Identificar los valores de la función de probabilidad bajo la fórmula de distribución de Poisson.
library(ggplot2)
#source("../funciones/funciones.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")
Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.(Anderson et al., 2008)
Si se puede suponer que la probabilidad de llegada de los automóviles es la misma en cualesquiera de dos lapsos de la misma duración y si la llegada o no–llegada de un automóvil en cualquier lapso es independiente de la llegada o no–llegada de un automóvil en cualquier otro lapso, se puede aplicar la función de probabilidad de Poisson.
Dichas condiciones se satisfacen y en un análisis de datos pasados encuentra que el número promedio de automóviles que llegan en un lapso de 15 minutos es igual a 10;
Aquí la variable aleatoria es x número de automóviles que llegan en un lapso de 15 minutos.
prob <- round(f.prob.poisson(10, 5),4)
paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob, "%")
## [1] "La probabilidad de que sean exactamente 5 automóviles es de : 0.0378 %"
prob2 <- round(dpois(x = 5, lambda = 10),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2, "%")
## [1] "La probabilida de que sean exactamente 5 automóviles es de : 0.0378 %"
datos <- data.frame(x=1:20, f.prob.x = round(dpois(x = 1:20, lambda = 10),4))
datos <- cbind(datos, f.acum.x = cumsum(datos$f.prob.x))
datos
## x f.prob.x f.acum.x
## 1 1 0.0005 0.0005
## 2 2 0.0023 0.0028
## 3 3 0.0076 0.0104
## 4 4 0.0189 0.0293
## 5 5 0.0378 0.0671
## 6 6 0.0631 0.1302
## 7 7 0.0901 0.2203
## 8 8 0.1126 0.3329
## 9 9 0.1251 0.4580
## 10 10 0.1251 0.5831
## 11 11 0.1137 0.6968
## 12 12 0.0948 0.7916
## 13 13 0.0729 0.8645
## 14 14 0.0521 0.9166
## 15 15 0.0347 0.9513
## 16 16 0.0217 0.9730
## 17 17 0.0128 0.9858
## 18 18 0.0071 0.9929
## 19 19 0.0037 0.9966
## 20 20 0.0019 0.9985
ggplot(data = datos, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'black')
datos$f.acum[10]
## [1] 0.5831
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", datos$f.acum[10])
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es: 0.5831"
Regla de tres:
\[10=15\] \[?=3\]
Entonces, la probabilidad de $x4 llegadas en un lapso de 3 minutos con μ=2 está dada por la siguiente nueva función de probabilidad de Poisson.
\[f(x) = \frac{{e^{ - 2} 2^x }}{{x!}}\]
Entonces ….
prob <- round(dpois(x = 1, lambda = 2),4)
paste("La probabilidad cuando x = 1 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 1 y media igual a 2 es del: 27.07 %"
El valor de la esperanza media La esperanza es igual a: 10
La varianza es 10 y la desviación estándard es: 3.1623
Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con λ=5 (Walpole et al., 2012).
media <- 5
datos <- data.frame(x=0:20, f.prob.x = round(dpois(x = 0:20, lambda = media),8))
datos <- cbind(datos, f.acum.x = cumsum(datos$f.prob.x))
datos
## x f.prob.x f.acum.x
## 1 0 0.00673795 0.00673795
## 2 1 0.03368973 0.04042768
## 3 2 0.08422434 0.12465202
## 4 3 0.14037390 0.26502592
## 5 4 0.17546737 0.44049329
## 6 5 0.17546737 0.61596066
## 7 6 0.14622281 0.76218347
## 8 7 0.10444486 0.86662833
## 9 8 0.06527804 0.93190637
## 10 9 0.03626558 0.96817195
## 11 10 0.01813279 0.98630474
## 12 11 0.00824218 0.99454692
## 13 12 0.00343424 0.99798116
## 14 13 0.00132086 0.99930202
## 15 14 0.00047174 0.99977376
## 16 15 0.00015725 0.99993101
## 17 16 0.00004914 0.99998015
## 18 17 0.00001445 0.99999460
## 19 18 0.00000401 0.99999861
## 20 19 0.00000106 0.99999967
## 21 20 0.00000026 0.99999993
ggplot(data = datos, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
x <- 3
prob <- datos$f.acum.x[x+1]
paste("La probabiidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabiidad del valor de x<=3 es: 26.5026 %"
x <- 1
prob <- 1 - datos$f.acum.x[x+1]
paste("La probabiidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabiidad del valor de x>1 es: 95.9572 %"
En el caso 18 estamos trabando ejercicios de Poisson en los cuales emos podido sacar lo siguiente: En el ejercicio 1 nos piden la probabilidad de que sean exactamente 5 automóviles la cual nos dio como resultado un 0.0378% de igual forma nos piden lo que es la probabilidad de que sea x menor o igual a diez, la cual nos dio como resultado un 0.5831, otro de los incisos que nos piden es la probabilidad cuando x = 1 y media igual a 2 nos dio como un 27.07% finalmente los siguientes incisos nos piden lo que es El valor de la esperanza media La esperanza es igual a: 10 y La varianza es 10 y la desviación estándard es: 3.1623 Para el ejercicio 2 nos piden lo que es la tabla de distribucion media igual a 5, la cual ya se mostro igual que una grafica de esta misma, en el siguiente inciso nos piden lo que es la probabiidad del valor de x<=3 el cual nos dio como resultado el 26.5026% y finalmente para el ultimo inciso nos piden lo que es la probabiidad del valor de x>1 el cual nos dio como resultado un 95.9572%