Objetivo

Identificar los valores de la función de probabilidad bajo la fórmula de distribución de Poisson.

1.Cargar librerias

library(ggplot2)
#source("../funciones/funciones.distribuciones.r")

# o

source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")

2. Ejercicios

2.1. Ejercicio

Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.(Anderson et al., 2008)

Si se puede suponer que la probabilidad de llegada de los automóviles es la misma en cualesquiera de dos lapsos de la misma duración y si la llegada o no–llegada de un automóvil en cualquier lapso es independiente de la llegada o no–llegada de un automóvil en cualquier otro lapso, se puede aplicar la función de probabilidad de Poisson.

Dichas condiciones se satisfacen y en un análisis de datos pasados encuentra que el número promedio de automóviles que llegan en un lapso de 15 minutos es igual a 10;

Aquí la variable aleatoria es x número de automóviles que llegan en un lapso de 15 minutos.

  1. Si la administración desea saber la probabilidad de que lleguen exactamente 5 automóviles en 15 minutos,x=5,y se obtiene:
prob <- round(f.prob.poisson(10, 5),4)

paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob)
## [1] "La probabilidad de que sean exactamente 5 automóviles es de :  0.0378"
prob2 <- round(dpois(x = 5, lambda = 10),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2)
## [1] "La probabilida de que sean exactamente 5 automóviles es de :  0.0378"
  1. Tabla de probabilidad y gráfica de la probabilidad de Poisson
datos <- data.frame(x=1:20, f.prob.x = round(dpois(x = 1:20, lambda = 10),4))

datos <- cbind(datos, f.acum.x = cumsum(datos$f.prob.x))

datos
##     x f.prob.x f.acum.x
## 1   1   0.0005   0.0005
## 2   2   0.0023   0.0028
## 3   3   0.0076   0.0104
## 4   4   0.0189   0.0293
## 5   5   0.0378   0.0671
## 6   6   0.0631   0.1302
## 7   7   0.0901   0.2203
## 8   8   0.1126   0.3329
## 9   9   0.1251   0.4580
## 10 10   0.1251   0.5831
## 11 11   0.1137   0.6968
## 12 12   0.0948   0.7916
## 13 13   0.0729   0.8645
## 14 14   0.0521   0.9166
## 15 15   0.0347   0.9513
## 16 16   0.0217   0.9730
## 17 17   0.0128   0.9858
## 18 18   0.0071   0.9929
## 19 19   0.0037   0.9966
## 20 20   0.0019   0.9985
ggplot(data = datos, aes(x,f.prob.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue')

  1. ¿Cual es la probabilidad de que sea x menor o igual a diez?
datos$f.acum[10]
## [1] 0.5831
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", datos$f.acum[10])
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es:  0.5831"
  1. Media diferente En el ejemplo anterior se usó un lapso de 15 minutos, pero también se usan otros lapsos. Suponga que desea calcular la probabilidad de una llegada en un lapso de 3 minutos.
prob <- round(dpois(x = 1, lambda = 2),4)

paste("La probabilidad cuando x = 1 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 1 y media igual a 2 es del: 27.07 %"

2.2. Ejercicio

En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es 0.005 y los accidentes son independientes entre sí (Walpole et al., 2012).

n <- 400
prob <- 0.005

media <- n * prob
  1. La tabla de distribución de probablidad de Poisson con media igual a 2
datos <- data.frame(x=0:10, f.prob.x = round(dpois(x = 0:10, lambda = media),4))

datos <- cbind(datos, f.acum.x = cumsum(datos$f.prob.x))

datos
##     x f.prob.x f.acum.x
## 1   0   0.1353   0.1353
## 2   1   0.2707   0.4060
## 3   2   0.2707   0.6767
## 4   3   0.1804   0.8571
## 5   4   0.0902   0.9473
## 6   5   0.0361   0.9834
## 7   6   0.0120   0.9954
## 8   7   0.0034   0.9988
## 9   8   0.0009   0.9997
## 10  9   0.0002   0.9999
## 11 10   0.0000   0.9999
ggplot(data = datos, aes(x,f.prob.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue')

  1. ¿Cuál es la probabilidad de que en cualquier periodo dado de 400 días habrá un accidente en un día?
x <- 1
prob <- datos$f.prob.x[x+1]
paste("La probabiidad del valor de x=1 es: ", prob)
## [1] "La probabiidad del valor de x=1 es:  0.2707"
x <- 3
prob <- datos$f.acum.x[x+1]
paste("La probabiidad del valor de x<=3 es: ", prob)
## [1] "La probabiidad del valor de x<=3 es:  0.8571"

3.Interpretacion del caso

#3.1 Ejer 1: “10,5,4” Ejer 2: “400”

#3.2 Ejer 1: “10,5,4” Ejer 2: “400, 0.005”

#3.3 Ejer 1: “1,2,3,4,5,6,7,8,9,10” Ejer 2: “1,2,3,4,5,6,7,8,9”

#3.4 Ejer 1: “0.0005,0.0023,0.0076, …” Ejer 2: “0.1353, 0.2707, 0.1808, …”

#3.5 Ejer 1: “10” Ejer 2: “9”

#3.6 Ejer 1: “0.1251” Ejer 2: “0.2707”

#3.8 Un gráfico de barras es una forma de resumir un conjunto de datos por categorías. Muestra los datos usando varias barras de la misma anchura, cada una de las cuales representa una categoría concreta.

#3.9 se compone de una serie de datos representados por puntos, unidos por segmentos lineales. Mediante este gráfico se puede comprobar rápidamente el cambio de tendencia de los datos.