating)) +
geom_point() +
geom_smooth()Q7. Consider again the plot you generated in Q6.
If we define \(\ d_{u,i}\) as the day for user’s \(\ u\) rating of movie \(\ i\), which of the following models is most appropriate?
A. \(\ Y_{u,i} = \mu + b_i + b_u + d_{u,i} + \varepsilon_{u,i}\)
B. \(\ Y_{u,i} = \mu + b_i + b_u + d_{u,i}\beta + \varepsilon_{u,i}\)
C. \(\ Y_{u,i} = \mu + b_i + b_u + d_{u,i}\beta_i + \varepsilon_{u,i}\)
D. \(\ Y_{u,i} = \mu + b_i + b_u + f(d_{u,i}) + \varepsilon_{u,i}\), with \(\ f\) a smooth function of \(\ d_{u,i}\)
Q8. The movielens data also has a genres column. This column includes every genre that applies to the movie. Some movies fall under several genres. Define a category as whatever combination appears in this column. Keep only categories with more than 1,000 ratings. Then compute the average and standard error for each category. Plot these as error bar plots.
Which genre has the lowest average rating? - Comedy
movielens %>% group_by(genres) %>%
summarize(n = n(), avg = mean(rating), se = sd(rating)/sqrt(n())) %>%
filter(n >= 1000) %>%
mutate(genres = reorder(genres, avg)) %>%
ggplot(aes(x = genres, y = avg, ymin = avg - 2*se, ymax = avg + 2*se)) +
geom_point() +
geom_errorbar() +
theme(axis.text.x = element_text(angle = 90, hjust = 1))Q9. The plot you generated in Q8 shows strong evidence of a genre effect. Consider this plot as you answer the following question.
If we define \(\ g_{u,i}\) as the day for user’s \(\ u\) rating of movie \(\ i\), which of the following models is most appropriate?
C. \(\ Y_{u,i} = \mu + b_i + b_u + \sum{k=1}^K x_{u,i} \beta_k + \varepsilon_{u,i}\), with x^k_{u,i}$ = 1 if \(\ g_{u,i}\) is genre \(\ k\)The exercises in Q1-Q8 work with a simulated dataset for 100 schools. This pre-exercise setup walks you through the code needed to simulate the dataset.
An education expert is advocating for smaller schools. The expert bases this recommendation on the fact that among the best performing schools, many are small schools. Let’s simulate a dataset for 100 schools. First, let’s simulate the number of students in each school, using the following code:
Now let’s assign a true quality for each school that is completely independent from size. This is the parameter we want to estimate in our analysis. The true quality can be assigned using the following code:
## [1] 67 94
We can see the top 10 schools using this code:
Now let’s have the students in the school take a test. There is random variability in test taking, so we will simulate the test scores as normally distributed with the average determined by the school quality with a standard deviation of 30 percentage points. This code will simulate the test scores:
set.seed(1)
scores <- sapply(1:nrow(schools), function(i){
scores <- rnorm(schools$size[i], schools$quality[i], 30)
scores
})
schools <- schools %>% mutate(score = sapply(scores, mean))Q1. What are the top schools based on the average score? Show just the ID, size, and the average score.
Report the ID of the top school and average score of the 10th school.
What is the ID of the top school? - 67
What is the average score of the 10th school? - 88.09490
Q2. Compare the median school size to the median school size of the top 10 schools based on the score.
What is the median school size overall? - 261 - What is the median school size of the of the top 10 schools based on the score? - 136
## [1] 261
## [1] 136
Q3. According to this analysis, it appears that small schools produce better test scores than large schools. Four out of the top 10 schools have 100 or fewer students. But how can this be? We constructed the simulation so that quality and size were independent. Repeat the exercise for the worst 10 schools.
What is the median school size of the bottom 10 schools based on the score? - 146
## [1] 261
## [1] 146
Q4. From this analysis, we see that the worst schools are also small. Plot the average score versus school size to see what’s going on. Highlight the top 10 schools based on the true quality. Use a log scale to transform for the size.
What do you observe?
The standard error of the score has larger variability when the school is smaller, which is why both the best and the worst schools are more likely to be small.schools %>% ggplot(aes(size, score)) +
geom_point(alpha = 0.5) +
geom_point(data = filter(schools, rank<=10), col = 2) Q5. Let’s use regularization to pick the best schools. Remember regularization shrinks deviations from the average towards 0. To apply regularization here, we first need to define the overall average for all schools, using the following code:
Then, we need to define, for each school, how it deviates from that average.
Write code that estimates the score above the average for each school but dividing by \(\ n + \alpha\) instead of \(\ n\), with \(\ n\) the schools size and \(\ \alpha\) a regularization parameters. Try \(\ \alpha = 25\).
What is the ID of the top school with regularization? - 91
What is the regularized score of the 10th school? - 86.90070
alpha <- 25
score_reg <- sapply(scores, function(x) overall + sum(x-overall)/(length(x)+alpha))
schools %>% mutate(score_reg = score_reg) %>%
top_n(10, score_reg) %>% arrange(desc(score_reg))Q6. Notice that this improves things a bit. The number of small schools that are not highly ranked is now lower. Is there a better \(\ \alpha\)? Find the \(\ \alpha\) that minimizes the RMSE = \(\ \frac{1}{100} \sum_{i=1}^{100} (\mbox{quality} - \mbox{estimate})^2\).
What value of gives the minimum RMSE? - 128
alphas <- seq(10,250)
rmse <- sapply(alphas, function(alpha){
score_reg <- sapply(scores, function(x) overall+sum(x-overall)/(length(x)+alpha))
mean((score_reg - schools$quality)^2)
})
plot(alphas, rmse)## [1] 128
Q7. Rank the schools based on the average obtained with the best \(\ \alpha\). Note that no small school is incorrectly included.
What is the ID of the top school now? - 91
What is the regularized average score of the 10th school now? - 85.35335
alpha <- alphas[which.min(rmse)]
score_reg <- sapply(scores, function(x)
overall+sum(x-overall)/(length(x)+alpha))
schools %>% mutate(score_reg = score_reg) %>%
top_n(10, score_reg) %>% arrange(desc(score_reg))Q8. A common mistake made when using regularization is shrinking values towards 0 that are not centered around 0. For example, if we don’t subtract the overall average before shrinking, we actually obtain a very similar result. Confirm this by re-running the code from the exercise in Q6 but without removing the overall mean.
What value of \(\ \alpha\) gives the minimum RMSE here? - 10
alphas <- seq(10,250)
rmse <- sapply(alphas, function(alpha){
score_reg <- sapply(scores, function(x) sum(x)/(length(x)+alpha))
mean((score_reg - schools$quality)^2)
})
plot(alphas, rmse)## [1] 10
In this exercise set, we will be covering a topic useful for understanding matrix factorization: the singular value decomposition (SVD). SVD is a mathematical result that is widely used in machine learning, both in practice and to understand the mathematical properties of some algorithms. This is a rather advanced topic and to complete this exercise set you will have to be familiar with linear algebra concepts such as matrix multiplication, orthogonal matrices, and diagonal matrices.
The SVD tells us that we can decompose an \(\ N\times p\) matrix \(\ Y\) with \(\ p < N\) as \(\ Y = U D V^{\top}\)
with \(\ U\) and \(\ V\) orthogonal of dimensions \(\ N\times p\) and \(\ p\times p\) respectively and\(\ D a\) pp$ diagonal matrix with the values of the diagonal decreasing: \(\ d_{1,1} \geq d_{2,2} \geq \dots d_{p,p}\)
In this exercise, we will see one of the ways that this decomposition can be useful. To do this, we will construct a dataset that represents grade scores for 100 students in 24 different subjects. The overall average has been removed so this data represents the percentage point each student received above or below the average test score. So a 0 represents an average grade (C), a 25 is a high grade (A+), and a -25 represents a low grade (F). You can simulate the data like this:
set.seed(1987)
n <- 100
k <- 8
Sigma <- 64 * matrix(c(1, .75, .5, .75, 1, .5, .5, .5, 1), 3, 3)
m <- MASS::mvrnorm(n, rep(0, 3), Sigma)
m <- m[order(rowMeans(m), decreasing = TRUE),]
y <- m %x% matrix(rep(1, k), nrow = 1) + matrix(rnorm(matrix(n*k*3)), n, k*3)
colnames(y) <- c(paste(rep("Math",k), 1:k, sep="_"),
paste(rep("Science",k), 1:k, sep="_"),
paste(rep("Arts",k), 1:k, sep="_"))Our goal is to describe the student performances as succinctly as possible. For example, we want to know if these test results are all just a random independent numbers. Are all students just about as good? Does being good in one subject imply you will be good in another? How does the SVD help with all this? We will go step by step to show that with just three relatively small pairs of vectors we can explain much of the variability in this 100 x 24 dataset.
Q1. You can visualize the 24 test scores for the 100 students by plotting an image:
my_image <- function(x, zlim = range(x), ...){
colors = rev(RColorBrewer::brewer.pal(9, "RdBu"))
cols <- 1:ncol(x)
rows <- 1:nrow(x)
image(cols, rows, t(x[rev(rows),,drop=FALSE]), xaxt = "n", yaxt = "n",
xlab="", ylab="", col = colors, zlim = zlim, ...)
abline(h=rows + 0.5, v = cols + 0.5)
axis(side = 1, cols, colnames(x), las = 2)
}
my_image(y)How would you describe the data based on this figure?
The students that test well are at the top of the image and there seem to be three groupings by subject.Q2. You can examine the correlation between the test scores directly like this:
## [1] 0.4855371 1.0000000
Which of the following best describes what you see?
There is correlation among all tests, but higher if the tests are in science and math and even higher within each subject.Q3. Remember that orthogonality means that \(\ U^{\top}U\) and \(\ V^{\top}V\) are equal to the identity matrix. This implies that we can also rewrite the decomposition as
\(\ Y V = U D \mbox{ or } U^{\top}Y = D V^{\top}\)
We can think of \(\ YV\) and $ U^{}V as two transformations of \(\ Y\) that preserve the total variability of \(\ Y\) since \(\ U\) and \(\ V\) are orthogonal.
Use the function svd`` to compute the SVD ofy```. This function will return \(\ U, V\), and the diagonal entries of \(\ D\).
## [1] "d" "u" "v"
You can check that the SVD works by typing:
## [1] 5.329071e-14
Compute the sum of squares of the columns of \(\ Y\) and store them in ss_y. Then compute the sum of squares of columns of the transformed YV and store them in ss_yv. Confirm that sum(ss_y) is equal to sum(ss_yv).
## [1] 175434.6
## [1] 175434.6
What is the value of sum(ss_y) (and also the value of sum(ss_yv))? - 175435
Q4. We see that the total sum of squares is preserved. This is because \(\ V\) is orthogonal. Now to start understanding how \(\ YV\) is useful, plot ss_y against the column number and then do the same for ss_yv.
What do you observe?
A. ss_y and ss_yv are decreasing and close to 0 for the 4th column and beyond.
B. ss_yv is decreasing and close to 0 for the 4th column and beyond.
C. ss_y is decreasing and close to 0 for the 4th column and beyond.
D. There is no discernible pattern to either ss_y or ss_yv.
Q5. Note that we didn’t have to compute ss_yv because we already have the answer. How? Remember that \(\ YV = UD\) and because \(\ U\) is orthogonal, we know that the sum of squares of the columns of \(\ UD\) are the diagonal entries of \(\ D\) squared. Confirm this by plotting the square root of ss_yv versus the diagonal entries of \(\ D\).
What else is equal to \(\ YV\)?
UDQ6. So from the above we know that the sum of squares of the columns of \(\ Y\) (the total sum of squares) adds up to the sum of s$d^2 and that the transformation \(\ YV\) gives us columns with sums of squares equal to s$d^2. Now compute the percent of the total variability that is explained by just the first three columns of \(\ YV\).
What proportion of the total variability is explained by the first three columns of \(\ YV\)? - 0.988
## [1] 0.9877922
Q7. Before we continue, let’s show a useful computational trick to avoid creating the matrix diag(s$d). To motivate this, we note that if we write out in its columns \(\ [U_1, U_2, \dots, U_p]\) then \(\ UD\) is equal to \(\ UD = [ U_1 d_{1,1}, U_2 d_{2,2}, \dots, U_p d_{p,p}]\)
Use the sweep function to compute \(\ UD\) without constructing diag(s$d) or using matrix multiplication.
Which code is correct?
## [1] TRUE
A. identical(t(s$u %*% diag(s$d)), sweep(s$u, 2, s$d, FUN = "*"))
B. identical(s$u %*% diag(s$d), sweep(s$u, 2, s$d, FUN = "*"))
C. identical(s$u %*% t(diag(s$d)), sweep(s$u, 2, s$d, FUN = "*"))
D. identical(s$u %*% diag(s$d), sweep(s$u, 2, s, FUN = "*"))
Q8. We know that \(\ U_1 d_{1,1}\), the first column of \(\ UD\), has the most variability of all the columns of \(\ UD\). Earlier we looked at an image of \(\ Y\) using my_image(y), in which we saw that the student to student variability is quite large and that students that are good in one subject tend to be good in all. This implies that the average (across all subjects) for each student should explain a lot of the variability. Compute the average score for each student, plot it against \(\ U_1 d_{1,1}\), and describe what you find.
What do you observe?
A. There is no relationship between the average score for each student and .
B. There is a linearly decreasing relationship between the average score for each student and \(\ U_1 d_{1,1}\).
C. There is a linearly increasing relationship between the average score for each student and \(\ U_1 d_{1,1}\).
D. There is an exponentially increasing relationship between the average score for each student and \(\ U_1 d_{1,1}\).
E. There is an exponentially decreasing relationship between the average score for each student and \(\ U_1 d_{1,1}\).
Q9. We note that the signs in SVD are arbitrary because:
\(\ U D V^{\top} = (-U) D (-V)^{\top}\)
With this in mind we see that the first column of \(\ UD\) is almost identical to the average score for each student except for the sign.
This implies that multiplying \(\ Y\) by the first column of \(\ V\) must be performing a similar operation to taking the average. Make an image plot of \(\ V\) and describe the first column relative to others and how this relates to taking an average.
How does the first column relate to the others, and how does this relate to taking an average?
A. The first column is very variable, which implies that the first column of YV is the sum of the rows of Y multiplied by some non-constant function, and is thus not proportional to an average.
B. The first column is very variable, which implies that the first column of YV is the sum of the rows of Y multiplied by some non-constant function, and is thus proportional to an average.
C. The first column is very close to being a constant, which implies that the - first column of YV is the sum of the rows of Y multiplied by some constant, and is thus proportional to an average.
D. The first three columns are all very close to being a constant, which implies that these columns are the sum of the rows of Y multiplied by some constant, and are thus proportional to an average.
Q10. We already saw that we can rewrite \(\ UD\) as \(\ U_1 d_{1,1} + U_2 d_{2,2} + \dots + U_p d_{p,p}\)
with \(\ U_j\) the j-th column of \(\ U\). This implies that we can rewrite the entire SVD as:
\(\ Y = U_1 d_{1,1} V_1 ^{\top} + U_2 d_{2,2} V_2 ^{\top} + \dots + U_p d_{p,p} V_p ^{\top}\)
with $ V_j $the jth column of \(\ V\). Plot \(\ U_1\), then plot \(\ V_1^{\top}\) using the same range for the y-axis limits, then make an image of \(\ U_1 d_{1,1} V_1 ^{\top}\) and compare it to the image of \(\ Y\). Hint: use the my_image function defined above. Use the drop=FALSE argument to assure the subsets of matrices are matrices.
Q11. We see that with just a vector of length 100, a scalar, and a vector of length 24, we can actually come close to reconstructing the a 100 x 24 matrix. This is our first matrix factorization:
\(\ Y \approx d_{1,1} U_1 V_1^{\top}\)
In the exercise in Q6, we saw how to calculate the percent of total variability explained. However, our approximation only explains the observation that good students tend to be good in all subjects. Another aspect of the original data that our approximation does not explain was the higher similarity we observed within subjects. We can see this by computing the difference between our approximation and original data and then computing the correlations. You can see this by running this code:
resid <- y - with(s,(u[, 1, drop=FALSE]*d[1]) %*% t(v[, 1, drop=FALSE]))
my_image(cor(resid), zlim = c(-1,1))
axis(side = 2, 1:ncol(y), rev(colnames(y)), las = 2)Now that we have removed the overall student effect, the correlation plot reveals that we have not yet explained the within subject correlation nor the fact that math and science are closer to each other than to the arts. So let’s explore the second column of the SVD.
Repeat the previous exercise (Q10) but for the second column: Plot \(\ U_2\), then plot \(\ V_2^{\top}\) using the same range for the y-axis limits, then make an image of \(\ U_2 d_{2,2} V_2 ^{\top}\) and compare it to the image of `resid .
Q12. The second column clearly relates to a student’s difference in ability in math/science versus the arts. We can see this most clearly from the plot of s$v[,2]. Adding the matrix we obtain with these two columns will help with our approximation:
\(\ Y \approx d_{1,1} U_1 V_1^{\top} + d_{2,2} U_2 V_2^{\top}\)
We know it will explain sum(s$d[1:2]^2)/sum(s$d^2) * 100 percent of the total variability. We can compute new residuals like this:
resid <- y - with(s,sweep(u[, 1:2], 2, d[1:2], FUN="*") %*% t(v[, 1:2]))
my_image(cor(resid), zlim = c(-1,1))
axis(side = 2, 1:ncol(y), rev(colnames(y)), las = 2)and see that the structure that is left is driven by the differences between math and science. Confirm this by first plotting \(\ U_3\), then plotting \(\ V_3^{\top}\) using the same range for the y-axis limits, then making an image of \(\ U_3 d_{3,3} V_3 ^{\top}\) and comparing it to the image of resid.
Q13. The third column clearly relates to a student’s difference in ability in math and science. We can see this most clearly from the plot of s$v[,3]. Adding the matrix we obtain with these two columns will help with our approximation:
\(\ Y \approx d_{1,1} U_1 V_1^{\top} + d_{2,2} U_2 V_2^{\top} + d_{3,3} U_3 V_3^{\top}\)
We know it will explain: sum(s\(d[1:3]^2)/sum(s\)d^2) * 100 percent of the total variability. We can compute new residuals like this:
resid <- y - with(s,sweep(u[, 1:3], 2, d[1:3], FUN="*") %*% t(v[, 1:3]))
my_image(cor(resid), zlim = c(-1,1))
axis(side = 2, 1:ncol(y), rev(colnames(y)), las = 2)We no longer see structure in the residuals: they seem to be independent of each other. This implies that we can describe the data with the following model:
\(\ Y = d_{1,1} U_1 V_1^{\top} + d_{2,2} U_2 V_2^{\top} + d_{3,3} U_3 V_3^{\top} + \varepsilon\)
with \(\ \varepsilon\) a matrix of independent identically distributed errors. This model is useful because we summarize of 100 x 24 observations with 3 X (100+24+1) = 375 numbers.
Furthermore, the three components of the model have useful interpretations:
1 - the overall ability of a student 2 - the difference in ability between the math/sciences and arts 3 - the remaining differences between the three subjects.
The sizes \(\ d_{1,1}, d_{2,2}\) and \(\ d_{3,3\)} tell us the variability explained by each component. Finally, note that the components \(\ d_{j,j} U_j V_j^{\top}\) are equivalent to the jth principal component.
Finish the exercise by plotting an image of \(\ Y\), an image of \(\ d_{1,1} U_1 V_1^{\top} + d_{2,2} U_2 V_2^{\top} + d_{3,3} U_3 V_3^{\top}\) and an image of the residuals, all with the same zlim.
These exercises will work with the tissue_gene_expression dataset, which is part of the dslabs package.
Q1. Load the tissue_gene_expression dataset. Remove the row means and compute the distance between each observation. Store the result in d.
Which of the following lines of code correctly does this computation?
A. d <- dist(tissue_gene_expression$x)
B. d <- dist(rowMeans(tissue_gene_expression$x))
C. d <- dist(rowMeans(tissue_gene_expression$y))
D. d <- dist(tissue_gene_expression$x - rowMeans(tissue_gene_expression$x))
Q2. Make a hierarchical clustering plot and add the tissue types as labels.
You will observe multiple branches.
Which tissue type is in the branch farthest to the left?
liverQ3. Run a k-means clustering on the data with \(\ K = 7\). Make a table comparing the identified clusters to the actual tissue types. Run the algorithm several times to see how the answer changes.
What do you observe for the clustering of the liver tissue?
A. Liver is always classified in a single cluster.
B. Liver is never classified in a single cluster.
C. Liver is classified in a single cluster roughly 20% of the time and in more than one cluster roughly 80% of the time.
D. Liver is classified in a single cluster roughly 80% of the time and in more than one cluster roughly 20% of the time.
##
## cerebellum colon endometrium hippocampus kidney liver placenta
## 1 0 34 1 0 0 0 6
## 2 0 0 0 0 0 6 0
## 3 0 0 14 0 36 0 0
## 4 36 0 0 29 0 0 0
## 5 0 0 0 0 0 14 0
## 6 0 0 0 0 0 6 0
## 7 2 0 0 2 3 0 0
Q4. Select the 50 most variable genes. Make sure the observations show up in the columns, that the predictor are centered, and add a color bar to show the different tissue types. Hint: use the ColSideColors argument to assign colors. Also, use col = RColorBrewer::brewer.pal(11, “RdBu”) for a better use of colors.
Part of the code is provided for you here:
Which line of code should replace #BLANK in the code above?
library(RColorBrewer)
library(matrixStats)
sds <- matrixStats::colSds(tissue_gene_expression$x)
ind <- order(sds, decreasing = TRUE)[1:50]
colors <- brewer.pal(7, "Dark2")[as.numeric(tissue_gene_expression$y)]
#BLANK:
heatmap(t(tissue_gene_expression$x[,ind]), col = brewer.pal(11, "RdBu"), scale = "row", ColSideColors = colors)A. heatmap(t(tissue_gene_expression$x[,ind]), col = brewer.pal(11, "RdBu"), scale = "row", ColSideColors = colors)
B. heatmap(t(tissue_gene_expression$x[,ind]), col = brewer.pal(11, "RdBu"), scale = "row", ColSideColors = rev(colors))
C. heatmap(t(tissue_gene_expression$x[,ind]), col = brewer.pal(11, "RdBu"), scale = "row", ColSideColors = sample(colors))
D. heatmap(t(tissue_gene_expression$x[,ind]), col = brewer.pal(11, "RdBu"), scale = "row", ColSideColors = sample(colors))