Project

library(carData)
library(car)
library(MASS)
library(MASS)
library(lmridge)
## 
## Attaching package: 'lmridge'
## The following object is masked from 'package:car':
## 
##     vif
library(ALSM)
## Loading required package: leaps
## Loading required package: SuppDists
library(leaps)
library(caret)
## Loading required package: lattice
## 
## Attaching package: 'lattice'
## The following object is masked from 'package:ALSM':
## 
##     oneway
## Loading required package: ggplot2
happiness<-read.table("/Users/yushanwang/desktop/2020fall/stat512/project/happiness_clean.csv", header =TRUE, sep=",")
colnames(happiness) <- c("ladder_score","gdp","support","health","freedom","generosity","corruption")
mod<-lm(ladder_score~gdp+support+health+freedom+generosity+corruption, happiness)

#part3
plot(happiness) 

mod1<-lm(ladder_score~gdp,happiness) 
plot(ladder_score~gdp,happiness) 
abline(mod1) 

mod2<-lm(ladder_score~support,happiness) 
plot(ladder_score~support,happiness) 
abline(mod2) 

mod3<-lm(ladder_score~health,happiness) 
plot(ladder_score~health,happiness) 
abline(mod3) 

mod4<-lm(ladder_score~freedom,happiness) 
plot(ladder_score~freedom,happiness) 
abline(mod4) 

mod5<-lm(ladder_score~generosity,happiness) 
plot(ladder_score~generosity,happiness) 
abline(mod5) 

mod6<-lm(ladder_score~corruption,happiness) 
plot(ladder_score~corruption,happiness) 
abline(mod6) 

cor(happiness)
##              ladder_score        gdp     support      health    freedom
## ladder_score   1.00000000  0.7753744  0.76500076  0.77031629  0.5905968
## gdp            0.77537440  1.0000000  0.78181358  0.84846862  0.4190186
## support        0.76500076  0.7818136  1.00000000  0.74274409  0.4788632
## health         0.77031629  0.8484686  0.74274409  1.00000000  0.4488462
## freedom        0.59059678  0.4190186  0.47886318  0.44884619  1.0000000
## generosity     0.06904313 -0.1183994 -0.05678035 -0.07185211  0.2537211
## corruption    -0.41830509 -0.3347291 -0.21052960 -0.35384121 -0.4201445
##               generosity corruption
## ladder_score  0.06904313 -0.4183051
## gdp          -0.11839937 -0.3347291
## support      -0.05678035 -0.2105296
## health       -0.07185211 -0.3538412
## freedom       0.25372112 -0.4201445
## generosity    1.00000000 -0.2784802
## corruption   -0.27848023  1.0000000
residualPlots(mod) 

##            Test stat Pr(>|Test stat|)    
## gdp           3.3055         0.001195 ** 
## support       3.1246         0.002151 ** 
## health        2.9058         0.004239 ** 
## freedom      -0.4288         0.668699    
## generosity   -2.7002         0.007755 ** 
## corruption   -0.4993         0.618302    
## Tukey test    4.3831         1.17e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#part4
#first order model
summary(mod)
## 
## Call:
## lm(formula = ladder_score ~ gdp + support + health + freedom + 
##     generosity + corruption, data = happiness)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.75647 -0.31792  0.06653  0.37230  1.48375 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.05938    0.63984  -3.219 0.001588 ** 
## gdp          0.22908    0.08208   2.791 0.005960 ** 
## support      2.72332    0.66118   4.119 6.35e-05 ***
## health       0.03531    0.01297   2.721 0.007293 ** 
## freedom      1.77682    0.49752   3.571 0.000481 ***
## generosity   0.41057    0.33704   1.218 0.225126    
## corruption  -0.62816    0.31480  -1.995 0.047857 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5693 on 146 degrees of freedom
## Multiple R-squared:  0.7483, Adjusted R-squared:  0.738 
## F-statistic: 72.36 on 6 and 146 DF,  p-value: < 2.2e-16
#GLT
qf(0.95,6,146)
## [1] 2.161209
anova(mod)
## Analysis of Variance Table
## 
## Response: ladder_score
##             Df  Sum Sq Mean Sq  F value    Pr(>F)    
## gdp          1 113.054 113.054 348.7774 < 2.2e-16 ***
## support      1  12.198  12.198  37.6314 7.623e-09 ***
## health       1   4.561   4.561  14.0708 0.0002533 ***
## freedom      1   8.571   8.571  26.4407 8.597e-07 ***
## generosity   1   1.046   1.046   3.2281 0.0744513 .  
## corruption   1   1.291   1.291   3.9817 0.0478570 *  
## Residuals  146  47.325   0.324                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
avPlots(mod) # added-var plot

influencePlot(mod) # identify outlying y,x, and influential case

##       StudRes        Hat      CookD
## 133 -2.369679 0.10816961 0.09431647
## 147 -3.283820 0.05821025 0.08923550
## 149  1.793773 0.14110157 0.07438410
## 150 -2.954493 0.15476192 0.21684525
qt(1-0.05/(2*153),153-1-7)
## [1] 3.681136
plot(mod,pch=18,which=c(4)) # cook's distance plot

cor(happiness) # correlation
##              ladder_score        gdp     support      health    freedom
## ladder_score   1.00000000  0.7753744  0.76500076  0.77031629  0.5905968
## gdp            0.77537440  1.0000000  0.78181358  0.84846862  0.4190186
## support        0.76500076  0.7818136  1.00000000  0.74274409  0.4788632
## health         0.77031629  0.8484686  0.74274409  1.00000000  0.4488462
## freedom        0.59059678  0.4190186  0.47886318  0.44884619  1.0000000
## generosity     0.06904313 -0.1183994 -0.05678035 -0.07185211  0.2537211
## corruption    -0.41830509 -0.3347291 -0.21052960 -0.35384121 -0.4201445
##               generosity corruption
## ladder_score  0.06904313 -0.4183051
## gdp          -0.11839937 -0.3347291
## support      -0.05678035 -0.2105296
## health       -0.07185211 -0.3538412
## freedom       0.25372112 -0.4201445
## generosity    1.00000000 -0.2784802
## corruption   -0.27848023  1.0000000
vif<-lmridge(ladder_score~gdp+support+health+freedom+generosity+corruption, data=as.data.frame(happiness), 
             K=seq(0,0.22, 0.02)) #vif factors
vif(vif)
##            gdp support  health freedom generosity corruption
## k=0    4.56165 3.02382 3.93187 1.61034    1.22758    1.42596
## k=0.02 3.56557 2.57170 3.17218 1.48779    1.15652    1.32281
## k=0.04 2.87336 2.22045 2.62553 1.38089    1.09270    1.23370
## k=0.06 2.37218 1.94120 2.21724 1.28663    1.03495    1.15561
## k=0.08 1.99720 1.71498 1.90315 1.20281    0.98238    1.08640
## k=0.1  1.70900 1.52880 1.65568 1.12778    0.93432    1.02451
## k=0.12 1.48246 1.37351 1.45679 1.06023    0.89018    0.96875
## k=0.14 1.30098 1.24246 1.29425 0.99910    0.84950    0.91820
## k=0.16 1.15321 1.13074 1.15949 0.94356    0.81190    0.87212
## k=0.18 1.03117 1.03463 1.04638 0.89290    0.77703    0.82993
## k=0.2  0.92912 0.95128 0.95041 0.84652    0.74462    0.79114
## k=0.22 0.84285 0.87847 0.86819 0.80393    0.71442    0.75535
summary(vif)
## 
## Call:
## lmridge.default(formula = ladder_score ~ gdp + support + health + 
##     freedom + generosity + corruption, data = as.data.frame(happiness), 
##     K = seq(0, 0.22, 0.02))
## 
## 
## Coefficients: for Ridge parameter K= 0 
##             Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept    -2.0594     -228.3776     73.3850      -3.1120   0.0022 ** 
## gdp           0.2291        3.3936      1.2118       2.8004   0.0058 ** 
## support       2.7233        4.0778      0.9867       4.1330   0.0001 ***
## health        0.0353        3.0722      1.1251       2.7307   0.0071 ** 
## freedom       1.7768        2.5802      0.7200       3.5835   0.0005 ***
## generosity    0.4106        0.7684      0.6287       1.2223   0.2236    
## corruption   -0.6282       -1.3566      0.6775      -2.0022   0.0471 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.74830    0.73980    5.99999   72.85062 -167.52975  620.30985 
## Ridge minimum MSE= 1.946592 at K= 0.22 
## P-value for F-test ( 5.99999 , 147 ) = 1.452181e-41 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.02 
##             Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept    -2.0115     -228.6770     65.8914      -3.4705   0.0007 ***
## gdp           0.2277        3.3733      1.0714       3.1485   0.0020 ** 
## support       2.6787        4.0110      0.9099       4.4082   <2e-16 ***
## health        0.0354        3.0808      1.0106       3.0486   0.0027 ** 
## freedom       1.7698        2.5701      0.6921       3.7136   0.0003 ***
## generosity    0.4009        0.7504      0.6102       1.2298   0.2208    
## corruption   -0.6282       -1.3566      0.6526      -2.0789   0.0394 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.73850    0.72960    5.71072   72.85162 -168.08566  618.87732 
## Ridge minimum MSE= 1.946592 at K= 0.22 
## P-value for F-test ( 5.71072 , 147.0238 ) = 1.32947e-40 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.04 
##             Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept    -1.9631     -228.6911     59.9301      -3.8160   0.0002 ***
## gdp           0.2264        3.3533      0.9618       3.4864   0.0006 ***
## support       2.6380        3.9501      0.8455       4.6719   <2e-16 ***
## health        0.0355        3.0848      0.9194       3.3552   0.0010 ***
## freedom       1.7623        2.5591      0.6668       3.8380   0.0002 ***
## generosity    0.3918        0.7332      0.5931       1.2362   0.2184    
## corruption   -0.6283       -1.3570      0.6302      -2.1531   0.0329 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.72890    0.71970    5.46470   72.84742 -168.51234  617.70509 
## Ridge minimum MSE= 1.946592 at K= 0.22 
## P-value for F-test ( 5.4647 , 147.0781 ) = 9.374532e-40 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.06 
##             Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept    -1.9145     -228.4870     55.0660      -4.1493   0.0001 ***
## gdp           0.2250        3.3336      0.8740       3.8141   0.0002 ***
## support       2.6006        3.8940      0.7906       4.9252   <2e-16 ***
## health        0.0355        3.0853      0.8450       3.6513   0.0004 ***
## freedom       1.7542        2.5474      0.6437       3.9576   0.0001 ***
## generosity    0.3830        0.7169      0.5773       1.2418   0.2163    
## corruption   -0.6286       -1.3575      0.6100      -2.2253   0.0276 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.71950    0.71000    5.25089   72.83237 -168.83507  616.73443 
## Ridge minimum MSE= 1.946592 at K= 0.22 
## P-value for F-test ( 5.25089 , 147.1486 ) = 5.45214e-39 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.08 
##             Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept    -1.8659     -228.1132     51.0168      -4.4713   <2e-16 ***
## gdp           0.2237        3.3141      0.8021       4.1316   0.0001 ***
## support       2.5659        3.8420      0.7433       5.1690   <2e-16 ***
## health        0.0354        3.0831      0.7830       3.9375   0.0001 ***
## freedom       1.7458        2.5352      0.6225       4.0728   0.0001 ***
## generosity    0.3747        0.7013      0.5626       1.2467   0.2145    
## corruption   -0.6288       -1.3580      0.5916      -2.2955   0.0231 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.71030    0.70050    5.06226   72.80360 -169.07055  615.92731 
## Ridge minimum MSE= 1.946592 at K= 0.22 
## P-value for F-test ( 5.06226 , 147.2268 ) = 2.728976e-38 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.1 
##             Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept    -1.8176     -227.6054     47.5908      -4.7825   <2e-16 ***
## gdp           0.2224        3.2947      0.7422       4.4390   <2e-16 ***
## support       2.5334        3.7935      0.7020       5.4039   <2e-16 ***
## health        0.0354        3.0788      0.7305       4.2144   <2e-16 ***
## freedom       1.7372        2.5227      0.6029       4.1840   <2e-16 ***
## generosity    0.3668        0.6865      0.5488       1.2509   0.2129    
## corruption   -0.6290       -1.3584      0.5747      -2.3639   0.0194 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.70130    0.69120    4.89399   72.75978 -169.23070  615.25724 
## Ridge minimum MSE= 1.946592 at K= 0.22 
## P-value for F-test ( 4.89399 , 147.308 ) = 1.209401e-37 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.12 
##             Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept    -1.7695     -226.9909     44.6527      -5.0835   <2e-16 ***
## gdp           0.2211        3.2755      0.6916       4.7365   <2e-16 ***
## support       2.5029        3.7479      0.6657       5.6303   <2e-16 ***
## health        0.0353        3.0727      0.6855       4.4822   <2e-16 ***
## freedom       1.7283        2.5098      0.5848       4.2915   <2e-16 ***
## generosity    0.3592        0.6723      0.5359       1.2546   0.2116    
## corruption   -0.6291       -1.3587      0.5590      -2.4305   0.0163 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.69250    0.68200    4.74213   72.70092 -169.32541  614.70233 
## Ridge minimum MSE= 1.946592 at K= 0.22 
## P-value for F-test ( 4.74213 , 147.39 ) = 4.859304e-37 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.14 
##             Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept    -1.7218     -226.2905     42.1043      -5.3745   <2e-16 ***
## gdp           0.2198        3.2565      0.6482       5.0241   <2e-16 ***
## support       2.4742        3.7048      0.6334       5.8488   <2e-16 ***
## health        0.0352        3.0653      0.6465       4.7415   <2e-16 ***
## freedom       1.7193        2.4968      0.5680       4.3956   <2e-16 ***
## generosity    0.3520        0.6588      0.5238       1.2579   0.2104    
## corruption   -0.6292       -1.3589      0.5445      -2.4955   0.0137 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.68390    0.67310    4.60386   72.62721 -169.36213  614.24658 
## Ridge minimum MSE= 1.946592 at K= 0.22 
## P-value for F-test ( 4.60386 , 147.4715 ) = 1.800014e-36 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.16 
##             Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept    -1.6745     -225.5206     39.8724      -5.6561   <2e-16 ***
## gdp           0.2186        3.2376      0.6106       5.3021   <2e-16 ***
## support       2.4469        3.6640      0.6046       6.0597   <2e-16 ***
## health        0.0351        3.0568      0.6123       4.9924   <2e-16 ***
## freedom       1.7102        2.4835      0.5523       4.4964   <2e-16 ***
## generosity    0.3451        0.6459      0.5124       1.2607   0.2094    
## corruption   -0.6292       -1.3588      0.5310      -2.5588   0.0115 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.67540    0.66430    4.47730   72.53887 -169.34629  613.87889 
## Ridge minimum MSE= 1.946592 at K= 0.22 
## P-value for F-test ( 4.4773 , 147.5513 ) = 6.210931e-36 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.18 
##             Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept    -1.6278     -224.6944     37.9012      -5.9284   <2e-16 ***
## gdp           0.2173        3.2188      0.5778       5.5707   <2e-16 ***
## support       2.4210        3.6251      0.5788       6.2633   <2e-16 ***
## health        0.0350        3.0473      0.5821       5.2353   <2e-16 ***
## freedom       1.7011        2.4702      0.5377       4.5942   <2e-16 ***
## generosity    0.3385        0.6336      0.5016       1.2631   0.2085    
## corruption   -0.6290       -1.3585      0.5184      -2.6207   0.0097 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.66710    0.65570    4.36052   72.43668 -169.28329  613.58800 
## Ridge minimum MSE= 1.946592 at K= 0.22 
## P-value for F-test ( 4.36052 , 147.6293 ) = 2.020045e-35 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.2 
##             Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept    -1.5816     -223.8221     36.1474      -6.1919   <2e-16 ***
## gdp           0.2160        3.2002      0.5489       5.8301   <2e-16 ***
## support       2.3962        3.5880      0.5554       6.4599   <2e-16 ***
## health        0.0349        3.0371      0.5552       5.4705   <2e-16 ***
## freedom       1.6919        2.4569      0.5239       4.6891   <2e-16 ***
## generosity    0.3322        0.6218      0.4914       1.2653   0.2078    
## corruption   -0.6288       -1.3580      0.5065      -2.6810   0.0082 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.65890    0.64730    4.25236   72.32113 -169.17687  613.36665 
## Ridge minimum MSE= 1.946592 at K= 0.22 
## P-value for F-test ( 4.25236 , 147.7051 ) = 6.231208e-35 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.22 
##             Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept    -1.5359     -222.9124     34.5770      -6.4468   <2e-16 ***
## gdp           0.2148        3.1818      0.5233       6.0805   <2e-16 ***
## support       2.3725        3.5525      0.5342       6.6498   <2e-16 ***
## health        0.0348        3.0262      0.5311       5.6982   <2e-16 ***
## freedom       1.6826        2.4435      0.5111       4.7813   <2e-16 ***
## generosity    0.3262        0.6104      0.4818       1.2671   0.2071    
## corruption   -0.6285       -1.3573      0.4954      -2.7399   0.0069 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.65090    0.63900    4.15169   72.19286 -169.03066  613.20778 
## Ridge minimum MSE= 1.946592 at K= 0.22 
## P-value for F-test ( 4.15169 , 147.7784 ) = 1.835158e-34 
## -------------------------------------------------------------------
bs<-BestSub(happiness[,2:7],happiness$ladder_score,num=1) # best subset
bs
##   p 1 2 3 4 5 6     SSEp        r2    r2.adj        Cp      AICp       SBCp
## 1 2 1 0 0 0 0 0 74.99173 0.6012055 0.5985644 82.352712 -105.0982  -99.03732
## 2 3 1 0 0 1 0 0 58.88904 0.6868371 0.6826616 34.675218 -140.0818 -130.99048
## 3 4 0 1 1 1 0 0 52.54787 0.7205585 0.7149321 17.112440 -155.5131 -143.39139
## 4 5 1 1 1 1 0 0 49.66214 0.7359043 0.7287666 10.209843 -162.1548 -147.00265
## 5 6 1 1 1 1 0 1 47.80612 0.7457744 0.7371273  6.483929 -165.9825 -147.79987
## 6 7 1 1 1 1 1 1 47.32511 0.7483323 0.7379898  7.000000 -165.5297 -144.31666
##     PRESSp
## 1 76.91505
## 2 61.09347
## 3 56.02698
## 4 53.56514
## 5 52.77714
## 6 53.15361
#Consider the Model with Higher Order
happiness.mod.high_order.f <- lm(ladder_score ~ gdp + support + health + freedom + corruption + gdp*support + gdp*health + support*health, happiness) 

happiness.mod.high_order.r <- lm(ladder_score ~ gdp + support + health + freedom + corruption, happiness) 

anova(happiness.mod.high_order.r, happiness.mod.high_order.f) 
## Analysis of Variance Table
## 
## Model 1: ladder_score ~ gdp + support + health + freedom + corruption
## Model 2: ladder_score ~ gdp + support + health + freedom + corruption + 
##     gdp * support + gdp * health + support * health
##   Res.Df    RSS Df Sum of Sq     F   Pr(>F)    
## 1    147 47.806                                
## 2    144 40.319  3    7.4875 8.914 1.86e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
happiness.mod.high_order.r1 <- lm(ladder_score ~ gdp + support + health + freedom + corruption + gdp*health + support*health, happiness) 
anova(happiness.mod.high_order.r1, happiness.mod.high_order.f) 
## Analysis of Variance Table
## 
## Model 1: ladder_score ~ gdp + support + health + freedom + corruption + 
##     gdp * health + support * health
## Model 2: ladder_score ~ gdp + support + health + freedom + corruption + 
##     gdp * support + gdp * health + support * health
##   Res.Df    RSS Df  Sum of Sq      F Pr(>F)
## 1    145 40.319                            
## 2    144 40.319  1 0.00075651 0.0027 0.9586
happiness.mod.high_order.r2 <- lm(ladder_score ~ gdp + support + health + freedom + corruption + gdp*support + support*health, happiness) 
anova(happiness.mod.high_order.r2, happiness.mod.high_order.f) 
## Analysis of Variance Table
## 
## Model 1: ladder_score ~ gdp + support + health + freedom + corruption + 
##     gdp * support + support * health
## Model 2: ladder_score ~ gdp + support + health + freedom + corruption + 
##     gdp * support + gdp * health + support * health
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    145 40.377                           
## 2    144 40.319  1  0.058729 0.2098 0.6477
happiness.mod.high_order.r3 <- lm(ladder_score ~ gdp + support + health + freedom + corruption + gdp*support + gdp*health, happiness) 
anova(happiness.mod.high_order.r3, happiness.mod.high_order.f) 
## Analysis of Variance Table
## 
## Model 1: ladder_score ~ gdp + support + health + freedom + corruption + 
##     gdp * support + gdp * health
## Model 2: ladder_score ~ gdp + support + health + freedom + corruption + 
##     gdp * support + gdp * health + support * health
##   Res.Df    RSS Df Sum of Sq     F  Pr(>F)  
## 1    145 41.506                             
## 2    144 40.319  1    1.1874 4.241 0.04126 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
happiness.mod.high_order<-lm(ladder_score ~ gdp + support + health + freedom + corruption + support*health, happiness)
residualPlots(happiness.mod.high_order)

##            Test stat Pr(>|Test stat|)  
## gdp           0.9734          0.33199  
## support      -1.7356          0.08475 .
## health       -0.3888          0.69800  
## freedom      -1.2228          0.22341  
## corruption   -1.2960          0.19703  
## Tukey test    1.2666          0.20529  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
qqPlot(happiness$ladder_score)

## [1] 153 152
Anova(happiness.mod.high_order.f, type = "II")
## Anova Table (Type II tests)
## 
## Response: ladder_score
##                Sum Sq  Df F value    Pr(>F)    
## gdp             1.343   1  4.7964  0.030129 *  
## support         7.596   1 27.1298 6.457e-07 ***
## health          2.771   1  9.8981  0.002011 ** 
## freedom         5.798   1 20.7090 1.127e-05 ***
## corruption      0.122   1  0.4365  0.509863    
## gdp:support     0.001   1  0.0027  0.958617    
## gdp:health      0.059   1  0.2098  0.647651    
## support:health  1.187   1  4.2410  0.041259 *  
## Residuals      40.319 144                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
avPlots(happiness.mod.high_order.f)

happiness_new <- happiness[,c(1,2,3,4,5,7)]
happiness_new <- cbind(happiness_new, happiness$gdp * happiness$support, happiness$gdp * happiness$health, happiness$support * happiness$health)
plot(happiness.mod.high_order.f)

BestSub(happiness_new[,2:9], happiness_new$ladder_score, num = 1)
##   p 1 2 3 4 5 6 7 8     SSEp        r2    r2.adj        Cp      AICp      SBCp
## 1 2 0 0 0 0 0 0 0 1 56.30861 0.7005594 0.6985764 52.109203 -148.9373 -142.8765
## 2 3 0 0 0 1 0 0 0 1 48.90272 0.7399428 0.7364754 27.658680 -168.5125 -159.4212
## 3 4 0 0 0 1 0 0 1 1 46.71083 0.7515990 0.7465976 21.830226 -173.5287 -161.4069
## 4 5 0 1 1 1 0 0 0 1 42.08466 0.7762002 0.7701516  7.307599 -187.4855 -172.3333
## 5 6 0 1 1 1 0 0 1 1 40.51170 0.7845650 0.7772373  3.689700 -191.3136 -173.1310
## 6 7 0 1 1 1 1 0 1 1 40.32960 0.7855334 0.7767197  5.039314 -190.0029 -168.7898
## 7 8 1 1 1 1 1 0 1 1 40.31935 0.7855879 0.7752370  7.002702 -188.0418 -163.7983
## 8 9 1 1 1 1 1 1 1 1 40.31859 0.7855919 0.7736803  9.000000 -186.0447 -158.7707
##     PRESSp
## 1 58.13894
## 2 51.05517
## 3 49.47846
## 4 46.55470
## 5 45.45225
## 6 46.13982
## 7 47.16947
## 8 48.11769
influencePlot(happiness.mod.high_order.f)

##       StudRes        Hat      CookD
## 86   2.498296 0.10343972 0.07720153
## 147 -3.249935 0.05629888 0.06565240
## 149 -1.918434 0.55043016 0.49152624
## 150 -2.378420 0.25630676 0.20983520
qt(0.9998,143)
## [1] 3.625646
plot(happiness.mod.high_order.f, which = c(4))

vif.high <- lmridge(ladder_score ~ gdp + support + health + freedom + corruption + gdp*support + gdp*health + support*health, happiness, K=seq(0,1, 0.02))
vif.high
## Call:
## lmridge.default(formula = ladder_score ~ gdp + support + health + 
##     freedom + corruption + gdp * support + gdp * health + support * 
##     health, data = happiness, K = seq(0, 1, 0.02))
## 
##        Intercept      gdp   support   health freedom corruption gdp:support
## K=0     11.19092 -0.13699 -11.36858 -0.18580 2.08058   -0.21486     0.03565
## K=0.02   1.90243 -0.06683  -0.96000 -0.00961 1.91061   -0.55329     0.19077
## K=0.04   0.90544  0.00345   0.06786  0.00236 1.86636   -0.59421     0.14145
## K=0.06   0.53541  0.03127   0.45413  0.00694 1.83333   -0.60715     0.12195
## K=0.08   0.34954  0.04634   0.65261  0.00937 1.80429   -0.61192     0.11144
## K=0.1    0.24247  0.05588   0.77113  0.01089 1.77750   -0.61324     0.10481
## K=0.12   0.17626  0.06250   0.84843  0.01192 1.75230   -0.61281     0.10023
## K=0.14   0.13393  0.06738   0.90180  0.01267 1.72836   -0.61139     0.09684
## K=0.16   0.10671  0.07113   0.94014  0.01324 1.70551   -0.60936     0.09421
## K=0.18   0.08963  0.07412   0.96845  0.01369 1.68361   -0.60693     0.09210
## K=0.2    0.07967  0.07655   0.98978  0.01405 1.66258   -0.60425     0.09036
## K=0.22   0.07486  0.07856   1.00608  0.01435 1.64235   -0.60139     0.08889
## K=0.24   0.07391  0.08025   1.01864  0.01459 1.62286   -0.59841     0.08762
## K=0.26   0.07590  0.08170   1.02837  0.01480 1.60406   -0.59535     0.08652
## K=0.28   0.08016  0.08294   1.03590  0.01497 1.58590   -0.59224     0.08553
## K=0.3    0.08623  0.08401   1.04170  0.01513 1.56835   -0.58909     0.08465
## K=0.32   0.09373  0.08495   1.04613  0.01525 1.55137   -0.58593     0.08386
## K=0.34   0.10238  0.08577   1.04945  0.01537 1.53493   -0.58275     0.08313
## K=0.36   0.11198  0.08649   1.05186  0.01546 1.51901   -0.57958     0.08246
## K=0.38   0.12235  0.08712   1.05352  0.01555 1.50356   -0.57642     0.08184
## K=0.4    0.13336  0.08769   1.05457  0.01562 1.48857   -0.57328     0.08125
## K=0.42   0.14490  0.08819   1.05509  0.01568 1.47402   -0.57015     0.08071
## K=0.44   0.15687  0.08863   1.05518  0.01574 1.45989   -0.56704     0.08020
## K=0.46   0.16921  0.08902   1.05490  0.01579 1.44614   -0.56396     0.07971
## K=0.48   0.18185  0.08937   1.05431  0.01583 1.43278   -0.56090     0.07925
## K=0.5    0.19474  0.08968   1.05344  0.01586 1.41977   -0.55787     0.07881
## K=0.52   0.20785  0.08995   1.05235  0.01589 1.40711   -0.55487     0.07839
## K=0.54   0.22113  0.09019   1.05106  0.01592 1.39477   -0.55189     0.07798
## K=0.56   0.23455  0.09040   1.04959  0.01594 1.38275   -0.54895     0.07759
## K=0.58   0.24810  0.09059   1.04798  0.01596 1.37102   -0.54604     0.07722
## K=0.6    0.26174  0.09075   1.04624  0.01597 1.35958   -0.54316     0.07686
## K=0.62   0.27545  0.09089   1.04439  0.01598 1.34842   -0.54031     0.07650
## K=0.64   0.28923  0.09100   1.04244  0.01599 1.33752   -0.53749     0.07616
## K=0.66   0.30305  0.09110   1.04040  0.01600 1.32687   -0.53470     0.07583
## K=0.68   0.31691  0.09119   1.03829  0.01600 1.31647   -0.53195     0.07551
## K=0.7    0.33079  0.09125   1.03612  0.01600 1.30630   -0.52922     0.07519
## K=0.72   0.34468  0.09130   1.03389  0.01600 1.29636   -0.52653     0.07489
## K=0.74   0.35857  0.09134   1.03161  0.01599 1.28663   -0.52387     0.07459
## K=0.76   0.37247  0.09137   1.02929  0.01599 1.27711   -0.52123     0.07429
## K=0.78   0.38635  0.09138   1.02693  0.01598 1.26779   -0.51863     0.07400
## K=0.8    0.40022  0.09139   1.02453  0.01597 1.25867   -0.51606     0.07372
## K=0.82   0.41407  0.09138   1.02211  0.01596 1.24973   -0.51351     0.07345
## K=0.84   0.42789  0.09136   1.01967  0.01595 1.24097   -0.51100     0.07317
## K=0.86   0.44168  0.09134   1.01720  0.01594 1.23238   -0.50851     0.07291
## K=0.88   0.45545  0.09130   1.01472  0.01592 1.22396   -0.50605     0.07264
## K=0.9    0.46917  0.09126   1.01222  0.01591 1.21571   -0.50362     0.07239
## K=0.92   0.48286  0.09121   1.00971  0.01589 1.20761   -0.50122     0.07213
## K=0.94   0.49651  0.09116   1.00719  0.01588 1.19966   -0.49884     0.07188
## K=0.96   0.51011  0.09110   1.00467  0.01586 1.19186   -0.49650     0.07163
## K=0.98   0.52368  0.09103   1.00213  0.01584 1.18420   -0.49417     0.07139
## K=1      0.53719  0.09096   0.99959  0.01582 1.17668   -0.49188     0.07115
##        gdp:health support:health
## K=0       0.00434        0.23409
## K=0.02    0.00181        0.03680
## K=0.04    0.00140        0.02603
## K=0.06    0.00125        0.02190
## K=0.08    0.00117        0.01969
## K=0.1     0.00112        0.01831
## K=0.12    0.00109        0.01735
## K=0.14    0.00106        0.01664
## K=0.16    0.00105        0.01609
## K=0.18    0.00103        0.01566
## K=0.2     0.00102        0.01529
## K=0.22    0.00101        0.01499
## K=0.24    0.00101        0.01473
## K=0.26    0.00100        0.01450
## K=0.28    0.00100        0.01429
## K=0.3     0.00099        0.01411
## K=0.32    0.00099        0.01395
## K=0.34    0.00098        0.01380
## K=0.36    0.00098        0.01367
## K=0.38    0.00098        0.01354
## K=0.4     0.00098        0.01342
## K=0.42    0.00097        0.01331
## K=0.44    0.00097        0.01321
## K=0.46    0.00097        0.01312
## K=0.48    0.00096        0.01302
## K=0.5     0.00096        0.01294
## K=0.52    0.00096        0.01286
## K=0.54    0.00096        0.01278
## K=0.56    0.00096        0.01270
## K=0.58    0.00095        0.01263
## K=0.6     0.00095        0.01256
## K=0.62    0.00095        0.01249
## K=0.64    0.00095        0.01243
## K=0.66    0.00095        0.01236
## K=0.68    0.00094        0.01230
## K=0.7     0.00094        0.01224
## K=0.72    0.00094        0.01218
## K=0.74    0.00094        0.01213
## K=0.76    0.00093        0.01207
## K=0.78    0.00093        0.01202
## K=0.8     0.00093        0.01197
## K=0.82    0.00093        0.01192
## K=0.84    0.00093        0.01187
## K=0.86    0.00092        0.01182
## K=0.88    0.00092        0.01177
## K=0.9     0.00092        0.01172
## K=0.92    0.00092        0.01168
## K=0.94    0.00092        0.01163
## K=0.96    0.00091        0.01159
## K=0.98    0.00091        0.01154
## K=1       0.00091        0.01150
# summary(vif.high)
vif.final <- lmridge(ladder_score ~ gdp + support + health + freedom + corruption + gdp*support + gdp*health + support*health, happiness, K=0)
summary(vif.final)
## 
## Call:
## lmridge.default(formula = ladder_score ~ gdp + support + health + 
##     freedom + corruption + gdp * support + gdp * health + support * 
##     health, data = happiness, K = 0)
## 
## 
## Coefficients: for Ridge parameter K= 0 
##                  Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept         11.1909    -5143.4478   9562.5667      -0.5379   0.5915    
## gdp               -0.1370       -2.0294     10.9542      -0.1853   0.8533    
## support          -11.3686      -17.0230      7.2128      -2.3601   0.0196 *  
## health            -0.1858      -16.1676      8.6207      -1.8754   0.0628 .  
## freedom            2.0806        3.0213      0.6616       4.5665   <2e-16 ***
## corruption        -0.2149       -0.4640      0.6999      -0.6630   0.5084    
## gdp:support        0.0356        0.8347     16.0028       0.0522   0.9585    
## gdp:health         0.0043        7.2044     15.6762       0.4596   0.6465    
## support:health     0.2341       35.0264     16.9495       2.0665   0.0406 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.78560    0.77520    8.00004   66.41003 -188.04458  605.85604 
## Ridge minimum MSE= 1036.379 at K= 0 
## P-value for F-test ( 8.00004 , 144.9999 ) = 1.105563e-44 
## -------------------------------------------------------------------
#Repeat diagnostic and remedy analysis
avPlots(happiness.mod.high_order)

influencePlot(happiness.mod.high_order)

##       StudRes        Hat      CookD
## 130 -2.480368 0.01821279 0.01574823
## 147 -3.303957 0.04555014 0.06968978
## 149 -1.982876 0.52177325 0.60076746
## 150 -2.335985 0.17604012 0.16161758
plot(happiness.mod.high_order,pch=18,which=c(4))

vif.new<-lmridge(ladder_score ~ gdp + support + health + freedom + corruption + support*health,data=as.data.frame(happiness),
                 K=seq(0,0.2, 0.02)) #vif factors
summary(vif.new)
## 
## Call:
## lmridge.default(formula = ladder_score ~ gdp + support + health + 
##     freedom + corruption + support * health, data = as.data.frame(happiness), 
##     K = seq(0, 0.2, 0.02))
## 
## 
## Coefficients: for Ridge parameter K= 0 
##                  Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept         10.0944    -1139.6177    465.4634      -2.4484   0.0155 *  
## gdp                0.1663        2.4638      1.1143       2.2110   0.0286 *  
## support          -13.0314      -19.5130      4.6339      -4.2110   <2e-16 ***
## health            -0.1713      -14.9059      3.6011      -4.1392   0.0001 ***
## freedom            2.0420        2.9653      0.6466       4.5858   <2e-16 ***
## corruption        -0.2746       -0.5931      0.6331      -0.9368   0.3504    
## support:health     0.2656       39.7471      7.6459       5.1985   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.78530    0.77790    6.00002   89.58765 -191.80287  596.03682 
## Ridge minimum MSE= 94.9615 at K= 0 
## P-value for F-test ( 6.00002 , 147 ) = 1.376836e-46 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.02 
##                 Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept         0.3399     -403.5115     89.4859      -4.5092   <2e-16 ***
## gdp               0.1870        2.7708      1.0500       2.6388   0.0092 ** 
## support          -0.1372       -0.2055      0.9796      -0.2098   0.8341    
## health           -0.0020       -0.1728      1.0287      -0.1680   0.8669    
## freedom           1.8874        2.7408      0.6571       4.1711   0.0001 ***
## corruption       -0.6467       -1.3967      0.6167      -2.2648   0.0250 *  
## support:health    0.0498        7.4578      1.1242       6.6341   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.74360    0.73490    4.88570   80.28068 -176.44427  608.01854 
## Ridge minimum MSE= 94.9615 at K= 0 
## P-value for F-test ( 4.8857 , 147.7753 ) = 6.592784e-40 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.04 
##                 Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept        -0.3106     -353.5612     67.4000      -5.2457   <2e-16 ***
## gdp               0.1854        2.7465      0.9581       2.8666   0.0048 ** 
## support           0.7510        1.1246      0.7830       1.4362   0.1531    
## health            0.0102        0.8884      0.8776       1.0123   0.3131    
## freedom           1.8549        2.6935      0.6396       4.2113   <2e-16 ***
## corruption       -0.6699       -1.4469      0.6015      -2.4055   0.0174 *  
## support:health    0.0348        5.1997      0.6739       7.7161   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.73570    0.72670    4.61589   79.09846 -174.55322  609.09195 
## Ridge minimum MSE= 94.9615 at K= 0 
## P-value for F-test ( 4.61589 , 147.9308 ) = 1.761888e-38 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.06 
##                 Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept        -0.5268     -335.8923     58.6449      -5.7276   <2e-16 ***
## gdp               0.1832        2.7139      0.8789       3.0876   0.0024 ** 
## support           1.0669        1.5975      0.7039       2.2696   0.0247 *  
## health            0.0148        1.2899      0.7960       1.6204   0.1073    
## freedom           1.8293        2.6564      0.6208       4.2790   <2e-16 ***
## corruption       -0.6764       -1.4609      0.5853      -2.4960   0.0137 *  
## support:health    0.0292        4.3736      0.5157       8.4807   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.72820    0.71900    4.41213   78.65146 -173.98829  609.03940 
## Ridge minimum MSE= 94.9615 at K= 0 
## P-value for F-test ( 4.41213 , 148.0327 ) = 1.69542e-37 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.08 
##                 Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept        -0.6229     -326.9223     53.1586      -6.1499   <2e-16 ***
## gdp               0.1811        2.6826      0.8119       3.3040   0.0012 ** 
## support           1.2246        1.8336      0.6520       2.8122   0.0056 ** 
## health            0.0173        1.5049      0.7348       2.0481   0.0423 *  
## freedom           1.8063        2.6231      0.6027       4.3523   <2e-16 ***
## corruption       -0.6783       -1.4649      0.5698      -2.5710   0.0111 *  
## support:health    0.0263        3.9433      0.4347       9.0705   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.72090    0.71140    4.24072   78.40740 -173.76348  608.74476 
## Ridge minimum MSE= 94.9615 at K= 0 
## P-value for F-test ( 4.24072 , 148.1218 ) = 1.101579e-36 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.1 
##                 Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept        -0.6692     -321.4436     49.0744      -6.5501   <2e-16 ***
## gdp               0.1791        2.6539      0.7548       3.5161   0.0006 ***
## support           1.3166        1.9714      0.6117       3.2229   0.0016 ** 
## health            0.0188        1.6401      0.6847       2.3956   0.0178 *  
## freedom           1.7850        2.5921      0.5856       4.4266   <2e-16 ***
## corruption       -0.6782       -1.4646      0.5551      -2.6384   0.0092 ** 
## support:health    0.0246        3.6776      0.3846       9.5618   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.71380    0.70410    4.09114   78.24305 -173.65496  608.39999 
## Ridge minimum MSE= 94.9615 at K= 0 
## P-value for F-test ( 4.09114 , 148.2057 ) = 5.699512e-36 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.12 
##                 Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept        -0.6901     -317.6684     45.7915      -6.9373   <2e-16 ***
## gdp               0.1774        2.6277      0.7056       3.7240   0.0003 ***
## support           1.3752        2.0591      0.5781       3.5622   0.0005 ***
## health            0.0199        1.7332      0.6422       2.6991   0.0078 ** 
## freedom           1.7648        2.5628      0.5695       4.5003   <2e-16 ***
## corruption       -0.6770       -1.4622      0.5414      -2.7009   0.0077 ** 
## support:health    0.0234        3.4960      0.3499       9.9920   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.70680    0.69680    3.95814   78.11460 -173.58666  608.06524 
## Ridge minimum MSE= 94.9615 at K= 0 
## P-value for F-test ( 3.95814 , 148.2861 ) = 2.516261e-35 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.14 
##                 Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept        -0.6964     -314.8282     43.0441      -7.3141   <2e-16 ***
## gdp               0.1758        2.6037      0.6629       3.9278   0.0001 ***
## support           1.4145        2.1181      0.5490       3.8579   0.0002 ***
## health            0.0207        1.8011      0.6054       2.9751   0.0034 ** 
## freedom           1.7456        2.5350      0.5544       4.5728   <2e-16 ***
## corruption       -0.6753       -1.4584      0.5284      -2.7599   0.0065 ** 
## support:health    0.0225        3.3629      0.3240      10.3799   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.69990    0.68970    3.83828   78.00281 -173.52739  607.76129 
## Ridge minimum MSE= 94.9615 at K= 0 
## P-value for F-test ( 3.83828 , 148.3635 ) = 9.856406e-35 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.16 
##                 Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept        -0.6938     -312.5432     40.6883      -7.6814   <2e-16 ***
## gdp               0.1743        2.5815      0.6254       4.1276   0.0001 ***
## support           1.4419        2.1590      0.5235       4.1244   0.0001 ***
## health            0.0213        1.8525      0.5732       3.2319   0.0015 ** 
## freedom           1.7273        2.5083      0.5401       4.6438   <2e-16 ***
## corruption       -0.6732       -1.4539      0.5163      -2.8161   0.0055 ** 
## support:health    0.0218        3.2603      0.3037      10.7358   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.69310    0.68270    3.72940   77.89777 -173.46230  607.49641 
## Ridge minimum MSE= 94.9615 at K= 0 
## P-value for F-test ( 3.7294 , 148.4379 ) = 3.502559e-34 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.18 
##                 Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept        -0.6851     -310.6074     38.6350      -8.0395   <2e-16 ***
## gdp               0.1729        2.5610      0.5924       4.3233   <2e-16 ***
## support           1.4612        2.1879      0.5007       4.3699   <2e-16 ***
## health            0.0217        1.8925      0.5447       3.4744   0.0007 ***
## freedom           1.7097        2.4828      0.5268       4.7134   <2e-16 ***
## corruption       -0.6709       -1.4489      0.5048      -2.8700   0.0047 ** 
## support:health    0.0212        3.1783      0.2872      11.0654   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.68640    0.67580    3.62962   77.79425 -173.38462  607.27172 
## Ridge minimum MSE= 94.9615 at K= 0 
## P-value for F-test ( 3.62962 , 148.5095 ) = 1.149789e-33 
## -------------------------------------------------------------------
## 
## 
## Coefficients: for Ridge parameter K= 0.2 
##                 Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)    
## Intercept        -0.6723     -308.9008     36.8235      -8.3887   <2e-16 ***
## gdp               0.1716        2.5417      0.5630       4.5149   <2e-16 ***
## support           1.4749        2.2085      0.4802       4.5993   <2e-16 ***
## health            0.0221        1.9242      0.5193       3.7055    3e-04 ***
## freedom           1.6928        2.4582      0.5141       4.7814   <2e-16 ***
## corruption       -0.6684       -1.4434      0.4940      -2.9218    4e-03 ** 
## support:health    0.0208        3.1106      0.2735      11.3727   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Ridge Summary
##         R2     adj-R2   DF ridge          F        AIC        BIC 
##    0.67980    0.66900    3.53769   77.68907 -173.29069  607.08707 
## Ridge minimum MSE= 94.9615 at K= 0 
## P-value for F-test ( 3.53769 , 148.5782 ) = 3.526251e-33 
## -------------------------------------------------------------------
happiness.mod.high_order.final <- lm(ladder_score ~ gdp + support + health + freedom + gdp*health + support*health, happiness)
anova(happiness.mod.high_order.final)
## Analysis of Variance Table
## 
## Response: ladder_score
##                 Df  Sum Sq Mean Sq  F value    Pr(>F)    
## gdp              1 113.054 113.054 408.0548 < 2.2e-16 ***
## support          1  12.198  12.198  44.0271 5.909e-10 ***
## health           1   4.561   4.561  16.4622 8.054e-05 ***
## freedom          1   8.571   8.571  30.9345 1.237e-07 ***
## gdp:health       1   6.624   6.624  23.9092 2.633e-06 ***
## support:health   1   2.588   2.588   9.3399  0.002667 ** 
## Residuals      146  40.450   0.277                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(happiness.mod.high_order.final)
## 
## Call:
## lm(formula = ladder_score ~ gdp + support + health + freedom + 
##     gdp * health + support * health, data = happiness)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.60953 -0.26613  0.05751  0.32877  1.23278 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     11.994736   3.143390   3.816 0.000200 ***
## gdp             -0.260425   0.553072  -0.471 0.638436    
## support        -11.065022   4.723072  -2.343 0.020492 *  
## health          -0.206716   0.051749  -3.995 0.000102 ***
## freedom          2.201834   0.419407   5.250 5.27e-07 ***
## gdp:health       0.006807   0.008610   0.791 0.430474    
## support:health   0.233520   0.076411   3.056 0.002667 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5264 on 146 degrees of freedom
## Multiple R-squared:  0.7849, Adjusted R-squared:  0.7761 
## F-statistic: 88.79 on 6 and 146 DF,  p-value: < 2.2e-16