library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(xts)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
library(TTR)
library(tseries)
AMD=read.csv("C:/Users/yiq00/Downloads/AMD.csv",header=TRUE)
str(AMD)
## 'data.frame':    35 obs. of  7 variables:
##  $ Date     : chr  "2018-02-01" "2018-03-01" "2018-04-01" "2018-05-01" ...
##  $ Open     : num  13.62 12.26 9.99 10.83 13.98 ...
##  $ High     : num  13.8 12.8 11.4 13.9 17.3 ...
##  $ Low      : num  10.63 9.79 9.04 10.77 13.92 ...
##  $ Close    : num  12.1 10.1 10.9 13.7 15 ...
##  $ Adj.Close: num  12.1 10.1 10.9 13.7 15 ...
##  $ Volume   : num  1.10e+09 1.48e+09 1.16e+09 1.02e+09 1.63e+09 ...
head(AMD)
##         Date  Open  High   Low Close Adj.Close     Volume
## 1 2018-02-01 13.62 13.84 10.63 12.11     12.11 1103985800
## 2 2018-03-01 12.26 12.82  9.79 10.05     10.05 1483511900
## 3 2018-04-01  9.99 11.36  9.04 10.88     10.88 1163360900
## 4 2018-05-01 10.83 13.95 10.77 13.73     13.73 1020602700
## 5 2018-06-01 13.98 17.34 13.92 14.99     14.99 1632781900
## 6 2018-07-01 14.80 20.18 14.74 18.33     18.33 1456419400
summary(AMD)
##      Date                Open            High            Low       
##  Length:35          Min.   : 9.99   Min.   :11.36   Min.   : 9.04  
##  Class :character   1st Qu.:20.45   1st Qu.:25.33   1st Qu.:17.06  
##  Mode  :character   Median :30.50   Median :34.30   Median :27.43  
##                     Mean   :36.80   Mean   :42.47   Mean   :33.65  
##                     3rd Qu.:47.14   3rd Qu.:57.80   3rd Qu.:43.90  
##                     Max.   :91.92   Max.   :94.28   Max.   :78.97  
##      Close         Adj.Close         Volume         
##  Min.   :10.05   Min.   :10.05   Min.   :2.691e+07  
##  1st Qu.:22.41   1st Qu.:22.41   1st Qu.:1.166e+09  
##  Median :30.45   Median :30.45   Median :1.284e+09  
##  Mean   :38.38   Mean   :38.38   Mean   :1.453e+09  
##  3rd Qu.:49.70   3rd Qu.:49.70   3rd Qu.:1.660e+09  
##  Max.   :90.82   Max.   :90.82   Max.   :3.063e+09
AMDts=ts(AMD[,2], start=c(2018,02,01), end=c(2020,11,11), frequency = 12)
plot(AMDts, main="Monthly AMD Volume (2018-2020)",ylab="Volume")

Forcasting

plot(decompose(AMDts))

Using auto.arima

Model_1.arima=auto.arima(AMDts, stepwise=FALSE, approximation=FALSE)
Model_1.arima
## Series: AMDts 
## ARIMA(0,1,0) with drift 
## 
## Coefficients:
##        drift
##       1.8858
## s.e.  1.1325
## 
## sigma^2 estimated as 43.65:  log likelihood=-108.62
## AIC=221.25   AICc=221.65   BIC=224.24
summary(Model_1.arima)
## Series: AMDts 
## ARIMA(0,1,0) with drift 
## 
## Coefficients:
##        drift
##       1.8858
## s.e.  1.1325
## 
## sigma^2 estimated as 43.65:  log likelihood=-108.62
## AIC=221.25   AICc=221.65   BIC=224.24
## 
## Training set error measures:
##                        ME     RMSE      MAE       MPE     MAPE     MASE
## Training set 0.0003451246 6.409542 4.340809 -3.570653 13.56603 0.189307
##                    ACF1
## Training set 0.05987298
hist(residuals(Model_1.arima))

Model_1.arima.fc=forecast(Model_1.arima,h=6)
plot(Model_1.arima.fc, main="Monthly AMD Volume (2018-2020)",ylab="Volume")

Using ETS

Model_2.ETS <- ets(AMDts, model="ZZZ")
Model_2.ETS
## ETS(M,A,N) 
## 
## Call:
##  ets(y = AMDts, model = "ZZZ") 
## 
##   Smoothing parameters:
##     alpha = 0.9099 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 11.5749 
##     b = 1.5144 
## 
##   sigma:  0.1752
## 
##      AIC     AICc      BIC 
## 239.0631 241.2059 246.6949
plot(Model_2.ETS)

summary(Model_2.ETS)
## ETS(M,A,N) 
## 
## Call:
##  ets(y = AMDts, model = "ZZZ") 
## 
##   Smoothing parameters:
##     alpha = 0.9099 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 11.5749 
##     b = 1.5144 
## 
##   sigma:  0.1752
## 
##      AIC     AICc      BIC 
## 239.0631 241.2059 246.6949 
## 
## Training set error measures:
##                     ME     RMSE      MAE       MPE     MAPE      MASE      ACF1
## Training set 0.4414538 6.470309 4.334353 -2.174877 13.29986 0.1890254 0.1195176
hist(residuals(Model_2.ETS))

Garch

Model_3.Garch <- garch(AMDts)
## 
##  ***** ESTIMATION WITH ANALYTICAL GRADIENT ***** 
## 
## 
##      I     INITIAL X(I)        D(I)
## 
##      1     4.120092e+02     1.000e+00
##      2     5.000000e-02     1.000e+00
##      3     5.000000e-02     1.000e+00
## 
##     IT   NF      F         RELDF    PRELDF    RELDX   STPPAR   D*STEP   NPRELDF
##      0    1  1.513e+02
##      1    2  1.338e+02  1.16e-01  1.27e+00  1.2e-03  1.9e+02  1.0e+00  1.22e+02
##      2    4  1.333e+02  3.37e-03  3.01e-03  5.6e-05  4.1e+00  5.0e-02  2.39e-01
##      3    6  1.326e+02  5.53e-03  5.48e-03  1.1e-04  1.0e+00  1.0e-01  1.19e-02
##      4    8  1.325e+02  9.23e-04  9.22e-04  2.2e-05  1.6e+01  2.0e-02  7.13e-03
##      5   10  1.323e+02  1.67e-03  1.67e-03  4.5e-05  2.8e+00  4.0e-02  6.95e-03
##      6   12  1.322e+02  3.06e-04  3.06e-04  9.1e-06  3.4e+01  8.0e-03  5.75e-03
##      7   14  1.322e+02  6.01e-05  6.01e-05  1.8e-06  1.6e+02  1.6e-03  5.82e-03
##      8   16  1.322e+02  1.19e-04  1.19e-04  3.6e-06  2.1e+01  3.2e-03  5.84e-03
##      9   18  1.322e+02  2.36e-05  2.36e-05  7.3e-07  4.0e+02  6.4e-04  5.77e-03
##     10   20  1.322e+02  4.71e-05  4.71e-05  1.5e-06  5.1e+01  1.3e-03  5.77e-03
##     11   22  1.322e+02  9.39e-06  9.39e-06  2.9e-07  1.0e+03  2.6e-04  5.74e-03
##     12   25  1.322e+02  7.48e-05  7.48e-05  2.3e-06  3.2e+01  2.0e-03  5.75e-03
##     13   28  1.322e+02  1.49e-06  1.49e-06  4.7e-08  6.2e+03  4.1e-05  5.69e-03
##     14   30  1.322e+02  2.98e-06  2.98e-06  9.3e-08  7.8e+02  8.2e-05  5.71e-03
##     15   32  1.322e+02  5.96e-07  5.96e-07  1.9e-08  1.6e+04  1.6e-05  5.70e-03
##     16   34  1.322e+02  1.19e-06  1.19e-06  3.7e-08  1.9e+03  3.3e-05  5.71e-03
##     17   36  1.322e+02  2.38e-06  2.38e-06  7.5e-08  9.7e+02  6.6e-05  5.70e-03
##     18   39  1.322e+02  4.76e-08  4.76e-08  1.5e-09  1.9e+05  1.3e-06  5.70e-03
##     19   41  1.322e+02  9.53e-08  9.53e-08  3.0e-09  2.4e+04  2.6e-06  5.70e-03
##     20   43  1.322e+02  1.91e-08  1.91e-08  6.0e-10  4.8e+05  5.2e-07  5.70e-03
##     21   45  1.322e+02  3.81e-08  3.81e-08  1.2e-09  6.1e+04  1.0e-06  5.70e-03
##     22   47  1.322e+02  7.62e-08  7.62e-08  2.4e-09  3.0e+04  2.1e-06  5.70e-03
##     23   50  1.322e+02  1.52e-09  1.52e-09  4.8e-11  6.1e+06  4.2e-08  5.70e-03
##     24   52  1.322e+02  3.05e-09  3.05e-09  9.6e-11  7.6e+05  8.4e-08  5.70e-03
##     25   54  1.322e+02  6.10e-10  6.10e-10  1.9e-11  1.5e+07  1.7e-08  5.70e-03
##     26   56  1.322e+02  1.22e-09  1.22e-09  3.8e-11  1.9e+06  3.4e-08  5.70e-03
##     27   58  1.322e+02  2.44e-09  2.44e-09  7.7e-11  9.5e+05  6.7e-08  5.70e-03
##     28   60  1.322e+02  4.88e-10  4.88e-10  1.5e-11  1.9e+07  1.3e-08  5.70e-03
##     29   62  1.322e+02  9.76e-11  9.76e-11  3.1e-12  9.5e+07  2.7e-09  5.70e-03
##     30   64  1.322e+02  1.95e-10  1.95e-10  6.1e-12  1.2e+07  5.4e-09  5.70e-03
##     31   66  1.322e+02  3.90e-11  3.90e-11  1.2e-12  2.4e+08  1.1e-09  5.70e-03
##     32   68  1.322e+02  7.81e-12  7.81e-12  2.5e-13  1.2e+09  2.1e-10  5.70e-03
##     33   70  1.322e+02  1.56e-12  1.56e-12  4.9e-14  5.9e+09  4.3e-11  5.70e-03
##     34   72  1.322e+02  3.12e-12  3.12e-12  9.8e-14  7.4e+08  8.6e-11  5.70e-03
##     35   74  1.322e+02  6.25e-13  6.25e-13  2.0e-14  1.5e+10  1.7e-11  5.70e-03
##     36   76  1.322e+02  1.25e-12  1.25e-12  3.9e-14  1.8e+09  3.4e-11  5.70e-03
##     37   78  1.322e+02  2.50e-13  2.50e-13  7.8e-15  3.7e+10  6.9e-12  5.70e-03
##     38   80  1.322e+02  5.00e-13  5.00e-13  1.6e-14  4.6e+09  1.4e-11  5.70e-03
##     39   82  1.322e+02  1.00e-13  9.99e-14  3.1e-15  9.2e+10  2.7e-12  5.70e-03
##     40   83  1.322e+02 -7.57e+07  2.00e-13  6.3e-15  4.6e+10  5.5e-12  5.70e-03
## 
##  ***** FALSE CONVERGENCE *****
## 
##  FUNCTION     1.321669e+02   RELDX        6.272e-15
##  FUNC. EVALS      83         GRAD. EVALS      40
##  PRELDF       1.998e-13      NPRELDF      5.704e-03
## 
##      I      FINAL X(I)        D(I)          G(I)
## 
##      1    4.120093e+02     1.000e+00     5.588e-03
##      2    9.514508e-01     1.000e+00     1.637e+00
##      3    4.372217e-12     1.000e+00     4.517e+00
summary(Model_3.Garch)
## 
## Call:
## garch(x = AMDts)
## 
## Model:
## GARCH(1,1)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## 0.4240 0.7625 0.8825 0.9532 1.4164 
## 
## Coefficient(s):
##     Estimate  Std. Error  t value Pr(>|t|)
## a0 4.120e+02   1.181e+03    0.349    0.727
## a1 9.515e-01   2.009e+00    0.474    0.636
## b1 4.372e-12   1.474e+00    0.000    1.000
## 
## Diagnostic Tests:
##  Jarque Bera Test
## 
## data:  Residuals
## X-squared = 0.37075, df = 2, p-value = 0.8308
## 
## 
##  Box-Ljung test
## 
## data:  Squared.Residuals
## X-squared = 10.059, df = 1, p-value = 0.001516

Comparing the performance of the two Arima models on the test set results in the Arima model with the regressor doing better by a little bit.