Datos de los 4 muestreos

rm(list=ls())
library(readxl)
GENERAL <- read_excel("d:/Users/Janus/Documents/Fisiologia vegetal basica/BASE DE DATOS FINAL.xlsx", 
    sheet = "GENERAL")
Muestreo1 <- read_excel("d:/Users/Janus/Documents/Fisiologia vegetal basica/BASE DE DATOS FINAL.xlsx", 
    sheet = "MUESTREO 1")
Muestreo2 <- read_excel("d:/Users/Janus/Documents/Fisiologia vegetal basica/BASE DE DATOS FINAL.xlsx", 
    sheet = "MUESTREO 2")
Muestreo3 <- read_excel("d:/Users/Janus/Documents/Fisiologia vegetal basica/BASE DE DATOS FINAL.xlsx", 
    sheet = "MUESTREO 3")
Muestreo4 <- read_excel("d:/Users/Janus/Documents/Fisiologia vegetal basica/BASE DE DATOS FINAL.xlsx", 
    sheet = "MUESTREO 4")

Area_foliar

Determinación de la variable en los 4 muestreos

k1 <- aov(Area_foliar~Trat, data = Muestreo1)
k2 <- aov(Area_foliar~Trat, data = Muestreo2)
k3 <- aov(Area_foliar~Trat, data = Muestreo3)
k4 <- aov(Area_foliar~Trat, data = Muestreo4)
anova(k1)
## Analysis of Variance Table
## 
## Response: Area_foliar
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 550.34 183.446  27.845 1.088e-05 ***
## Residuals 12  79.06   6.588                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(k2)
## Analysis of Variance Table
## 
## Response: Area_foliar
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## Trat       3 1721.7  573.89  5.6601 0.01186 *
## Residuals 12 1216.7  101.39                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(k3)
## Analysis of Variance Table
## 
## Response: Area_foliar
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 17500.9  5833.6  142.63 1.194e-09 ***
## Residuals 12   490.8    40.9                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(k4)
## Analysis of Variance Table
## 
## Response: Area_foliar
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 16195.5  5398.5  289.65 1.863e-11 ***
## Residuals 12   223.7    18.6                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

shapiro test

shapiro.test(resid(k1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(k1)
## W = 0.9256, p-value = 0.2075
shapiro.test(resid(k2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(k2)
## W = 0.87538, p-value = 0.03291
shapiro.test(resid(k3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(k3)
## W = 0.82351, p-value = 0.005687
shapiro.test(resid(k4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(k4)
## W = 0.96647, p-value = 0.7787

*Homogeneidad de varianzas**

library(car)
## Loading required package: carData
library(carData)
leveneTest(Muestreo1$Area_foliar~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.1719 0.3611
##       12
leveneTest(Muestreo2$Area_foliar~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  2.8594 0.08136 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Muestreo3$Area_foliar~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value   Pr(>F)   
## group  3   8.539 0.002633 **
##       12                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Muestreo4$Area_foliar~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.4911  0.695
##       12

Prueba de tukey

library(agricolae)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
m1tukey <-HSD.test(Muestreo1$Area_foliar,Muestreo1$Trat, 12, 6.588, alpha = 0.05)
m2tukey <-HSD.test(Muestreo2$Area_foliar,Muestreo2$Trat, 12, 101.39, alpha = 0.05)
m3tukey <-HSD.test(Muestreo3$Area_foliar,Muestreo3$Trat, 12, 40.9, alpha = 0.05)
m4tukey <-HSD.test(Muestreo4$Area_foliar,Muestreo4$Trat, 12, 18.6, alpha = 0.05)
m1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     6.588 12 59.42406 4.319311 5.388372
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$Area_foliar      std r    Min    Max      Q25     Q50      Q75
## T1              66.57400 1.953636 4 64.925 69.223 65.20250 66.0740 67.44550
## T2              52.04325 1.303762 4 50.238 53.351 51.73575 52.2920 52.59950
## T3              63.53700 2.607883 4 59.999 66.252 62.73875 63.9485 64.74675
## T4              55.54200 3.746375 4 50.356 58.346 54.01225 56.7330 58.26275
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$Area_foliar groups
## T1              66.57400      a
## T3              63.53700      a
## T4              55.54200      b
## T2              52.04325      b
## 
## attr(,"class")
## [1] "group"
m2tukey
## $statistics
##   MSerror Df    Mean       CV     MSD
##    101.39 12 84.6375 11.89693 21.1387
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$Area_foliar       std r  Min   Max    Q25   Q50     Q75
## T1                92.775 18.570115 4 66.7 109.5 86.800 97.45 103.425
## T2                67.300  4.817330 4 61.2  71.9 64.650 68.05  70.700
## T3                92.500  3.221801 4 88.6  95.7 90.550 92.85  94.800
## T4                85.975  5.208567 4 81.5  93.3 82.775 84.55  87.750
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$Area_foliar groups
## T1                92.775      a
## T3                92.500      a
## T4                85.975     ab
## T2                67.300      b
## 
## attr(,"class")
## [1] "group"
m3tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      40.9 12 132.4688 4.827788 13.42587
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$Area_foliar       std r   Min   Max     Q25    Q50     Q75
## T1               161.575  1.447699 4 159.6 162.8 160.950 161.95 162.575
## T2                77.500 12.451774 4  61.2  88.6  71.175  80.10  86.425
## T3               154.675  1.936276 4 151.9 156.3 154.150 155.25 155.775
## T4               136.125  1.645955 4 134.3 138.0 135.050 136.10 137.175
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$Area_foliar groups
## T1               161.575      a
## T3               154.675      a
## T4               136.125      b
## T2                77.500      c
## 
## attr(,"class")
## [1] "group"
m4tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      18.6 12 158.0744 2.728317 9.053932
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$Area_foliar      std r     Min     Max      Q25      Q50      Q75
## T1              181.7325 5.107709 4 174.810 186.170 179.4750 182.9750 185.2325
## T2              103.9250 4.887191 4  98.670 109.750 100.7250 103.6400 106.8400
## T3              180.1078 3.965360 4 175.923 185.483 178.4873 179.5125 181.1330
## T4              166.5325 2.975739 4 163.360 169.360 164.3275 166.7050 168.9100
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$Area_foliar groups
## T1              181.7325      a
## T3              180.1078      a
## T4              166.5325      b
## T2              103.9250      c
## 
## attr(,"class")
## [1] "group"

Numero de hojas

Determinación de la variable en los 4 muestreos

ANOVA

m1 <- aov(PA_NHojas~Trat, data = Muestreo1)
m2 <- aov(PA_NHojas~Trat, data = Muestreo2)
m3 <- aov(PA_NHojas~Trat, data = Muestreo3)
m4 <- aov(PA_NHojas~Trat, data = Muestreo4)
anova(m1)
## Analysis of Variance Table
## 
## Response: PA_NHojas
##           Df Sum Sq Mean Sq F value Pr(>F)
## Trat       3    1.5 0.50000     2.4 0.1187
## Residuals 12    2.5 0.20833
anova(m2)
## Analysis of Variance Table
## 
## Response: PA_NHojas
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## Trat       3    3.5  1.1667  3.1111 0.06671 .
## Residuals 12    4.5  0.3750                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m3)
## Analysis of Variance Table
## 
## Response: PA_NHojas
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## Trat       3 3.6875  1.2292  3.9333 0.03626 *
## Residuals 12 3.7500  0.3125                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m4)
## Analysis of Variance Table
## 
## Response: PA_NHojas
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 8.1875 2.72917  11.909 0.0006561 ***
## Residuals 12 2.7500 0.22917                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Purea de normalidad de shapiro

shapiro.test(resid(m1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m1)
## W = 0.8514, p-value = 0.01429
shapiro.test(resid(m2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m2)
## W = 0.91698, p-value = 0.1508
shapiro.test(resid(m3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m3)
## W = 0.76781, p-value = 0.00105
shapiro.test(resid(m4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m4)
## W = 0.87974, p-value = 0.03844

En todos los muestreos se puede observar normalidad en los datos de Numero de hojas

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$PA_NHojas~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value   Pr(>F)   
## group  3       6 0.009731 **
##       12                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Muestreo2$PA_NHojas~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)   
## group  3  6.8182 0.00619 **
##       12                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Muestreo3$PA_NHojas~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3       1 0.4262
##       12
leveneTest(Muestreo4$PA_NHojas~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value    Pr(>F)    
## group  3  14.333 0.0002852 ***
##       12                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

En temperatura, todos los datos representan varianzas homogeneas

Prueba de tukey

library(agricolae)
library(dplyr)
m1tukey <-HSD.test(Muestreo1$PA_NHojas,Muestreo1$Trat, 12, 0.20833, alpha = 0.05)
m2tukey <-HSD.test(Muestreo2$PA_NHojas,Muestreo2$Trat, 12, 0.3750, alpha = 0.05)
m3tukey <-HSD.test(Muestreo3$PA_NHojas,Muestreo3$Trat, 12, 0.3125, alpha = 0.05)
m4tukey <-HSD.test(Muestreo4$PA_NHojas,Muestreo4$Trat, 12, 0.22917, alpha = 0.05)
m1tukey
## $statistics
##   MSerror Df Mean       CV       MSD
##   0.20833 12  3.5 13.04091 0.9582011
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$PA_NHojas       std r Min Max  Q25 Q50 Q75
## T1                3.75 0.5000000 4   3   4 3.75 4.0   4
## T2                3.00 0.0000000 4   3   3 3.00 3.0   3
## T3                3.75 0.5000000 4   3   4 3.75 4.0   4
## T4                3.50 0.5773503 4   3   4 3.00 3.5   4
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$PA_NHojas groups
## T1                3.75      a
## T3                3.75      a
## T4                3.50      a
## T2                3.00      a
## 
## attr(,"class")
## [1] "group"
m2tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##     0.375 12    4 15.30931 1.285572
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$PA_NHojas       std r Min Max  Q25 Q50  Q75
## T1                4.25 0.9574271 4   3   5 3.75 4.5 5.00
## T2                3.25 0.5000000 4   3   4 3.00 3.0 3.25
## T3                4.50 0.5773503 4   4   5 4.00 4.5 5.00
## T4                4.00 0.0000000 4   4   4 4.00 4.0 4.00
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$PA_NHojas groups
## T3                4.50      a
## T1                4.25      a
## T4                4.00      a
## T2                3.25      a
## 
## attr(,"class")
## [1] "group"
m3tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##    0.3125 12 5.3125 10.52267 1.173561
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$PA_NHojas       std r Min Max  Q25 Q50 Q75
## T1                5.75 0.5000000 4   5   6 5.75 6.0   6
## T2                4.50 0.5773503 4   4   5 4.00 4.5   5
## T3                5.50 0.5773503 4   5   6 5.00 5.5   6
## T4                5.50 0.5773503 4   5   6 5.00 5.5   6
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$PA_NHojas groups
## T1                5.75      a
## T3                5.50     ab
## T4                5.50     ab
## T2                4.50      b
## 
## attr(,"class")
## [1] "group"
m4tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##   0.22917 12 6.9375 6.900426 1.004985
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$PA_NHojas       std r Min Max  Q25 Q50 Q75
## T1                7.50 0.5773503 4   7   8 7.00 7.5   8
## T2                5.75 0.5000000 4   5   6 5.75 6.0   6
## T3                7.50 0.5773503 4   7   8 7.00 7.5   8
## T4                7.00 0.0000000 4   7   7 7.00 7.0   7
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$PA_NHojas groups
## T1                7.50      a
## T3                7.50      a
## T4                7.00      a
## T2                5.75      b
## 
## attr(,"class")
## [1] "group"

**Representacion de las diferencias estadisticas dentro de la variable temperatura en los cuatro muestreos

PA longitud

Determinación de la variable en los 4 muestreos

ANOVA

n1 <- aov(PA_Longitud~Trat, data = Muestreo1)
n2 <- aov(PA_Longitud~Trat, data = Muestreo2)
n3 <- aov(PA_Longitud~Trat, data = Muestreo3)
n4 <- aov(PA_Longitud~Trat, data = Muestreo4)
anova(n1)
## Analysis of Variance Table
## 
## Response: PA_Longitud
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## Trat       3 4.2832 1.42772  5.3196 0.01456 *
## Residuals 12 3.2206 0.26839                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(n2)
## Analysis of Variance Table
## 
## Response: PA_Longitud
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## Trat       3 51.782 17.2608  3.9041 0.03702 *
## Residuals 12 53.055  4.4212                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(n3)
## Analysis of Variance Table
## 
## Response: PA_Longitud
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 149.962  49.987  78.437 3.747e-08 ***
## Residuals 12   7.648   0.637                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(n4)
## Analysis of Variance Table
## 
## Response: PA_Longitud
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 123.142  41.047  59.471 1.787e-07 ***
## Residuals 12   8.282   0.690                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(n1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(n1)
## W = 0.87853, p-value = 0.03682
shapiro.test(resid(n2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(n2)
## W = 0.94037, p-value = 0.3536
shapiro.test(resid(n3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(n3)
## W = 0.95714, p-value = 0.6103
shapiro.test(resid(n4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(n4)
## W = 0.97054, p-value = 0.8473

Todos los datos cumplen los supuestos

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$PA_Longitud~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3   2.773 0.08722 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Muestreo2$PA_Longitud~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value   Pr(>F)   
## group  3  10.595 0.001087 **
##       12                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Muestreo3$PA_Longitud~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.6344 0.6069
##       12
leveneTest(Muestreo4$PA_Longitud~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3    0.32 0.8108
##       12

todos los supuestos se cumplen (casi)

Pueba de tukey

library(agricolae)
library(dplyr)
n1tukey <-HSD.test(Muestreo1$PA_Longitud,Muestreo1$Trat, 12, 0.26839, alpha = 0.05)
n2tukey <-HSD.test(Muestreo2$PA_Longitud,Muestreo2$Trat, 12, 4.4212, alpha = 0.05)
n3tukey <-HSD.test(Muestreo3$PA_Longitud,Muestreo3$Trat, 12, 0.637, alpha = 0.05)
n4tukey <-HSD.test(Muestreo4$PA_Longitud,Muestreo4$Trat, 12, 0.690, alpha = 0.05)
n1tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##   0.26839 12 6.98 7.422116 1.087587
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$PA_Longitud       std r  Min Max    Q25 Q50   Q75
## T1                7.5725 0.8942548 4 6.99 8.9 7.0725 7.2 7.700
## T2                6.2250 0.2362908 4 5.90 6.4 6.1250 6.3 6.400
## T3                7.3225 0.3022554 4 6.99 7.7 7.1475 7.3 7.475
## T4                6.8000 0.3559026 4 6.30 7.1 6.6750 6.9 7.025
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$PA_Longitud groups
## T1                7.5725      a
## T3                7.3225      a
## T4                6.8000     ab
## T2                6.2250      b
## 
## attr(,"class")
## [1] "group"
n2tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##    4.4212 12 9.6125 21.87428 4.414188
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$PA_Longitud       std r Min  Max    Q25   Q50    Q75
## T1                10.450 3.8336232 4 6.5 15.0  7.775 10.15 12.825
## T2                 6.750 0.4654747 4 6.3  7.2  6.375  6.75  7.125
## T3                11.625 1.5840349 4 9.6 13.2 10.800 11.85 12.675
## T4                 9.625 0.5123475 4 8.9 10.1  9.500  9.75  9.875
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$PA_Longitud groups
## T3                11.625      a
## T1                10.450     ab
## T4                 9.625     ab
## T2                 6.750      b
## 
## attr(,"class")
## [1] "group"
n3tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     0.637 12 12.40625 6.433232 1.675523
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$PA_Longitud       std r  Min  Max   Q25   Q50    Q75
## T1                15.100 0.5291503 4 14.6 15.8 14.75 15.00 15.350
## T2                 8.000 0.8755950 4  7.2  9.1  7.35  7.85  8.500
## T3                15.425 0.8539126 4 14.3 16.3 15.05 15.55 15.925
## T4                11.100 0.8793937 4 10.1 12.1 10.55 11.10 11.650
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$PA_Longitud groups
## T3                15.425      a
## T1                15.100      a
## T4                11.100      b
## T2                 8.000      c
## 
## attr(,"class")
## [1] "group"
n4tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      0.69 12 16.11875 5.153392 1.743835
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$PA_Longitud       std r  Min  Max    Q25   Q50   Q75
## T1                17.600 0.5291503 4 16.9 18.1 17.350 17.70 17.95
## T2                11.525 0.7675719 4 10.4 12.1 11.375 11.80 11.95
## T3                18.825 0.8220908 4 17.9 19.7 18.275 18.85 19.40
## T4                16.525 1.1026483 4 15.2 17.9 16.175 16.50 16.85
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$PA_Longitud groups
## T3                18.825      a
## T1                17.600     ab
## T4                16.525      b
## T2                11.525      c
## 
## attr(,"class")
## [1] "group"

Hojas_Peso_fresco

Determinación de la variable en los 4 muestreos

ANOVA

o1 <- aov(Hojas_Peso_fresco~Trat, data = Muestreo1)
o2 <- aov(Hojas_Peso_fresco~Trat, data = Muestreo2)
o3 <- aov(Hojas_Peso_fresco~Trat, data = Muestreo3)
o4 <- aov(Hojas_Peso_fresco~Trat, data = Muestreo4)
anova(o1)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_fresco
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 5.4673 1.82242  28.939 8.901e-06 ***
## Residuals 12 0.7557 0.06297                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(o2)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_fresco
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 16.9648  5.6549  10.976 0.0009349 ***
## Residuals 12  6.1828  0.5152                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(o3)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_fresco
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 215.200  71.733  236.29 6.196e-11 ***
## Residuals 12   3.643   0.304                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(o4)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_fresco
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 210.204  70.068  183.11 2.774e-10 ***
## Residuals 12   4.592   0.383                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(o1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(o1)
## W = 0.97295, p-value = 0.8839
shapiro.test(resid(o2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(o2)
## W = 0.96279, p-value = 0.7126
shapiro.test(resid(o3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(o3)
## W = 0.95756, p-value = 0.6179
shapiro.test(resid(o4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(o4)
## W = 0.92658, p-value = 0.2151

se cumplen todos los supuestos

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$Hojas_Peso_fresco~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  2.5854 0.1017
##       12
leveneTest(Muestreo2$Hojas_Peso_fresco~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.2489 0.3355
##       12
leveneTest(Muestreo3$Hojas_Peso_fresco~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.5082 0.2626
##       12
leveneTest(Muestreo4$Hojas_Peso_fresco~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)   
## group  3  6.4491 0.00756 **
##       12                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Se cumplen todos los supuestos

Pueba de tukey

library(agricolae)
library(dplyr)
o1tukey <-HSD.test(Muestreo1$Hojas_Peso_fresco,Muestreo1$Trat, 12, 0.06297, alpha = 0.05)
o2tukey <-HSD.test(Muestreo2$Hojas_Peso_fresco,Muestreo2$Trat, 12, 0.5152, alpha = 0.05)
o3tukey <-HSD.test(Muestreo3$Hojas_Peso_fresco,Muestreo3$Trat, 12,  0.304, alpha = 0.05)
o4tukey <-HSD.test(Muestreo4$Hojas_Peso_fresco,Muestreo4$Trat, 12,  0.383, alpha = 0.05)
o1tukey
## $statistics
##   MSerror Df   Mean       CV       MSD
##   0.06297 12 3.9295 6.386009 0.5268022
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$Hojas_Peso_fresco       std r   Min   Max     Q25   Q50     Q75
## T1                     4.68800 0.3633492 4 4.223 5.023 4.49150 4.753 4.94950
## T2                     3.09075 0.1257971 4 2.936 3.219 3.01850 3.104 3.17625
## T3                     4.17550 0.2728864 4 3.902 4.510 3.98525 4.145 4.33525
## T4                     3.76375 0.1719852 4 3.520 3.923 3.72400 3.806 3.84575
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$Hojas_Peso_fresco groups
## T1                     4.68800      a
## T3                     4.17550     ab
## T4                     3.76375      b
## T2                     3.09075      c
## 
## attr(,"class")
## [1] "group"
o2tukey
## $statistics
##   MSerror Df   Mean      CV      MSD
##    0.5152 12 5.8225 12.3276 1.506845
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$Hojas_Peso_fresco       std r   Min   Max     Q25    Q50     Q75
## T1                     6.28075 1.0659588 4 4.841 7.234 5.80850 6.5240 6.99625
## T2                     4.07075 0.7024127 4 3.138 4.812 3.80025 4.1665 4.43700
## T3                     6.72025 0.4411314 4 6.162 7.193 6.50025 6.7630 6.98300
## T4                     6.21825 0.4864945 4 5.872 6.917 5.89375 6.0420 6.36650
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$Hojas_Peso_fresco groups
## T3                     6.72025      a
## T1                     6.28075      a
## T4                     6.21825      a
## T2                     4.07075      b
## 
## attr(,"class")
## [1] "group"
o3tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     0.304 12 12.95681 4.255383 1.157491
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$Hojas_Peso_fresco       std r    Min    Max      Q25     Q50
## T1                    16.17300 0.7805583 4 15.232 16.961 15.70000 16.2495
## T2                     6.72025 0.4411314 4  6.162  7.193  6.50025  6.7630
## T3                    14.46700 0.4530350 4 13.933 14.994 14.21425 14.4705
## T4                    14.46700 0.4530350 4 13.933 14.994 14.21425 14.4705
##         Q75
## T1 16.72250
## T2  6.98300
## T3 14.72325
## T4 14.72325
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$Hojas_Peso_fresco groups
## T1                    16.17300      a
## T3                    14.46700      b
## T4                    14.46700      b
## T2                     6.72025      c
## 
## attr(,"class")
## [1] "group"
o4tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     0.383 12 15.05237 4.111444 1.299212
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$Hojas_Peso_fresco       std r    Min    Max      Q25     Q50
## T1                     17.9190 0.5463833 4 17.382 18.492 17.49150 17.9010
## T2                      8.8765 0.7124729 4  8.078  9.531  8.37650  8.9485
## T3                     17.3055 0.8271693 4 16.284 17.978 16.80750 17.4800
## T4                     16.1085 0.2006830 4 15.939 16.364 15.95325 16.0655
##         Q75
## T1 18.32850
## T2  9.44850
## T3 17.97800
## T4 16.22075
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$Hojas_Peso_fresco groups
## T1                     17.9190      a
## T3                     17.3055     ab
## T4                     16.1085      b
## T2                      8.8765      c
## 
## attr(,"class")
## [1] "group"

Hojas_Peso_seco

Determinación de la variable en los 4 muestreos

ANOVA

p1 <- aov(Hojas_Peso_seco~Trat, data = Muestreo1)
p2 <- aov(Hojas_Peso_seco~Trat, data = Muestreo2)
p3 <- aov(Hojas_Peso_seco~Trat, data = Muestreo3)
p4 <- aov(Hojas_Peso_seco~Trat, data = Muestreo4)
anova(p1)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_seco
##           Df   Sum Sq  Mean Sq F value    Pr(>F)    
## Trat       3 0.057738 0.019246  12.662 0.0005002 ***
## Residuals 12 0.018240 0.001520                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(p2)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_seco
##           Df  Sum Sq  Mean Sq F value   Pr(>F)   
## Trat       3 0.18608 0.062026   7.186 0.005104 **
## Residuals 12 0.10358 0.008632                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(p3)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_seco
##           Df  Sum Sq  Mean Sq F value    Pr(>F)    
## Trat       3 0.68737 0.229122  38.146 2.054e-06 ***
## Residuals 12 0.07208 0.006006                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(p4)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_seco
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 2.19644 0.73215  31.332 5.867e-06 ***
## Residuals 12 0.28041 0.02337                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(p1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(p1)
## W = 0.96767, p-value = 0.7997
shapiro.test(resid(p2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(p2)
## W = 0.93219, p-value = 0.264
shapiro.test(resid(p3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(p3)
## W = 0.87473, p-value = 0.03214
shapiro.test(resid(p4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(p4)
## W = 0.94936, p-value = 0.4796

Se cumplen los supuestos

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$Hojas_Peso_seco~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  2.1742 0.1441
##       12
leveneTest(Muestreo2$Hojas_Peso_seco~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  2.3867 0.1201
##       12
leveneTest(Muestreo3$Hojas_Peso_seco~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.6978 0.2203
##       12
leveneTest(Muestreo4$Hojas_Peso_seco~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.2135  0.347
##       12

Se cumplen todos los supuestos

Pueba de tukey

library(agricolae)
library(dplyr)
p1tukey <-HSD.test(Muestreo1$Hojas_Peso_seco,Muestreo1$Trat, 12, 0.001520, alpha = 0.05)
p2tukey <-HSD.test(Muestreo2$Hojas_Peso_seco,Muestreo2$Trat, 12, 0.008632, alpha = 0.05)
p3tukey <-HSD.test(Muestreo3$Hojas_Peso_seco,Muestreo3$Trat, 12, 0.006006, alpha = 0.05)
p4tukey <-HSD.test(Muestreo4$Hojas_Peso_seco,Muestreo4$Trat, 12, 0.02337, alpha = 0.05)
p1tukey
## $statistics
##   MSerror Df    Mean       CV        MSD
##   0.00152 12 0.30575 12.75133 0.08184696
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$Hojas_Peso_seco        std r   Min   Max     Q25    Q50     Q75
## T1                   0.37125 0.05314367 4 0.311 0.432 0.33800 0.3710 0.40425
## T2                   0.20800 0.02080064 4 0.189 0.236 0.19425 0.2035 0.21725
## T3                   0.32775 0.04495461 4 0.285 0.386 0.29700 0.3200 0.35075
## T4                   0.31600 0.02831960 4 0.286 0.347 0.29575 0.3155 0.33575
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$Hojas_Peso_seco groups
## T1                   0.37125      a
## T3                   0.32775      a
## T4                   0.31600      a
## T2                   0.20800      b
## 
## attr(,"class")
## [1] "group"
p2tukey
## $statistics
##    MSerror Df      Mean       CV       MSD
##   0.008632 12 0.5531875 16.79513 0.1950457
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$Hojas_Peso_seco        std r   Min   Max    Q25    Q50     Q75
## T1                   0.59850 0.14735332 4 0.387 0.713 0.5550 0.6470 0.69050
## T2                   0.36725 0.03944933 4 0.311 0.401 0.3560 0.3785 0.38975
## T3                   0.62525 0.09350356 4 0.515 0.712 0.5645 0.6370 0.69775
## T4                   0.62175 0.05014230 4 0.581 0.692 0.5885 0.6070 0.64025
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$Hojas_Peso_seco groups
## T3                   0.62525      a
## T4                   0.62175      a
## T1                   0.59850      a
## T2                   0.36725      b
## 
## attr(,"class")
## [1] "group"
p3tukey
## $statistics
##    MSerror Df    Mean       CV       MSD
##   0.006006 12 0.98425 7.873852 0.1626947
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$Hojas_Peso_seco        std r   Min   Max    Q25    Q50     Q75
## T1                   1.10425 0.04587937 4 1.059 1.156 1.0695 1.1010 1.13575
## T2                   0.62525 0.09350356 4 0.515 0.712 0.5645 0.6370 0.69775
## T3                   1.10375 0.08117214 4 1.003 1.173 1.0555 1.1195 1.16775
## T4                   1.10375 0.08117214 4 1.003 1.173 1.0555 1.1195 1.16775
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$Hojas_Peso_seco groups
## T1                   1.10425      a
## T3                   1.10375      a
## T4                   1.10375      a
## T2                   0.62525      b
## 
## attr(,"class")
## [1] "group"
p4tukey
## $statistics
##   MSerror Df    Mean       CV       MSD
##   0.02337 12 1.50525 10.15595 0.3209298
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$Hojas_Peso_seco        std r   Min   Max     Q25    Q50     Q75
## T1                   1.90650 0.16086537 4 1.727 2.094 1.80500 1.9025 2.00400
## T2                   0.90075 0.08052484 4 0.799 0.973 0.85525 0.9155 0.96100
## T3                   1.63875 0.16415516 4 1.485 1.870 1.55700 1.6000 1.68175
## T4                   1.57500 0.18482604 4 1.376 1.782 1.44725 1.5710 1.69875
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$Hojas_Peso_seco groups
## T1                   1.90650      a
## T3                   1.63875     ab
## T4                   1.57500      b
## T2                   0.90075      c
## 
## attr(,"class")
## [1] "group"

RT_Longitud

Determinación de la variable en los 4 muestreos

ANOVA

q1 <- aov(RT_Longitud~Trat, data = Muestreo1)
q2 <- aov(RT_Longitud~Trat, data = Muestreo2)
q3 <- aov(RT_Longitud~Trat, data = Muestreo3)
q4 <- aov(RT_Longitud~Trat, data = Muestreo4)
anova(q1)
## Analysis of Variance Table
## 
## Response: RT_Longitud
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## Trat       3  46.25 15.4167  5.5224 0.01288 *
## Residuals 12  33.50  2.7917                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(q2)
## Analysis of Variance Table
## 
## Response: RT_Longitud
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 323.19 107.729  22.982 2.908e-05 ***
## Residuals 12  56.25   4.687                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(q3)
## Analysis of Variance Table
## 
## Response: RT_Longitud
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## Trat       3 1473.2  491.08  100.73 8.95e-09 ***
## Residuals 12   58.5    4.88                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(q4)
## Analysis of Variance Table
## 
## Response: RT_Longitud
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 3459.7 1153.23  938.22 1.714e-14 ***
## Residuals 12   14.8    1.23                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(q1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q1)
## W = 0.94539, p-value = 0.4204
shapiro.test(resid(q2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q2)
## W = 0.94633, p-value = 0.4338
shapiro.test(resid(q3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q3)
## W = 0.94294, p-value = 0.3865
shapiro.test(resid(q4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q4)
## W = 0.94651, p-value = 0.4365

Se cumplen todos los supuestos

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$RT_Longitud~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3   1.503 0.2639
##       12
leveneTest(Muestreo2$RT_Longitud~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.4124 0.2873
##       12
leveneTest(Muestreo3$RT_Longitud~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  4.1441 0.03128 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Muestreo4$RT_Longitud~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  0.7857 0.5246
##       12

Se cumplen todos los supuestos

Pueba de tukey

library(agricolae)
library(dplyr)
q1tukey <-HSD.test(Muestreo1$RT_Longitud,Muestreo1$Trat, 12, 2.7917, alpha = 0.05)
q2tukey <-HSD.test(Muestreo2$RT_Longitud,Muestreo2$Trat, 12,  4.687, alpha = 0.05)
q3tukey <-HSD.test(Muestreo3$RT_Longitud,Muestreo3$Trat, 12,  4.88, alpha = 0.05)
q4tukey <-HSD.test(Muestreo4$RT_Longitud,Muestreo4$Trat, 12,  1.23, alpha = 0.05)
q1tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##    2.7917 12 15.125 11.04686 3.507641
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$RT_Longitud      std r Min Max   Q25  Q50   Q75
## T1                 16.50 1.290994 4  15  18 15.75 16.5 17.25
## T2                 12.50 2.516611 4  10  16 11.50 12.0 13.00
## T3                 16.75 0.500000 4  16  17 16.75 17.0 17.00
## T4                 14.75 1.707825 4  13  17 13.75 14.5 15.50
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$RT_Longitud groups
## T3                 16.75      a
## T1                 16.50      a
## T4                 14.75     ab
## T2                 12.50      b
## 
## attr(,"class")
## [1] "group"
q2tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     4.687 12 22.6875 9.542471 4.544941
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$RT_Longitud       std r Min Max   Q25  Q50   Q75
## T1                 25.25 3.3040379 4  21  29 24.00 25.5 26.75
## T2                 15.00 0.8164966 4  14  16 14.75 15.0 15.25
## T3                 26.25 2.2173558 4  23  28 26.00 27.0 27.25
## T4                 24.25 1.5000000 4  23  26 23.00 24.0 25.25
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$RT_Longitud groups
## T3                 26.25      a
## T1                 25.25      a
## T4                 24.25      a
## T2                 15.00      b
## 
## attr(,"class")
## [1] "group"
q3tukey
## $statistics
##   MSerror Df   Mean      CV      MSD
##      4.88 12 30.125 7.33302 4.637572
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$RT_Longitud       std r Min Max   Q25  Q50   Q75
## T1                 35.25 0.5000000 4  35  36 35.00 35.0 35.25
## T2                 15.00 0.8164966 4  14  16 14.75 15.0 15.25
## T3                 40.75 2.9860788 4  38  45 39.50 40.0 41.25
## T4                 29.50 3.1091264 4  26  33 27.50 29.5 31.50
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$RT_Longitud groups
## T3                 40.75      a
## T1                 35.25      b
## T4                 29.50      c
## T2                 15.00      d
## 
## attr(,"class")
## [1] "group"
q4tukey
## $statistics
##   MSerror Df    Mean       CV     MSD
##      1.23 12 41.8125 2.652445 2.32827
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$RT_Longitud       std r Min Max   Q25  Q50   Q75
## T1                 49.50 1.2909944 4  48  51 48.75 49.5 50.25
## T2                 18.00 0.8164966 4  17  19 17.75 18.0 18.25
## T3                 57.25 0.9574271 4  56  58 56.75 57.5 58.00
## T4                 42.50 1.2909944 4  41  44 41.75 42.5 43.25
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$RT_Longitud groups
## T3                 57.25      a
## T1                 49.50      b
## T4                 42.50      c
## T2                 18.00      d
## 
## attr(,"class")
## [1] "group"

RT_Diámetro

Determinación de la variable en los 4 muestreos

ANOVA

r1 <- aov(RT_Diámetro~Trat, data = Muestreo1)
r2 <- aov(RT_Diámetro~Trat, data = Muestreo2)
r3 <- aov(RT_Diámetro~Trat, data = Muestreo3)
r4 <- aov(RT_Diámetro~Trat, data = Muestreo4)
anova(r1)
## Analysis of Variance Table
## 
## Response: RT_Diámetro
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## Trat       3  79.25  26.417  9.1884 0.001963 **
## Residuals 12  34.50   2.875                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(r2)
## Analysis of Variance Table
## 
## Response: RT_Diámetro
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 466.05  155.35   25.68 1.653e-05 ***
## Residuals 12  72.59    6.05                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(r3)
## Analysis of Variance Table
## 
## Response: RT_Diámetro
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 1571.19  523.73  138.89 1.394e-09 ***
## Residuals 12   45.25    3.77                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(r4)
## Analysis of Variance Table
## 
## Response: RT_Diámetro
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3   3654  1218.0    2436 < 2.2e-16 ***
## Residuals 12      6     0.5                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(r1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r1)
## W = 0.98893, p-value = 0.9985
shapiro.test(resid(r2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r2)
## W = 0.91335, p-value = 0.1318
shapiro.test(resid(r3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r3)
## W = 0.92303, p-value = 0.1887
shapiro.test(resid(r4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(r4)
## W = 0.929, p-value = 0.235

Se cumplen todos los supuestos

*Homogeneidad de varianzas**

library(car)
library(carData)
leveneTest(Muestreo1$RT_Diámetro~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.1818 0.3577
##       12
leveneTest(Muestreo2$RT_Diámetro~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.5917  0.243
##       12
leveneTest(Muestreo3$RT_Diámetro~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.8065 0.03969 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Muestreo4$RT_Diámetro~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3       0      1
##       12

Se cumplen todos los supuestos

Pueba de tukey

library(agricolae)
library(dplyr)
r1tukey <-HSD.test(Muestreo1$RT_Diámetro,Muestreo1$Trat, 12, 2.875, alpha = 0.05)
r2tukey <-HSD.test(Muestreo2$RT_Diámetro,Muestreo2$Trat, 12, 6.05, alpha = 0.05)
r3tukey <-HSD.test(Muestreo3$RT_Diámetro,Muestreo3$Trat, 12,  3.77, alpha = 0.05)
r4tukey <-HSD.test(Muestreo4$RT_Diámetro,Muestreo4$Trat, 12,  0.5, alpha = 0.05)
r1tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##     2.875 12 12.125 13.98419 3.559587
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$RT_Diámetro       std r Min Max   Q25  Q50   Q75
## T1                 14.25 1.7078251 4  12  16 13.50 14.5 15.25
## T2                  8.75 2.5000000 4   6  12  7.50  8.5  9.75
## T3                 14.00 0.8164966 4  13  15 13.75 14.0 14.25
## T4                 11.50 1.2909944 4  10  13 10.75 11.5 12.25
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$RT_Diámetro groups
## T1                 14.25      a
## T3                 14.00      a
## T4                 11.50     ab
## T2                  8.75      b
## 
## attr(,"class")
## [1] "group"
r2tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##      6.05 12 21.225 11.58857 5.163669
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$RT_Diámetro       std r Min  Max   Q25 Q50    Q75
## T1                25.000 3.5590261 4  20 28.0 23.75  26 27.250
## T2                12.000 0.8164966 4  11 13.0 11.75  12 12.250
## T3                25.025 2.8523382 4  21 27.1 24.00  26 27.025
## T4                22.875 1.6520190 4  21 24.5 21.75  23 24.125
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$RT_Diámetro groups
## T3                25.025      a
## T1                25.000      a
## T4                22.875      a
## T2                12.000      b
## 
## attr(,"class")
## [1] "group"
r3tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##      3.77 12 28.8125 6.738911 4.076162
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$RT_Diámetro      std r Min Max   Q25  Q50   Q75
## T1                 34.75 0.500000 4  34  35 34.75 35.0 35.00
## T2                 13.25 0.500000 4  13  14 13.00 13.0 13.25
## T3                 39.50 3.109126 4  37  44 37.75 38.5 40.25
## T4                 27.75 2.217356 4  25  30 26.50 28.0 29.25
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$RT_Diámetro groups
## T3                 39.50      a
## T1                 34.75      b
## T4                 27.75      c
## T2                 13.25      d
## 
## attr(,"class")
## [1] "group"
r4tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##       0.5 12   42 1.683588 1.484451
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$RT_Diámetro       std r Min Max   Q25  Q50   Q75
## T1                  49.5 0.5773503 4  49  50 49.00 49.5 50.00
## T2                  17.5 0.5773503 4  17  18 17.00 17.5 18.00
## T3                  58.0 0.8164966 4  57  59 57.75 58.0 58.25
## T4                  43.0 0.8164966 4  42  44 42.75 43.0 43.25
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$RT_Diámetro groups
## T3                  58.0      a
## T1                  49.5      b
## T4                  43.0      c
## T2                  17.5      d
## 
## attr(,"class")
## [1] "group"

RT_Peso_fresco

Determinación de la variable en el muestreo 4

ANOVA

s1 <- aov(RT_Peso_fresco~Trat, data = Muestreo1)
s2 <- aov(RT_Peso_fresco~Trat, data = Muestreo2)
s3 <- aov(RT_Peso_fresco~Trat, data = Muestreo3)
s4 <- aov(RT_Peso_fresco~Trat, data = Muestreo4)
anova(s1)
## Analysis of Variance Table
## 
## Response: RT_Peso_fresco
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 13.7767  4.5922  52.062 3.749e-07 ***
## Residuals 12  1.0585  0.0882                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(s2)
## Analysis of Variance Table
## 
## Response: RT_Peso_fresco
##           Df  Sum Sq Mean Sq F value   Pr(>F)   
## Trat       3 144.150  48.050  6.8756 0.006004 **
## Residuals 12  83.861   6.988                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(s3)
## Analysis of Variance Table
## 
## Response: RT_Peso_fresco
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 400.13 133.377  59.925 1.712e-07 ***
## Residuals 12  26.71   2.226                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(s4)
## Analysis of Variance Table
## 
## Response: RT_Peso_fresco
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 667.64 222.548  215.37 1.069e-10 ***
## Residuals 12  12.40   1.033                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(s1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(s1)
## W = 0.92893, p-value = 0.2345
shapiro.test(resid(s2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(s2)
## W = 0.93226, p-value = 0.2647
shapiro.test(resid(s3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(s3)
## W = 0.98114, p-value = 0.972
shapiro.test(resid(s4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(s4)
## W = 0.96446, p-value = 0.7428

*Homogeneidad de varianzas**

leveneTest(Muestreo1$RT_Peso_fresco~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.5923 0.2428
##       12
leveneTest(Muestreo2$RT_Peso_fresco~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  2.9572 0.07526 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Muestreo3$RT_Peso_fresco~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.9532 0.03575 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Muestreo4$RT_Peso_fresco~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.2387 0.3387
##       12

Pueba de tukey

s1tukey <-HSD.test(Muestreo1$RT_Peso_fresco,Muestreo1$Trat, 12,  0.0882, alpha = 0.05)
s2tukey <-HSD.test(Muestreo2$RT_Peso_fresco,Muestreo2$Trat, 12, 6.988, alpha = 0.05)
s3tukey <-HSD.test(Muestreo3$RT_Peso_fresco,Muestreo3$Trat, 12,   2.226, alpha = 0.05)
s4tukey <-HSD.test(Muestreo4$RT_Peso_fresco,Muestreo4$Trat, 12,   1.033, alpha = 0.05)
s1tukey
## $statistics
##   MSerror Df   Mean       CV       MSD
##    0.0882 12 2.6625 11.15436 0.6234692
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$RT_Peso_fresco       std r   Min   Max     Q25    Q50     Q75
## T1                  3.47075 0.2578648 4 3.122 3.734 3.37850 3.5135 3.60575
## T2                  1.08900 0.1629438 4 0.922 1.298 0.98650 1.0680 1.17050
## T3                  3.15050 0.1493106 4 2.927 3.238 3.14300 3.2185 3.22600
## T4                  2.93975 0.4873297 4 2.251 3.361 2.78425 3.0735 3.22900
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$RT_Peso_fresco groups
## T1                  3.47075      a
## T3                  3.15050      a
## T4                  2.93975      a
## T2                  1.08900      b
## 
## attr(,"class")
## [1] "group"
s2tukey
## $statistics
##   MSerror Df  Mean       CV      MSD
##     6.988 12 7.363 35.90225 5.549543
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$RT_Peso_fresco       std r   Min    Max     Q25     Q50      Q75
## T1                  8.84200 2.7575440 4 6.494 12.805 7.36400  8.0345  9.51250
## T2                  2.44875 0.2434822 4 2.201  2.762 2.29475  2.4160  2.57000
## T3                 10.45900 4.1825588 4 4.284 13.521 9.89175 12.0155 12.58275
## T4                  7.70225 1.6723252 4 5.935  9.961 6.96475  7.4565  8.19400
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$RT_Peso_fresco groups
## T3                 10.45900      a
## T1                  8.84200      a
## T4                  7.70225     ab
## T2                  2.44875      b
## 
## attr(,"class")
## [1] "group"
s3tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##     2.226 12 11.473 13.00426 3.132156
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$RT_Peso_fresco       std r    Min    Max      Q25     Q50      Q75
## T1                  13.4670 0.6758555 4 12.483 13.958 13.30050 13.7135 13.88000
## T2                   3.5880 0.8404864 4  2.917  4.817  3.18250  3.3090  3.71450
## T3                  17.2935 1.6845360 4 15.187 19.215 16.51525 17.3860 18.16425
## T4                  11.5435 2.2140449 4  9.215 13.958  9.94400 11.5005 13.10000
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$RT_Peso_fresco groups
## T3                  17.2935      a
## T1                  13.4670      b
## T4                  11.5435      b
## T2                   3.5880      c
## 
## attr(,"class")
## [1] "group"
s4tukey
## $statistics
##   MSerror Df     Mean      CV      MSD
##     1.033 12 15.55156 6.53546 2.133688
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$RT_Peso_fresco       std r    Min    Max     Q25     Q50      Q75
## T1                 16.81800 1.1545998 4 15.223 17.738 16.3450 17.1555 17.62850
## T2                  5.37575 0.5681974 4  4.782  5.888  4.9440  5.4165  5.84825
## T3                 23.32825 1.4290231 4 21.568 24.957 22.6165 23.3940 24.10575
## T4                 16.68425 0.6597991 4 15.822 17.375 16.3920 16.7700 17.06225
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$RT_Peso_fresco groups
## T3                 23.32825      a
## T1                 16.81800      b
## T4                 16.68425      b
## T2                  5.37575      c
## 
## attr(,"class")
## [1] "group"

RT_Peso_seco

Determinación de la variable en el muestreo 4

ANOVA

u1 <- aov(RT_Peso_seco~Trat, data = Muestreo1)
u2 <- aov(RT_Peso_seco~Trat, data = Muestreo2)
u3 <- aov(RT_Peso_seco~Trat, data = Muestreo3)
u4 <- aov(RT_Peso_seco~Trat, data = Muestreo4)
anova(u1)
## Analysis of Variance Table
## 
## Response: RT_Peso_seco
##           Df   Sum Sq  Mean Sq F value   Pr(>F)    
## Trat       3 0.255710 0.085237  39.772 1.64e-06 ***
## Residuals 12 0.025718 0.002143                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(u2)
## Analysis of Variance Table
## 
## Response: RT_Peso_seco
##           Df  Sum Sq  Mean Sq F value   Pr(>F)   
## Trat       3 0.22673 0.075577  6.3322 0.008066 **
## Residuals 12 0.14323 0.011935                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(u3)
## Analysis of Variance Table
## 
## Response: RT_Peso_seco
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 3.04438 1.01479  72.359 5.922e-08 ***
## Residuals 12 0.16829 0.01402                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(u4)
## Analysis of Variance Table
## 
## Response: RT_Peso_seco
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 10.130  3.3765  72.879 5.687e-08 ***
## Residuals 12  0.556  0.0463                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de normalidad de shapiro

shapiro.test(resid(u1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(u1)
## W = 0.96667, p-value = 0.7822
shapiro.test(resid(u2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(u2)
## W = 0.86349, p-value = 0.02165
shapiro.test(resid(u3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(u3)
## W = 0.9194, p-value = 0.165
shapiro.test(resid(u4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(u4)
## W = 0.82528, p-value = 0.006021

*Homogeneidad de varianzas**

leveneTest(Muestreo1$RT_Peso_seco~Muestreo1$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.4348 0.2813
##       12
leveneTest(Muestreo2$RT_Peso_seco~Muestreo2$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.4493 0.05155 .
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Muestreo3$RT_Peso_seco~Muestreo3$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  3  1.6144 0.2379
##       12
leveneTest(Muestreo4$RT_Peso_seco~Muestreo4$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  3  3.8377 0.03881 *
##       12                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pueba de tukey

u1tukey <-HSD.test(Muestreo1$RT_Peso_seco,Muestreo1$Trat, 12, 0.002143, alpha = 0.05)
u2tukey <-HSD.test(Muestreo2$RT_Peso_seco,Muestreo2$Trat, 12, 0.011935, alpha = 0.05)
u3tukey <-HSD.test(Muestreo3$RT_Peso_seco,Muestreo3$Trat, 12,   0.01402, alpha = 0.05)
u4tukey <-HSD.test(Muestreo4$RT_Peso_seco,Muestreo4$Trat, 12,   0.0463, alpha = 0.05)
u1tukey
## $statistics
##    MSerror Df      Mean       CV        MSD
##   0.002143 12 0.2714375 17.05459 0.09718334
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo1$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo1$RT_Peso_seco        std r   Min   Max     Q25    Q50    Q75
## T1                0.40550 0.06477911 4 0.342 0.493 0.36750 0.3935 0.4315
## T2                0.06800 0.02294922 4 0.039 0.095 0.06000 0.0690 0.0770
## T3                0.33900 0.03787699 4 0.293 0.385 0.32300 0.3390 0.3550
## T4                0.27325 0.04914180 4 0.229 0.331 0.23425 0.2665 0.3055
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo1$RT_Peso_seco groups
## T1                0.40550      a
## T3                0.33900     ab
## T4                0.27325      b
## T2                0.06800      c
## 
## attr(,"class")
## [1] "group"
u2tukey
## $statistics
##    MSerror Df    Mean      CV       MSD
##   0.011935 12 0.44175 24.7306 0.2293464
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo2$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo2$RT_Peso_seco        std r   Min   Max     Q25    Q50     Q75
## T1                0.54325 0.07347278 4 0.474 0.636 0.49050 0.5315 0.58425
## T2                0.24375 0.03933086 4 0.186 0.274 0.23775 0.2575 0.26350
## T3                0.52550 0.19077474 4 0.242 0.649 0.50000 0.6055 0.63100
## T4                0.45450 0.06634506 4 0.391 0.524 0.40150 0.4515 0.50450
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo2$RT_Peso_seco groups
## T1                0.54325      a
## T3                0.52550      a
## T4                0.45450     ab
## T2                0.24375      b
## 
## attr(,"class")
## [1] "group"
u3tukey
## $statistics
##   MSerror Df     Mean       CV       MSD
##   0.01402 12 1.059688 11.17368 0.2485735
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo3$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo3$RT_Peso_seco        std r   Min   Max     Q25    Q50     Q75
## T1                1.31800 0.06694774 4 1.248 1.387 1.26825 1.3185 1.36825
## T2                0.37675 0.04431986 4 0.317 0.418 0.35750 0.3860 0.40525
## T3                1.53450 0.18227909 4 1.362 1.792 1.45875 1.4920 1.56775
## T4                1.00950 0.12816266 4 0.892 1.191 0.94450 0.9775 1.04250
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo3$RT_Peso_seco groups
## T3                1.53450      a
## T1                1.31800      a
## T4                1.00950      b
## T2                0.37675      c
## 
## attr(,"class")
## [1] "group"
u4tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    0.0463 12 1.75325 12.27288 0.451722
## 
## $parameters
##    test         name.t ntr StudentizedRange alpha
##   Tukey Muestreo4$Trat   4          4.19866  0.05
## 
## $means
##    Muestreo4$RT_Peso_seco        std r   Min   Max     Q25   Q50     Q75
## T1                1.99175 0.40493240 4 1.638 2.573 1.78875 1.878 2.08100
## T2                0.71250 0.06927000 4 0.628 0.782 0.67150 0.720 0.76100
## T3                2.88600 0.11920570 4 2.720 2.978 2.83925 2.923 2.96975
## T4                1.42275 0.04842434 4 1.376 1.467 1.38350 1.424 1.46325
## 
## $comparison
## NULL
## 
## $groups
##    Muestreo4$RT_Peso_seco groups
## T3                2.88600      a
## T1                1.99175      b
## T4                1.42275      c
## T2                0.71250      d
## 
## attr(,"class")
## [1] "group"

Diferencias estadisticas entre muestreos

Area_foliar

x1 <- aov(Area_foliar~conjunto, data = GENERAL)
anova(x1)
## Analysis of Variance Table
## 
## Response: Area_foliar
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## conjunto  15 132127  8808.5  210.33 < 2.2e-16 ***
## Residuals 48   2010    41.9                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x1tukey <-HSD.test(GENERAL$Area_foliar,GENERAL$conjunto, 48, 41.9, alpha = 0.05)
x1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      41.9 48 108.6512 5.957616 16.53571
## 
## $parameters
##    test           name.t ntr StudentizedRange alpha
##   Tukey GENERAL$conjunto  16         5.109118  0.05
## 
## $means
##      GENERAL$Area_foliar       std r     Min     Max       Q25      Q50
## M1T1            66.57400  1.953636 4  64.925  69.223  65.20250  66.0740
## M1T2            52.04325  1.303762 4  50.238  53.351  51.73575  52.2920
## M1T3            63.53700  2.607883 4  59.999  66.252  62.73875  63.9485
## M1T4            55.54200  3.746375 4  50.356  58.346  54.01225  56.7330
## M2T1            92.77500 18.570115 4  66.700 109.500  86.80000  97.4500
## M2T2            67.30000  4.817330 4  61.200  71.900  64.65000  68.0500
## M2T3            92.50000  3.221801 4  88.600  95.700  90.55000  92.8500
## M2T4            85.97500  5.208567 4  81.500  93.300  82.77500  84.5500
## M3T1           161.57500  1.447699 4 159.600 162.800 160.95000 161.9500
## M3T2            77.50000 12.451774 4  61.200  88.600  71.17500  80.1000
## M3T3           154.67500  1.936276 4 151.900 156.300 154.15000 155.2500
## M3T4           136.12500  1.645955 4 134.300 138.000 135.05000 136.1000
## M4T1           181.73250  5.107709 4 174.810 186.170 179.47500 182.9750
## M4T2           103.92500  4.887191 4  98.670 109.750 100.72500 103.6400
## M4T3           180.10775  3.965360 4 175.923 185.483 178.48725 179.5125
## M4T4           166.53250  2.975739 4 163.360 169.360 164.32750 166.7050
##            Q75
## M1T1  67.44550
## M1T2  52.59950
## M1T3  64.74675
## M1T4  58.26275
## M2T1 103.42500
## M2T2  70.70000
## M2T3  94.80000
## M2T4  87.75000
## M3T1 162.57500
## M3T2  86.42500
## M3T3 155.77500
## M3T4 137.17500
## M4T1 185.23250
## M4T2 106.84000
## M4T3 181.13300
## M4T4 168.91000
## 
## $comparison
## NULL
## 
## $groups
##      GENERAL$Area_foliar groups
## M4T1           181.73250      a
## M4T3           180.10775      a
## M4T4           166.53250     ab
## M3T1           161.57500      b
## M3T3           154.67500      b
## M3T4           136.12500      c
## M4T2           103.92500      d
## M2T1            92.77500     de
## M2T3            92.50000     de
## M2T4            85.97500      e
## M3T2            77.50000     ef
## M2T2            67.30000     fg
## M1T1            66.57400     fg
## M1T3            63.53700     fg
## M1T4            55.54200      g
## M1T2            52.04325      g
## 
## attr(,"class")
## [1] "group"

RT_Peso:fresco

t1 <- aov(RT_Peso_fresco~conjunto, data = GENERAL)
anova(t1)
## Analysis of Variance Table
## 
## Response: RT_Peso_fresco
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## conjunto  15 2691.41 179.427   69.44 < 2.2e-16 ***
## Residuals 48  124.03   2.584                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(agricolae)
library(dplyr)
t1tukey <-HSD.test(GENERAL$RT_Peso_fresco,GENERAL$conjunto, 48, 2.584, alpha = 0.05)
t1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     2.584 48 9.262516 17.35471 4.106409
## 
## $parameters
##    test           name.t ntr StudentizedRange alpha
##   Tukey GENERAL$conjunto  16         5.109118  0.05
## 
## $means
##      GENERAL$RT_Peso_fresco       std r    Min    Max      Q25     Q50      Q75
## M1T1                3.47075 0.2578648 4  3.122  3.734  3.37850  3.5135  3.60575
## M1T2                1.08900 0.1629438 4  0.922  1.298  0.98650  1.0680  1.17050
## M1T3                3.15050 0.1493106 4  2.927  3.238  3.14300  3.2185  3.22600
## M1T4                2.93975 0.4873297 4  2.251  3.361  2.78425  3.0735  3.22900
## M2T1                8.84200 2.7575440 4  6.494 12.805  7.36400  8.0345  9.51250
## M2T2                2.44875 0.2434822 4  2.201  2.762  2.29475  2.4160  2.57000
## M2T3               10.45900 4.1825588 4  4.284 13.521  9.89175 12.0155 12.58275
## M2T4                7.70225 1.6723252 4  5.935  9.961  6.96475  7.4565  8.19400
## M3T1               13.46700 0.6758555 4 12.483 13.958 13.30050 13.7135 13.88000
## M3T2                3.58800 0.8404864 4  2.917  4.817  3.18250  3.3090  3.71450
## M3T3               17.29350 1.6845360 4 15.187 19.215 16.51525 17.3860 18.16425
## M3T4               11.54350 2.2140449 4  9.215 13.958  9.94400 11.5005 13.10000
## M4T1               16.81800 1.1545998 4 15.223 17.738 16.34500 17.1555 17.62850
## M4T2                5.37575 0.5681974 4  4.782  5.888  4.94400  5.4165  5.84825
## M4T3               23.32825 1.4290231 4 21.568 24.957 22.61650 23.3940 24.10575
## M4T4               16.68425 0.6597991 4 15.822 17.375 16.39200 16.7700 17.06225
## 
## $comparison
## NULL
## 
## $groups
##      GENERAL$RT_Peso_fresco groups
## M4T3               23.32825      a
## M3T3               17.29350      b
## M4T1               16.81800      b
## M4T4               16.68425      b
## M3T1               13.46700     bc
## M3T4               11.54350     cd
## M2T3               10.45900     cd
## M2T1                8.84200     de
## M2T4                7.70225     de
## M4T2                5.37575     ef
## M3T2                3.58800     fg
## M1T1                3.47075     fg
## M1T3                3.15050     fg
## M1T4                2.93975     fg
## M2T2                2.44875     fg
## M1T2                1.08900      g
## 
## attr(,"class")
## [1] "group"

RT_Peso_seco

t2 <- aov(RT_Peso_seco~conjunto, data = GENERAL)
anova(t2)
## Analysis of Variance Table
## 
## Response: RT_Peso_seco
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## conjunto  15 35.372 2.35817  126.73 < 2.2e-16 ***
## Residuals 48  0.893 0.01861                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(agricolae)
library(dplyr)
t2tukey <-HSD.test(GENERAL$RT_Peso_seco,GENERAL$conjunto, 48,  0.01861, alpha = 0.05)
t2tukey
## $statistics
##   MSerror Df      Mean       CV      MSD
##   0.01861 48 0.8815312 15.47517 0.348489
## 
## $parameters
##    test           name.t ntr StudentizedRange alpha
##   Tukey GENERAL$conjunto  16         5.109118  0.05
## 
## $means
##      GENERAL$RT_Peso_seco        std r   Min   Max     Q25    Q50     Q75
## M1T1              0.40550 0.06477911 4 0.342 0.493 0.36750 0.3935 0.43150
## M1T2              0.06800 0.02294922 4 0.039 0.095 0.06000 0.0690 0.07700
## M1T3              0.33900 0.03787699 4 0.293 0.385 0.32300 0.3390 0.35500
## M1T4              0.27325 0.04914180 4 0.229 0.331 0.23425 0.2665 0.30550
## M2T1              0.54325 0.07347278 4 0.474 0.636 0.49050 0.5315 0.58425
## M2T2              0.24375 0.03933086 4 0.186 0.274 0.23775 0.2575 0.26350
## M2T3              0.52550 0.19077474 4 0.242 0.649 0.50000 0.6055 0.63100
## M2T4              0.45450 0.06634506 4 0.391 0.524 0.40150 0.4515 0.50450
## M3T1              1.31800 0.06694774 4 1.248 1.387 1.26825 1.3185 1.36825
## M3T2              0.37675 0.04431986 4 0.317 0.418 0.35750 0.3860 0.40525
## M3T3              1.53450 0.18227909 4 1.362 1.792 1.45875 1.4920 1.56775
## M3T4              1.00950 0.12816266 4 0.892 1.191 0.94450 0.9775 1.04250
## M4T1              1.99175 0.40493240 4 1.638 2.573 1.78875 1.8780 2.08100
## M4T2              0.71250 0.06927000 4 0.628 0.782 0.67150 0.7200 0.76100
## M4T3              2.88600 0.11920570 4 2.720 2.978 2.83925 2.9230 2.96975
## M4T4              1.42275 0.04842434 4 1.376 1.467 1.38350 1.4240 1.46325
## 
## $comparison
## NULL
## 
## $groups
##      GENERAL$RT_Peso_seco groups
## M4T3              2.88600      a
## M4T1              1.99175      b
## M3T3              1.53450      c
## M4T4              1.42275      c
## M3T1              1.31800     cd
## M3T4              1.00950     de
## M4T2              0.71250     ef
## M2T1              0.54325     fg
## M2T3              0.52550     fg
## M2T4              0.45450     fg
## M1T1              0.40550    fgh
## M3T2              0.37675    fgh
## M1T3              0.33900     gh
## M1T4              0.27325     gh
## M2T2              0.24375     gh
## M1T2              0.06800      h
## 
## attr(,"class")
## [1] "group"

Hojas_peso_fresco

t3 <- aov(Hojas_Peso_fresco~conjunto, data = GENERAL)
anova(t3)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_fresco
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## conjunto  15 1844.93 122.996  389.09 < 2.2e-16 ***
## Residuals 48   15.17   0.316                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(agricolae)
library(dplyr)
t3tukey <-HSD.test(GENERAL$Hojas_Peso_fresco,GENERAL$conjunto, 48,  0.316, alpha = 0.05)
t3tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     0.316 48 9.440297 5.954673 1.436017
## 
## $parameters
##    test           name.t ntr StudentizedRange alpha
##   Tukey GENERAL$conjunto  16         5.109118  0.05
## 
## $means
##      GENERAL$Hojas_Peso_fresco       std r    Min    Max      Q25     Q50
## M1T1                   4.68800 0.3633492 4  4.223  5.023  4.49150  4.7530
## M1T2                   3.09075 0.1257971 4  2.936  3.219  3.01850  3.1040
## M1T3                   4.17550 0.2728864 4  3.902  4.510  3.98525  4.1450
## M1T4                   3.76375 0.1719852 4  3.520  3.923  3.72400  3.8060
## M2T1                   6.28075 1.0659588 4  4.841  7.234  5.80850  6.5240
## M2T2                   4.07075 0.7024127 4  3.138  4.812  3.80025  4.1665
## M2T3                   6.72025 0.4411314 4  6.162  7.193  6.50025  6.7630
## M2T4                   6.21825 0.4864945 4  5.872  6.917  5.89375  6.0420
## M3T1                  16.17300 0.7805583 4 15.232 16.961 15.70000 16.2495
## M3T2                   6.72025 0.4411314 4  6.162  7.193  6.50025  6.7630
## M3T3                  14.46700 0.4530350 4 13.933 14.994 14.21425 14.4705
## M3T4                  14.46700 0.4530350 4 13.933 14.994 14.21425 14.4705
## M4T1                  17.91900 0.5463833 4 17.382 18.492 17.49150 17.9010
## M4T2                   8.87650 0.7124729 4  8.078  9.531  8.37650  8.9485
## M4T3                  17.30550 0.8271693 4 16.284 17.978 16.80750 17.4800
## M4T4                  16.10850 0.2006830 4 15.939 16.364 15.95325 16.0655
##           Q75
## M1T1  4.94950
## M1T2  3.17625
## M1T3  4.33525
## M1T4  3.84575
## M2T1  6.99625
## M2T2  4.43700
## M2T3  6.98300
## M2T4  6.36650
## M3T1 16.72250
## M3T2  6.98300
## M3T3 14.72325
## M3T4 14.72325
## M4T1 18.32850
## M4T2  9.44850
## M4T3 17.97800
## M4T4 16.22075
## 
## $comparison
## NULL
## 
## $groups
##      GENERAL$Hojas_Peso_fresco groups
## M4T1                  17.91900      a
## M4T3                  17.30550     ab
## M3T1                  16.17300      b
## M4T4                  16.10850      b
## M3T3                  14.46700      c
## M3T4                  14.46700      c
## M4T2                   8.87650      d
## M2T3                   6.72025      e
## M3T2                   6.72025      e
## M2T1                   6.28075      e
## M2T4                   6.21825      e
## M1T1                   4.68800      f
## M1T3                   4.17550     fg
## M2T2                   4.07075     fg
## M1T4                   3.76375     fg
## M1T2                   3.09075      g
## 
## attr(,"class")
## [1] "group"

Hojas_peso_seco

t4 <- aov(Hojas_Peso_seco~conjunto, data = GENERAL)
anova(t4)
## Analysis of Variance Table
## 
## Response: Hojas_Peso_seco
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## conjunto  15 16.4239 1.09493  110.81 < 2.2e-16 ***
## Residuals 48  0.4743 0.00988                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(agricolae)
library(dplyr)
t4tukey <-HSD.test(GENERAL$Hojas_Peso_seco,GENERAL$conjunto, 48, 0.00988, alpha = 0.05)
t4tukey
## $statistics
##   MSerror Df      Mean       CV       MSD
##   0.00988 48 0.8371094 11.87398 0.2539185
## 
## $parameters
##    test           name.t ntr StudentizedRange alpha
##   Tukey GENERAL$conjunto  16         5.109118  0.05
## 
## $means
##      GENERAL$Hojas_Peso_seco        std r   Min   Max     Q25    Q50     Q75
## M1T1                 0.37125 0.05314367 4 0.311 0.432 0.33800 0.3710 0.40425
## M1T2                 0.20800 0.02080064 4 0.189 0.236 0.19425 0.2035 0.21725
## M1T3                 0.32775 0.04495461 4 0.285 0.386 0.29700 0.3200 0.35075
## M1T4                 0.31600 0.02831960 4 0.286 0.347 0.29575 0.3155 0.33575
## M2T1                 0.59850 0.14735332 4 0.387 0.713 0.55500 0.6470 0.69050
## M2T2                 0.36725 0.03944933 4 0.311 0.401 0.35600 0.3785 0.38975
## M2T3                 0.62525 0.09350356 4 0.515 0.712 0.56450 0.6370 0.69775
## M2T4                 0.62175 0.05014230 4 0.581 0.692 0.58850 0.6070 0.64025
## M3T1                 1.10425 0.04587937 4 1.059 1.156 1.06950 1.1010 1.13575
## M3T2                 0.62525 0.09350356 4 0.515 0.712 0.56450 0.6370 0.69775
## M3T3                 1.10375 0.08117214 4 1.003 1.173 1.05550 1.1195 1.16775
## M3T4                 1.10375 0.08117214 4 1.003 1.173 1.05550 1.1195 1.16775
## M4T1                 1.90650 0.16086537 4 1.727 2.094 1.80500 1.9025 2.00400
## M4T2                 0.90075 0.08052484 4 0.799 0.973 0.85525 0.9155 0.96100
## M4T3                 1.63875 0.16415516 4 1.485 1.870 1.55700 1.6000 1.68175
## M4T4                 1.57500 0.18482604 4 1.376 1.782 1.44725 1.5710 1.69875
## 
## $comparison
## NULL
## 
## $groups
##      GENERAL$Hojas_Peso_seco groups
## M4T1                 1.90650      a
## M4T3                 1.63875      b
## M4T4                 1.57500      b
## M3T1                 1.10425      c
## M3T3                 1.10375      c
## M3T4                 1.10375      c
## M4T2                 0.90075      c
## M2T3                 0.62525      d
## M3T2                 0.62525      d
## M2T4                 0.62175     de
## M2T1                 0.59850    def
## M1T1                 0.37125    efg
## M2T2                 0.36725     fg
## M1T3                 0.32775      g
## M1T4                 0.31600      g
## M1T2                 0.20800      g
## 
## attr(,"class")
## [1] "group"

PA_Longitud

t5 <- aov(PA_Longitud~conjunto, data = GENERAL)
anova(t5)
## Analysis of Variance Table
## 
## Response: PA_Longitud
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## conjunto  15 1064.41  70.961  47.172 < 2.2e-16 ***
## Residuals 48   72.21   1.504                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(agricolae)
library(dplyr)
t5tukey <-HSD.test(GENERAL$PA_Longitud,GENERAL$conjunto, 48, 1.504, alpha = 0.05)
t5tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     1.504 48 11.27937 10.87274 3.132852
## 
## $parameters
##    test           name.t ntr StudentizedRange alpha
##   Tukey GENERAL$conjunto  16         5.109118  0.05
## 
## $means
##      GENERAL$PA_Longitud       std r   Min  Max     Q25   Q50    Q75
## M1T1              7.5725 0.8942548 4  6.99  8.9  7.0725  7.20  7.700
## M1T2              6.2250 0.2362908 4  5.90  6.4  6.1250  6.30  6.400
## M1T3              7.3225 0.3022554 4  6.99  7.7  7.1475  7.30  7.475
## M1T4              6.8000 0.3559026 4  6.30  7.1  6.6750  6.90  7.025
## M2T1             10.4500 3.8336232 4  6.50 15.0  7.7750 10.15 12.825
## M2T2              6.7500 0.4654747 4  6.30  7.2  6.3750  6.75  7.125
## M2T3             11.6250 1.5840349 4  9.60 13.2 10.8000 11.85 12.675
## M2T4              9.6250 0.5123475 4  8.90 10.1  9.5000  9.75  9.875
## M3T1             15.1000 0.5291503 4 14.60 15.8 14.7500 15.00 15.350
## M3T2              8.0000 0.8755950 4  7.20  9.1  7.3500  7.85  8.500
## M3T3             15.4250 0.8539126 4 14.30 16.3 15.0500 15.55 15.925
## M3T4             11.1000 0.8793937 4 10.10 12.1 10.5500 11.10 11.650
## M4T1             17.6000 0.5291503 4 16.90 18.1 17.3500 17.70 17.950
## M4T2             11.5250 0.7675719 4 10.40 12.1 11.3750 11.80 11.950
## M4T3             18.8250 0.8220908 4 17.90 19.7 18.2750 18.85 19.400
## M4T4             16.5250 1.1026483 4 15.20 17.9 16.1750 16.50 16.850
## 
## $comparison
## NULL
## 
## $groups
##      GENERAL$PA_Longitud groups
## M4T3             18.8250      a
## M4T1             17.6000     ab
## M4T4             16.5250     ab
## M3T3             15.4250      b
## M3T1             15.1000      b
## M2T3             11.6250      c
## M4T2             11.5250      c
## M3T4             11.1000     cd
## M2T1             10.4500    cde
## M2T4              9.6250   cdef
## M3T2              8.0000   defg
## M1T1              7.5725    efg
## M1T3              7.3225    efg
## M1T4              6.8000     fg
## M2T2              6.7500     fg
## M1T2              6.2250      g
## 
## attr(,"class")
## [1] "group"

fin :)