library(gamlss)
library(ggsci)
library(viridis)
library(car)
library(sjPlot)
library(mosaic)
library(tidyverse)
getwd()
## [1] "/Users/mike.xiao/Documents/GitHub/NIMH_project_repo"
#get physical activity person summaries from GGIR part 5
part5 <- read_csv('Data/HBN/actigraphy/GGIR_summaries/part5_personsummary_WW_L50M125V500_T5A5.csv')
plotdata <- part5 %>% dplyr::select(ID, ACC_day_mg_pla, ACC_spt_mg_pla, ACC_day_spt_mg_pla, dur_day_total_IN_min_pla, dur_day_total_LIG_min_pla,
dur_day_total_MOD_min_pla, dur_day_total_VIG_min_pla)
Load in GGIR Part5 subject level summaries, picked out these physical activity variables of interest:
| Variable name | Description |
|---|---|
| ACC_day_mg_pla | Average acceleration for activity outside sleep window across all days, calculated from 5s epoch data |
| ACC_spt_mg_pla | Average acceleration for activity within sleep window across all days, calculated from 5s epoch data |
| ACC_day_spt_mg_pla | Average acceleration across entire period of wear across all days, calculated from 5s epoch data |
| dur_day_total_IN_min_pla | Average duration spent in inactivity (<50mg) per day outside of sleep window |
| dur_day_total_LIG_min_pla | Average duration spent in light activity (50-125mg) per day outside of sleep window |
| dur_day_total_MOD_min_pla | Average duration spent in moderate activity (125-500mg) per day outside of sleep window |
| dur_day_total_VIG_min_pla | Average duration spent in vigorous activity (>500mg) within a day outside of sleep window |
Make MVPA duration variable by adding moderate and vigorous duration variables:
#create MVPA duration variable
plotdata <- plotdata %>% mutate(dur_day_total_MVPA = dur_day_total_MOD_min_pla + dur_day_total_VIG_min_pla)
Load and join basic phenotypic variables and pubertal status:
#get age and sex from HBN demo data
demo <- read_csv('Data/HBN/pheno/Basic_Demos.csv')
demo <- demo %>% select(EID, Age, Sex) %>% rename(ID = EID)
#get pubertal status from male and female datasets
pubertal_m <- read_csv('Data/HBN/pheno/PPS_M_20200814.csv', na = c('NULL'))
pubertal_f <- read_csv('Data/HBN/pheno/PPS_F_20200814.csv', na = c('NULL'))
pubertal <- bind_rows(pubertal_m, pubertal_f)
pubertal <- pubertal %>% rename(ID = EID)
#join age, sex, pubertal status to activity data
plotdata <- left_join(plotdata, demo)
plotdata <- left_join(plotdata, pubertal)
909 subjects passed GGIR part5.
missing_demo <- plotdata %>% filter(is.na(Sex))
plotdata <- filter(plotdata, ! ID %in% missing_demo$ID)
866 of these subjects have sex and age variables.
missing_puberty <- plotdata %>% filter(is.na(PPS_M_Score) & is.na(PPS_F_Score))
plotdata <- filter(plotdata, ! ID %in% missing_puberty$ID)
694 of these subjects have sex, age, and pubertal status variables.
#recode sex variable into character
plotdata <- plotdata %>%
mutate(
Sex = as.factor(Sex),
Sex = recode(Sex, `0` = 'Male', `1` = 'Female'))
Checking age and sex in sample:
table(plotdata$Sex)
##
## Male Female
## 439 255
#554M 313F (63.9% male)
summary(plotdata$Age)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.036 7.746 9.836 10.456 12.737 21.419
#Min. 1st Qu. Median Mean 3rd Qu. Max.
#5.036 7.535 9.510 10.293 12.481 21.482
Subset data to subjects who have at least 3 days of 95% wear:
#load in 3 days of 95% wear data
act10 <- read_csv('Data/HBN/actigraphy/epoch/HBN_actigraphy_600s_95wear_3day.csv')
goodIDs <- unique(act10$ID)
#filter to subjects with at least 3 days of 95% wear
plotdata <- filter(plotdata, ID %in% goodIDs)
519 of subjects have sex, age, and pubertal status, and 3 days of 95% wear. This sample is used for all further analysis shown below.
Check how age and sex compares in this sample.
table(plotdata$Sex)
##
## Male Female
## 329 190
#329M #190F (63.4% male)
summary(plotdata$Age)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.036 7.683 9.516 10.275 12.427 21.419
# Min. 1st Qu. Median Mean 3rd Qu. Max.
#5.036 7.683 9.516 10.275 12.427 21.419
Following guidelines on data dictionary:
Females are already on a 1-5 scale.
plotdata <- plotdata %>%
mutate(PPS_M_Score = ifelse(PPS_M_Score == 3, 1,
ifelse(PPS_M_Score %in% c(4,5), 2,
ifelse(PPS_M_Score %in% c(6,7,8), 3,
ifelse(PPS_M_Score %in% c(9,10, 11), 4,
ifelse(PPS_M_Score == 12, 5, NA))))),
PPS_Score_Combined = ifelse(is.na(PPS_M_Score), PPS_F_Score, PPS_M_Score))
Made a mistake earlier, I defined mLAC as log(1 + ACC_day_mg_pla). However, log(mean(X)) =/= mean(log(X)). Can’t recover mean(log(X)) from mean(X).
ACC_day_mg_pla (renamed as mAC for “mean activity count”) is already normally distributed, no need to log transform.
hist(plotdata$ACC_day_mg_pla)
Some notes about choice of activity count variable:
TLAC value depends on the epoch the person uses to sum. So if he uses 5 second means, the value would be 12 times as great as if he used 60s means.
Note however, that mean AC calculated for the whole day using 5 second and 60 second epochs would be the same.
Function to identify outliers based on median +/- threshold * IQR
find_outliers <- function(x, threshold = 2.22) {
qtiles = summary(x)
median = qtiles[[3]]
iqr = qtiles[[5]] - qtiles[[2]]
print(paste0('median = ', median))
print(paste0('iqr = ', iqr))
lb <- median - threshold * iqr
ub <- median + threshold * iqr
print(paste0('lowerbound = ', lb, ', upperbound = ', ub))
return(ifelse(x > ub | x < lb, 1, 0))
}
Remove outliers for mAC based on median +/- 3 * IQR:
age_mAC <- plotdata %>%
dplyr::select(ID, Sex, Age, ACC_day_mg_pla, dur_day_total_IN_min_pla, dur_day_total_LIG_min_pla,
dur_day_total_MVPA, PPS_M_Score, PPS_F_Score, PPS_Score_Combined) %>%
rename(mAC = ACC_day_mg_pla,
sed_dur = dur_day_total_IN_min_pla,
LA_dur = dur_day_total_LIG_min_pla,
MVPA_dur = dur_day_total_MVPA) %>%
mutate(mAC_outliers = find_outliers(mAC, 3))
## [1] "median = 57.8642203"
## [1] "iqr = 27.5556727"
## [1] "lowerbound = -24.8027978, upperbound = 140.5312384"
age_mAC_outliers <- age_mAC %>% filter(mAC_outliers == 1)
cleaned_data <- age_mAC %>% filter(mAC_outliers == 0)
Found and removed 1 outlier.
#function to run LMS regression, then extract and append fitted percentile values into current dataframe
tidy_cent <- function(data, xvar, yvar, cent) {
f1 = as.formula(paste0(yvar, "~pb(", xvar, ")"))
f2 = as.formula(paste0("~pb(", xvar, ")"))
#run lms.bct quantile regression
model = gamlss(f1, sigma.formula = f2, family=BCT, data=data)
xvar = data[[xvar]]
oxvar = xvar[order(xvar)]
#extract fitted values for each quantile
#qtiles <- cent %>% map_dfc(setNames, object = list(numeric()))
qtiles = vector("list", length(cent))
names(qtiles) = cent
for (i in cent) {
qfit = qBCT(i/100,
mu = fitted(model, "mu")[order(xvar)],
sigma = fitted(model, "sigma")[order(xvar)],
nu = fitted(model, "nu")[order(xvar)],
tau = fitted(model, "tau")[order(xvar)])
qtiles[[as.character(i)]] <- qfit
}
qtile_df = bind_cols(qtiles)
ID_df = tibble(ID = data$ID[order(xvar)])
#dataframe with fitted quantile values
result = cbind(ID_df, qtile_df)
#append to current dataframe
return(left_join(data, result, by = 'ID'))
}
age_PPS <- cleaned_data %>% select(ID, Sex, Age, PPS_Score_Combined)
age_PPS_male <- tidy_cent(filter(age_PPS, Sex == 'Male'), xvar = "PPS_Score_Combined", yvar = "Age", cent = c(5, 10, 25, 50, 75, 90, 95))
## GAMLSS-RS iteration 1: Global Deviance = 1354.898
## GAMLSS-RS iteration 2: Global Deviance = 1349.733
## GAMLSS-RS iteration 3: Global Deviance = 1348.92
## GAMLSS-RS iteration 4: Global Deviance = 1348.809
## GAMLSS-RS iteration 5: Global Deviance = 1348.795
## GAMLSS-RS iteration 6: Global Deviance = 1348.79
## GAMLSS-RS iteration 7: Global Deviance = 1348.79
age_PPS_female <- tidy_cent(filter(age_PPS, Sex == 'Female'), xvar = "PPS_Score_Combined", yvar = "Age", cent = c(5, 10, 25, 50, 75, 90, 95))
## GAMLSS-RS iteration 1: Global Deviance = 749.5505
## GAMLSS-RS iteration 2: Global Deviance = 749.0072
## GAMLSS-RS iteration 3: Global Deviance = 749.1831
## GAMLSS-RS iteration 4: Global Deviance = 749.4601
## GAMLSS-RS iteration 5: Global Deviance = 749.705
## GAMLSS-RS iteration 6: Global Deviance = 749.9052
## GAMLSS-RS iteration 7: Global Deviance = 750.0645
## GAMLSS-RS iteration 8: Global Deviance = 750.1731
## GAMLSS-RS iteration 9: Global Deviance = 750.1927
## GAMLSS-RS iteration 10: Global Deviance = 750.1948
## GAMLSS-RS iteration 11: Global Deviance = 750.1952
age_PPS_long <- rbind(age_PPS_male, age_PPS_female) %>%
select(-Age) %>%
gather(4:10, key = percentile, value = Age) %>%
mutate(percentile = factor(percentile, levels = c(5, 10, 25, 50, 75, 90, 95)))
ggplot() +
geom_point(data = age_PPS, aes(x = PPS_Score_Combined, y = Age, color = Sex), position = position_jitter(), alpha = 0.5, size = 1) +
geom_line(data = age_PPS_long, aes(x = PPS_Score_Combined, y = Age, color = Sex, linetype = percentile), size = 0.7) +
theme_minimal(base_size = 12) +
guides(colour = guide_legend(reverse=T),
linetype = guide_legend(reverse=T)) +
scale_color_manual(values = c("#0D0887FF", "#7E03A8FF")) +
facet_wrap(~Sex, scales = 'free_x') +
ggtitle('PPS vs Age')
Trying another smoother.
## GAMLSS-RS iteration 1: Global Deviance = 2737.05
## GAMLSS-RS iteration 2: Global Deviance = 2731.531
## GAMLSS-RS iteration 3: Global Deviance = 2730.774
## GAMLSS-RS iteration 4: Global Deviance = 2730.805
## GAMLSS-RS iteration 5: Global Deviance = 2730.814
## GAMLSS-RS iteration 6: Global Deviance = 2730.815
## GAMLSS-RS iteration 7: Global Deviance = 2730.816
## GAMLSS-RS iteration 1: Global Deviance = 1464.543
## GAMLSS-RS iteration 2: Global Deviance = 1464.83
## GAMLSS-RS iteration 3: Global Deviance = 1465.385
## GAMLSS-RS iteration 4: Global Deviance = 1465.752
## GAMLSS-RS iteration 5: Global Deviance = 1466.048
## GAMLSS-RS iteration 6: Global Deviance = 1466.151
## GAMLSS-RS iteration 7: Global Deviance = 1466.165
## GAMLSS-RS iteration 8: Global Deviance = 1466.17
## GAMLSS-RS iteration 9: Global Deviance = 1466.171
## GAMLSS-RS iteration 10: Global Deviance = 1466.172
## GAMLSS-RS iteration 1: Global Deviance = 3791.756
## GAMLSS-RS iteration 2: Global Deviance = 3792.039
## GAMLSS-RS iteration 3: Global Deviance = 3792.081
## GAMLSS-RS iteration 4: Global Deviance = 3792.088
## GAMLSS-RS iteration 5: Global Deviance = 3792.09
## GAMLSS-RS iteration 6: Global Deviance = 3792.091
## GAMLSS-RS iteration 1: Global Deviance = 2170.475
## GAMLSS-RS iteration 2: Global Deviance = 2169.06
## GAMLSS-RS iteration 3: Global Deviance = 2168.914
## GAMLSS-RS iteration 4: Global Deviance = 2168.883
## GAMLSS-RS iteration 5: Global Deviance = 2168.874
## GAMLSS-RS iteration 6: Global Deviance = 2168.87
## GAMLSS-RS iteration 7: Global Deviance = 2168.867
## GAMLSS-RS iteration 8: Global Deviance = 2168.866
## GAMLSS-RS iteration 9: Global Deviance = 2168.865
## GAMLSS-RS iteration 1: Global Deviance = 3123.728
## GAMLSS-RS iteration 2: Global Deviance = 3122.456
## GAMLSS-RS iteration 3: Global Deviance = 3122.622
## GAMLSS-RS iteration 4: Global Deviance = 3122.816
## GAMLSS-RS iteration 5: Global Deviance = 3122.976
## GAMLSS-RS iteration 6: Global Deviance = 3123.075
## GAMLSS-RS iteration 7: Global Deviance = 3123.142
## GAMLSS-RS iteration 8: Global Deviance = 3123.197
## GAMLSS-RS iteration 9: Global Deviance = 3123.24
## GAMLSS-RS iteration 10: Global Deviance = 3123.273
## GAMLSS-RS iteration 11: Global Deviance = 3123.298
## GAMLSS-RS iteration 12: Global Deviance = 3123.317
## GAMLSS-RS iteration 13: Global Deviance = 3123.331
## GAMLSS-RS iteration 14: Global Deviance = 3123.341
## GAMLSS-RS iteration 15: Global Deviance = 3123.349
## GAMLSS-RS iteration 16: Global Deviance = 3123.354
## GAMLSS-RS iteration 17: Global Deviance = 3123.359
## GAMLSS-RS iteration 18: Global Deviance = 3123.362
## GAMLSS-RS iteration 19: Global Deviance = 3123.364
## GAMLSS-RS iteration 20: Global Deviance = 3123.365
## GAMLSS-RS iteration 1: Global Deviance = 1835.799
## GAMLSS-RS iteration 2: Global Deviance = 1840.707
## GAMLSS-RS iteration 3: Global Deviance = 1840.5
## GAMLSS-RS iteration 4: Global Deviance = 1840.443
## GAMLSS-RS iteration 5: Global Deviance = 1840.427
## GAMLSS-RS iteration 6: Global Deviance = 1840.422
## GAMLSS-RS iteration 7: Global Deviance = 1840.421
## GAMLSS-RS iteration 8: Global Deviance = 1840.421
## GAMLSS-RS iteration 1: Global Deviance = 3237.57
## GAMLSS-RS iteration 2: Global Deviance = 3231.779
## GAMLSS-RS iteration 3: Global Deviance = 3230.921
## GAMLSS-RS iteration 4: Global Deviance = 3230.821
## GAMLSS-RS iteration 5: Global Deviance = 3230.806
## GAMLSS-RS iteration 6: Global Deviance = 3230.806
## GAMLSS-RS iteration 1: Global Deviance = 1779.308
## GAMLSS-RS iteration 2: Global Deviance = 1781.167
## GAMLSS-RS iteration 3: Global Deviance = 1780.964
## GAMLSS-RS iteration 4: Global Deviance = 1780.832
## GAMLSS-RS iteration 5: Global Deviance = 1780.756
## GAMLSS-RS iteration 6: Global Deviance = 1780.708
## GAMLSS-RS iteration 7: Global Deviance = 1780.679
## GAMLSS-RS iteration 8: Global Deviance = 1780.66
## GAMLSS-RS iteration 9: Global Deviance = 1780.648
## GAMLSS-RS iteration 10: Global Deviance = 1780.64
## GAMLSS-RS iteration 11: Global Deviance = 1780.635
## GAMLSS-RS iteration 12: Global Deviance = 1780.631
## GAMLSS-RS iteration 13: Global Deviance = 1780.628
## GAMLSS-RS iteration 14: Global Deviance = 1780.626
## GAMLSS-RS iteration 15: Global Deviance = 1780.625
## GAMLSS-RS iteration 16: Global Deviance = 1780.624
NOTE: y-axis scale is free
##
## Male Female
## Q1 [-3 to 0] 91 80
## Q2 [0 to 0.67] 113 58
## Q3 [0.67 to 3] 122 50
Don’t know how to make these, learn about the models used to generate these coefficient surfaces.
Fitting 4 OLS models for each outcome across both genders.
## Age PPS_M_Score
## 2.998889 2.998889
## Age PPS_M_Score Age:PPS_M_Score
## 6.370316 17.161635 29.817177
## Age PPS_F_Score
## 3.556056 3.556056
## Age PPS_F_Score Age:PPS_F_Score
## 10.40104 13.63360 32.00549
| mAC | mAC | mAC | mAC | |||||
|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | p | Estimates | p | Estimates | p | Estimates | p |
| (Intercept) |
102.91 (97.16 – 108.66) |
<0.001 |
80.93 (77.23 – 84.64) |
<0.001 |
101.28 (94.95 – 107.60) |
<0.001 |
111.31 (98.94 – 123.68) |
<0.001 |
| Age |
-3.95 (-4.48 – -3.43) |
<0.001 |
-3.49 (-4.41 – -2.58) |
<0.001 |
-4.40 (-5.73 – -3.08) |
<0.001 | ||
| PPS_M_Score |
-10.21 (-11.92 – -8.50) |
<0.001 |
-1.68 (-4.41 – 1.05) |
0.226 |
-7.26 (-13.77 – -0.75) |
0.029 | ||
| Age * PPS_M_Score |
0.44 (-0.03 – 0.90) |
0.064 | ||||||
| Observations | 328 | 328 | 328 | 328 | ||||
| R2 / R2 adjusted | 0.400 / 0.398 | 0.298 / 0.296 | 0.402 / 0.399 | 0.409 / 0.403 | ||||
| mAC | mAC | mAC | mAC | |||||
|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | p | Estimates | p | Estimates | p | Estimates | p |
| (Intercept) |
83.88 (78.50 – 89.26) |
<0.001 |
69.75 (65.80 – 73.71) |
<0.001 |
83.44 (77.63 – 89.25) |
<0.001 |
83.98 (71.08 – 96.88) |
<0.001 |
| Age |
-3.01 (-3.51 – -2.51) |
<0.001 |
-2.85 (-3.79 – -1.91) |
<0.001 |
-2.91 (-4.53 – -1.29) |
<0.001 | ||
| PPS_F_Score |
-6.78 (-8.19 – -5.37) |
<0.001 |
-0.50 (-2.95 – 1.95) |
0.688 |
-0.69 (-5.50 – 4.12) |
0.777 | ||
| Age * PPS_F_Score |
0.02 (-0.39 – 0.43) |
0.927 | ||||||
| Observations | 190 | 190 | 190 | 190 | ||||
| R2 / R2 adjusted | 0.430 / 0.427 | 0.322 / 0.319 | 0.431 / 0.425 | 0.431 / 0.422 | ||||
## Age PPS_M_Score
## 2.998889 2.998889
## Age PPS_M_Score Age:PPS_M_Score
## 6.370316 17.161635 29.817177
## Age PPS_F_Score
## 3.556056 3.556056
## Age PPS_F_Score Age:PPS_F_Score
## 10.40104 13.63360 32.00549
| sed_dur | sed_dur | sed_dur | sed_dur | |||||
|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | p | Estimates | p | Estimates | p | Estimates | p |
| (Intercept) |
455.20 (426.93 – 483.47) |
<0.001 |
565.96 (547.80 – 584.11) |
<0.001 |
467.01 (435.97 – 498.05) |
<0.001 |
408.31 (347.77 – 468.86) |
<0.001 |
| Age |
20.32 (17.72 – 22.91) |
<0.001 |
16.99 (12.51 – 21.48) |
<0.001 |
22.32 (15.82 – 28.81) |
<0.001 | ||
| PPS_M_Score |
53.63 (45.27 – 61.99) |
<0.001 |
12.16 (-1.24 – 25.56) |
0.075 |
44.77 (12.91 – 76.63) |
0.006 | ||
| Age * PPS_M_Score |
-2.55 (-4.82 – -0.29) |
0.027 | ||||||
| Observations | 328 | 328 | 328 | 328 | ||||
| R2 / R2 adjusted | 0.421 / 0.419 | 0.328 / 0.326 | 0.426 / 0.423 | 0.435 / 0.430 | ||||
| sed_dur | sed_dur | sed_dur | sed_dur | |||||
|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | p | Estimates | p | Estimates | p | Estimates | p |
| (Intercept) |
484.64 (447.17 – 522.10) |
<0.001 |
562.05 (535.71 – 588.40) |
<0.001 |
494.33 (454.03 – 534.64) |
<0.001 |
555.00 (465.99 – 644.01) |
<0.001 |
| Age |
17.68 (14.21 – 21.16) |
<0.001 |
14.10 (7.56 – 20.65) |
<0.001 |
7.19 (-3.97 – 18.34) |
0.205 | ||
| PPS_F_Score |
42.05 (32.63 – 51.47) |
<0.001 |
10.98 (-6.03 – 27.99) |
0.204 |
-10.82 (-44.01 – 22.38) |
0.521 | ||
| Age * PPS_F_Score |
2.16 (-0.67 – 5.00) |
0.134 | ||||||
| Observations | 190 | 190 | 190 | 190 | ||||
| R2 / R2 adjusted | 0.349 / 0.345 | 0.292 / 0.288 | 0.354 / 0.347 | 0.362 / 0.352 | ||||
## Age PPS_M_Score
## 2.998889 2.998889
## Age PPS_M_Score Age:PPS_M_Score
## 6.370316 17.161635 29.817177
## Age PPS_F_Score
## 3.556056 3.556056
## Age PPS_F_Score Age:PPS_F_Score
## 10.40104 13.63360 32.00549
| LA_dur | LA_dur | LA_dur | LA_dur | |||||
|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | p | Estimates | p | Estimates | p | Estimates | p |
| (Intercept) |
213.56 (203.26 – 223.87) |
<0.001 |
182.22 (175.68 – 188.77) |
<0.001 |
214.38 (203.01 – 225.75) |
<0.001 |
238.26 (216.13 – 260.40) |
<0.001 |
| Age |
-5.29 (-6.24 – -4.35) |
<0.001 |
-5.52 (-7.16 – -3.88) |
<0.001 |
-7.69 (-10.06 – -5.31) |
<0.001 | ||
| PPS_M_Score |
-12.64 (-15.65 – -9.62) |
<0.001 |
0.84 (-4.07 – 5.75) |
0.737 |
-12.43 (-24.08 – -0.78) |
0.037 | ||
| Age * PPS_M_Score |
1.04 (0.21 – 1.87) |
0.014 | ||||||
| Observations | 328 | 328 | 328 | 328 | ||||
| R2 / R2 adjusted | 0.271 / 0.268 | 0.173 / 0.170 | 0.271 / 0.266 | 0.284 / 0.278 | ||||
| LA_dur | LA_dur | LA_dur | LA_dur | |||||
|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | p | Estimates | p | Estimates | p | Estimates | p |
| (Intercept) |
213.16 (199.45 – 226.87) |
<0.001 |
186.70 (176.84 – 196.55) |
<0.001 |
217.66 (202.95 – 232.37) |
<0.001 |
208.71 (176.06 – 241.36) |
<0.001 |
| Age |
-4.79 (-6.06 – -3.51) |
<0.001 |
-6.45 (-8.83 – -4.06) |
<0.001 |
-5.43 (-9.52 – -1.33) |
0.010 | ||
| PPS_F_Score |
-9.11 (-12.63 – -5.59) |
<0.001 |
5.09 (-1.12 – 11.30) |
0.107 |
8.31 (-3.87 – 20.48) |
0.180 | ||
| Age * PPS_F_Score |
-0.32 (-1.36 – 0.72) |
0.545 | ||||||
| Observations | 190 | 190 | 190 | 190 | ||||
| R2 / R2 adjusted | 0.227 / 0.222 | 0.122 / 0.117 | 0.237 / 0.229 | 0.239 / 0.226 | ||||
## Age PPS_M_Score
## 2.998889 2.998889
## Age PPS_M_Score Age:PPS_M_Score
## 6.370316 17.161635 29.817177
## Age PPS_F_Score
## 3.556056 3.556056
## Age PPS_F_Score Age:PPS_F_Score
## 10.40104 13.63360 32.00549
| MVPA_dur | MVPA_dur | MVPA_dur | MVPA_dur | |||||
|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | p | Estimates | p | Estimates | p | Estimates | p |
| (Intercept) |
174.40 (162.39 – 186.40) |
<0.001 |
139.39 (131.89 – 146.89) |
<0.001 |
171.84 (158.61 – 185.06) |
<0.001 |
188.78 (162.87 – 214.68) |
<0.001 |
| Age |
-6.29 (-7.40 – -5.19) |
<0.001 |
-5.57 (-7.48 – -3.66) |
<0.001 |
-7.11 (-9.89 – -4.33) |
<0.001 | ||
| PPS_M_Score |
-16.24 (-19.69 – -12.78) |
<0.001 |
-2.64 (-8.35 – 3.07) |
0.364 |
-12.05 (-25.68 – 1.58) |
0.083 | ||
| Age * PPS_M_Score |
0.74 (-0.23 – 1.71) |
0.136 | ||||||
| Observations | 328 | 328 | 328 | 328 | ||||
| R2 / R2 adjusted | 0.279 / 0.277 | 0.208 / 0.205 | 0.281 / 0.276 | 0.286 / 0.279 | ||||
| MVPA_dur | MVPA_dur | MVPA_dur | MVPA_dur | |||||
|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | p | Estimates | p | Estimates | p | Estimates | p |
| (Intercept) |
141.58 (129.55 – 153.60) |
<0.001 |
117.06 (108.44 – 125.68) |
<0.001 |
142.45 (129.46 – 155.44) |
<0.001 |
141.48 (112.62 – 170.34) |
<0.001 |
| Age |
-4.96 (-6.08 – -3.85) |
<0.001 |
-5.29 (-7.40 – -3.18) |
<0.001 |
-5.18 (-8.79 – -1.56) |
0.005 | ||
| PPS_F_Score |
-10.66 (-13.74 – -7.58) |
<0.001 |
0.99 (-4.50 – 6.47) |
0.723 |
1.33 (-9.43 – 12.10) |
0.807 | ||
| Age * PPS_F_Score |
-0.03 (-0.95 – 0.88) |
0.941 | ||||||
| Observations | 190 | 190 | 190 | 190 | ||||
| R2 / R2 adjusted | 0.291 / 0.287 | 0.198 / 0.194 | 0.291 / 0.284 | 0.291 / 0.280 | ||||