U3A2
U3A2 - Introducción a la relación entre eventos con análisis de cadenas de markov y análisis montecarlo
Procesos estocásticos
En la teoría de la probabilidad, un proceso estocástico es un concepto matemático que sirve para usar magnitudes aleatorias que varían con el tiempo o para caracterizar una sucesión de variables aleatorias (estocásticas) que evolucionan en función de otra variable, generalmente el tiempo. Cada una de las variables aleatorias del proceso tiene su propia función de distribución de probabilidad y pueden o no estar correlacionadas entre sí.
Cada variable o conjunto de variables sometidas a influencias o efectos aleatorios constituye un proceso estocástico. Un proceso estocástico \(xt\) puede entenderse como una familia uniparamétrica de variables aleatorias indexadas mediante el tiempo t. Los procesos estocásticos permiten tratar procesos dinámicos en los que hay cierta aleatoriedad.
- Ejemplos
Los siguientes son ejemplos dentro del amplio grupo de las series temporales: • señales de telecomunicación; • señales biomédicas (electrocardiograma, encefalograma, etc.); • señales sísmicas; • el número de manchas solares año tras año; • el índice de la bolsa segundo a segundo; • la evolución de la población de un municipio año tras año; • el tiempo de espera en la cola de cada uno de los usuarios que van llegando a una ventanilla; • el clima, un gigantesco conjunto de procesos estocásticos interrelacionados (velocidad del viento, humedad del aire, etcétera) que evolucionan en el espacio y en el tiempo; • los procesos estocásticos de orden mayor a uno, como el caso de una serie de tiempo de orden 2 y una correlación de cero con las demás observaciones.
Cádenas de markov
Una cadena de Markov es una serie de eventos, en la cual la probabilidad de que ocurra un evento depende del evento inmediato anterior. En efecto, las cadenas de este tipo tienen memoria, “Recuerdan” el último evento y esto condiciona las posibilidades de los eventos futuros.
Esta dependencia del evento anterior distingue a las cadenas de Markov de las series de eventos independientes, como tirar una moneda al aire o un dado. En los negocios, las cadenas de Markov se han utilizado para analizar los patrones de compra,los deudores morosos, para planear las necesidades de personal y para analizar el reemplazo de equipo.
El anáisis de Markov, llamado así en honor de un matemático ruso que desarrollo el m�todo en 1907, permite encontrar la probabilidad de que un sistema se encuentre en un estado en particular en un momento dado. Algo m�s importante a�n, es que permite encontrar el promedio a la larga o las probabilidades de estado estable para cada estado. Con esta informaci�n se puede predecir el comportamiento del sistema a trav�s del tiempo. La tarea m�s dif�cil es reconocer cu�ndo puede aplicarse. La caracteristica m�s importante que hay que buscar en la memoria de un evento a otro.
Cadenas de markov implementadas en R
-> instalar el paquete markovchain
-> Activar el paquete markov chain
## Package: markovchain
## Version: 0.8.5-2
## Date: 2020-09-07
## BugReport: https://github.com/spedygiorgio/markovchain/issues
documentación: https://cran.r-project.org/web/packages/markovchain/markovchain.pdf
Esta libreria pretende proveer objetos para realizar analisis estadísticos de cadenas de markov a tiempos discretos. Asumamos que tenemos una cadena de markov X={X1,X2,…} definida en el espacio de estados S={a,b,c} y cuya matriz de transición es:
\[ P = \left( {\begin{array}{ccc} 0 & 0.5 & 0.5 \\ 0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \\ \end{array} } \right) \]
Dicha cadena podemos crearla en R, de la siguiente forma:
- Crear la matriz de transicion P:
## [,1] [,2] [,3]
## [1,] 0.0 0.5 0.5
## [2,] 0.5 0.0 0.5
## [3,] 0.5 0.5 0.0
El argumento “nrows” de la funcion matrix es para declarar el numero de filas que deseamos que nuestra matriz P posea, y el argumento “byrows” es para que almacene los elementos de la matriz almacenados en c(), fila por fila.
Crear la matriz de transición creamos el objeto “markovchain” de la siguiente forma:
Una revisión previa al análisis de nuestra cadena se puede realizar mediante los comandos “str()” y “summary”, que devuelven la estructura del objeto y el resumen general de los resultados respectivamente. Para mayor informacion revisar los comandos mediante la función help().
La estructura del objeto mc es:
## Formal class 'markovchain' [package "markovchain"] with 4 slots
## ..@ states : chr [1:3] "a" "b" "c"
## ..@ byrow : logi TRUE
## ..@ transitionMatrix: num [1:3, 1:3] 0 0.5 0.5 0.5 0 0.5 0.5 0.5 0
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:3] "a" "b" "c"
## .. .. ..$ : chr [1:3] "a" "b" "c"
## ..@ name : chr "Cadena 1"
resumen de mc
## Cadena 1 Markov chain that is composed by:
## Closed classes:
## a b c
## Recurrent classes:
## {a,b,c}
## Transient classes:
## NONE
## The Markov chain is irreducible
## The absorbing states are: NONE
Para visualizar esta cadena de markov simple, utilizamos el comando plot
Otras funciones importantes son:
absorbingStates(): Identifica los estados Absorbentes
transientStates(): Identifica los estados Transitorios
recurrentClasses(): Identifica las clases recurrentes
Para la cadena de markov definida se obtiene que:
## [[1]]
## [1] "a" "b" "c"
## character(0)
## character(0)
Análisis probabilístico usando cadenas de Markov
Para conocer la probabilidad de transición en 1 paso entre un estado y otro basta con utilizar la función transitionProbability(), con los argumentos:
object: la cadena de markov
t0: el estado en el tiempo 0
t1: el estado en el tiempo 1
La probabilidad de transicion en un paso del estado “a” al estado “c” es:
## [1] 0.5
Recuerde que dicha probabilidad es un elemento de la matriz de transición P, por lo tanto, la probabilidad de transicion del estado “a” al estado “b” es simplemente P23
## [1] 0.5
Es posible computar la matriz de transición en n pasos, simplemente computando la n-ésima potencia de la matriz de transición P, como ejemplo calcularemos la matriz de transición en n = 5 pasos.
## Cadena 1^5
## A 3 - dimensional discrete Markov Chain defined by the following states:
## a, b, c
## The transition matrix (by rows) is defined as follows:
## a b c
## a 0.31250 0.34375 0.34375
## b 0.34375 0.31250 0.34375
## c 0.34375 0.34375 0.31250
Tambien se pueden conocer la distribución de la cadena en n pasos adelante (P(Xn)) multiplicando la distribucion inicial de X0 por la matriz de transición en n pasos (Pn), calcule la distribución de la cadena en el tiempo n = 6, si la ditribución inicial de la cadena es “(0.5, 0.2, 0.3)”.
Por lo tanto, la distribución de la cadena en y pasos es:
## a b c
## [1,] 0.3359375 0.33125 0.3328125
Asignación
Dibuje el diagrama de transición, determine las clases de comunicación de las siguientes cadenas de Markov, clasifique éstas como recurrentes o transitorias (20%), y encuentre la distribución estacionaria si existe (10%)
\[ P = \left( {\begin{array}{cccc} 1/2 & 1/2 & 0 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ \end{array} } \right) \]
Generar matriz de transición
A <- matrix( c(.5,.5,0,0, 0, .5, .5, 0, 0, 0.5, 0.5, 0, .25, .25, .25, .25), nrow = 4, byrow = TRUE )
A## [,1] [,2] [,3] [,4]
## [1,] 0.50 0.50 0.00 0.00
## [2,] 0.00 0.50 0.50 0.00
## [3,] 0.00 0.50 0.50 0.00
## [4,] 0.25 0.25 0.25 0.25
## Formal class 'markovchain' [package "markovchain"] with 4 slots
## ..@ states : chr [1:4] "a" "b" "c" "e"
## ..@ byrow : logi TRUE
## ..@ transitionMatrix: num [1:4, 1:4] 0.5 0 0 0.25 0.5 0.5 0.5 0.25 0 0.5 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:4] "a" "b" "c" "e"
## .. .. ..$ : chr [1:4] "a" "b" "c" "e"
## ..@ name : chr "Cadena 1"
## Cadena 1 Markov chain that is composed by:
## Closed classes:
## b c
## Recurrent classes:
## {b,c}
## Transient classes:
## {a},{e}
## The Markov chain is not irreducible
## The absorbing states are: NONE
## Clases de comunicación
## [[1]]
## [1] "b" "c"
Los nodos b y c son clases recurrentes, debido al hecho de que desde b se es posible ir hacia c y viceversa, pero es una cualidad que para este caso, solo presenta en ella.
## [1] "a" "e"
Son trascientes ya que tanto del nodo a como desde el nodo e, se es posible llegar al nodo b, pero no regresar a ellos, además que el nodo e, también puede llegar al nodo c, pero desde este no se puede regresar de ninguna forma.
## character(0)
No existe ninguno, ya que no hay ningún nodo o estado, cuya probababilidad de quedarse en él sea 1, es decir, del que no se pueda salir.