1 Description de l’echantillon de RELADO

16/03/2021 : On a enlevé les 12 individus pour lesquels on avait pas de valeur pour RS2 HF.

On a maintenant 45 individus

1.1 VALEURS MANQUANTES

Insérer ici les graphes des valeurs manquantes

1.2 EGF

EGF : Echelle Globale de fonctionnnement

On a un score EGF et un score EGF hospitalisations : qu’est ce que le 2eme ?

Table 1.1: Score a l’Echelle Globale de Fonctionnement
Min. 1st Qu. Median Mean 3rd Qu. Max.
40 55 65 66.6 75 99
Distribution des scores EGF

Figure 1.1: Distribution des scores EGF

1.3 Hospitalisations

Table 1.2: Duree d’hospitalisation de jour
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0 0 0 3.4 5.2 28 2

1.4 Automutilations

Table 1.3: Automutilations
Frequence % du Total % Cumul
non 24 53.3 53.3
oui 21 46.7 100.0
<NA> 0 0.0 100.0
Total 45 100.0 100.0

1.5 Tentatives de suicide

Table 1.4: Nombre de TS
Frequence % du Total % Cumul
0 18 40.0 40.0
1 12 26.7 66.7
>=2 15 33.3 100.0
<NA> 0 0.0 100.0
Total 45 100.0 100.0

1.6 Evenements de Vie

Table 1.5: Proportion de l’occurence pour chaque evenement de vie
Evenement N Ntotal Proportion NA
separation ou divorce des parents 23 45 51.1% 0
separation avec un parent avant l’âge d’un an 9 45 20% 0
separation avec les 2 parents de plus d’un an 1 45 2.2% 0
adoption 4 45 8.9% 0
placement en foyer 4 45 8.9% 0
placement en famille d’accueil 1 45 2.2% 0
mort du pere 2 45 4.4% 0
mort de la mere 0 61 0% 0
Deces d’un parent proche 3 45 6.7% 0
Rupture amoureuse 1 45 2.2% 0
Avortement 1 45 2.2% 0
Accident / catastrophe 0 61 0% 0
Autre 18 0 40% 2
Table 1.5: Score evenement de vie
Frequence % du Total % Cumul
0 14 31.1 31.1
1 18 40.0 71.1
2 10 22.2 93.3
3 2 4.4 97.8
4 1 2.2 100.0
<NA> 0 0.0 100.0
Total 45 100.0 100.0

1.7 Meditation

Table 1.6: Meditation
Frequence % du Total % Cumul
0 32 71.1 71.1
1 13 28.9 100.0
<NA> 0 0.0 100.0
Total 45 100.0 100.0

1.8 SCL 90

D’apres le document scanne a l’IMM (bouquin de Corinne), voila les differents scores calculables pour la SCL-90 :

Scans du codage de SCL90

Trop lourd, pas uploader sur internet


GSI : Gravite Globale = score total / 90
PST : diversite des symptomes = Nombres de reponses autres que 0
PSDI : Degre de malaise = score total divise par le PST

Voici les statistiques pour ces 3 indicateurs :

Table 1.7: Scores SCL 90
Min. 1st Qu. Median Mean 3rd Qu. Max.
SCL_GSI 0.09 0.77 1.04 1.26 1.69 3.14
SCL_PST 7.00 39.00 47.00 51.27 70.00 86.00
SCL_PSDI 1.00 1.60 1.96 2.04 2.36 3.54

Statistiques par Sexe

Garçons :
vars n mean sd min max range se
SCL_GSI 1 12 0.94 0.52 0.14 1.97 1.82 0.15
SCL_PST 2 12 45.17 19.90 9.00 79.00 70.00 5.75
SCL_PSDI 3 12 1.79 0.32 1.30 2.36 1.05 0.09
Filles :
vars n mean sd min max range se
SCL_GSI 1 33 1.38 0.83 0.09 3.14 3.06 0.14
SCL_PST 2 33 53.48 21.00 7.00 86.00 79.00 3.66
SCL_PSDI 3 33 2.13 0.66 1.00 3.54 2.54 0.11

Statistiques Alexithymiques / Non-Alexityhmiques

NON-Alexithymiques :
vars n mean sd min max range se
SCL_GSI 1 21 0.76 0.48 0.09 2.21 2.12 0.11
SCL_PST 2 21 37.00 17.08 7.00 80.00 73.00 3.73
SCL_PSDI 3 21 1.70 0.41 1.00 2.49 1.49 0.09
Alexithymiques :
vars n mean sd min max range se
SCL_GSI 1 24 1.71 0.72 0.47 3.14 2.68 0.15
SCL_PST 2 24 63.75 15.09 30.00 86.00 56.00 3.08
SCL_PSDI 3 24 2.33 0.59 1.40 3.54 2.14 0.12



Distributions des 3 indicateurs SCL90Distributions des 3 indicateurs SCL90Distributions des 3 indicateurs SCL90

Figure 1.2: Distributions des 3 indicateurs SCL90


On a aussi la structure factorielle suivante, que j’ai pour l’instant laisse de côte :

Valeurs moyennes des sous dimensions de la SCL 90

Figure 1.3: Valeurs moyennes des sous dimensions de la SCL 90

1.9 TAS 20

La TAS 20 est composee de 20 items.

La TAS 20 se divise en 3 sous-scores correspondants aux 3 dimensions suivantes :

  • la difficulte a identifier ses etats emotionnels (TAS1)
  • la difficulte a decrire ses etats emotionnels a autrui (TAS2)
  • la pensee operatoire. (TAS3)

Le Score total est l’addition de ces 3 sous-scores.

On a calcule les 3 sous-scores, ainsi que les categories definies selon des seuils :

Min. 1st Qu. Median Mean 3rd Qu. Max.
TAS1 9 18 23 22.27 26 33
TAS2 5 11 16 15.67 20 25
TAS3 8 13 18 17.33 20 29
TASTOT 25 43 60 55.91 66 78
Scores aux sous dimensions de la TAS

Figure 1.4: Scores aux sous dimensions de la TAS

Distribution des scores TAS totaux

Figure 1.5: Distribution des scores TAS totaux

Les scores a la TAS 20 peuvent être utilises selon plusieurs classifications :
Freq % Total % Total Cum.
Alexithymie (>=56) 24 53.3 53.3
Modéré (44< <56)· 8 17.8 71.1
Non-Alexithtymie(<=44) 13 28.9 100.0
Total 45 100.0 100.0
Freq % Total % Total Cum.
a Non-Alexithymie (<56) 21 46.7 46.7
b Alexithymie (>=56) 24 53.3 100.0
Total 45 100.0 100.0
Statistiques de la TAS20 par Sexe
Table 1.8: TAS categorielle par Sexe
Alexithymie (>=56) Modéré (44< <56) Non-Alexithtymie(<=44)
F 57.6 21.2 21.2
M 41.7 8.3 50.0
Table 1.8: TAS binaire par Sexe
a Non-Alexithymie (<56) b Alexithymie (>=56)
F 42.4 57.6
M 58.3 41.7
Garçons :
Table 1.9: Scores TAS chez les Garçons
vars n mean sd min max range se
TAS1 1 12 19.8 3.8 15 26 11 1.1
TAS2 2 12 14.2 3.8 8 20 12 1.1
TAS3 3 12 16.9 3.3 11 22 11 0.9
TASTOT 4 12 50.4 9.3 41 63 22 2.7
Filles :
Table 1.10: Scores TAS chez les Filles
vars n mean sd min max range se
TAS1 1 33 23.2 5.7 9 33 24 1.0
TAS2 2 33 16.2 5.9 5 25 20 1.0
TAS3 3 33 17.5 5.2 8 29 21 0.9
TASTOT 4 33 57.9 15.3 25 78 53 2.7

=> HETEROGENEITE PLUS FORTE CHEZ LES GARCONS



1.10 MAIA

Table 1.11: Scores MAIA
Min. 1st Qu. Median Mean 3rd Qu. Max.
MAIA_noticing 1.00 2.75 3.25 3.22 3.75 4.75
MAIA_notdistracting 0.00 1.33 2.00 2.16 3.00 5.00
MAIA_notworrying 0.33 1.67 3.33 2.89 4.00 5.00
MAIA_attentionreg 0.14 1.43 2.43 2.56 3.57 5.00
MAIA_emoaware 0.40 2.20 3.80 3.29 4.20 5.00
MAIA_selfregul 0.00 0.75 1.75 2.00 3.50 4.75
MAIA_bodylisten 0.00 0.33 1.33 1.67 2.33 4.67
MAIA_trust 0.00 0.33 2.00 2.21 4.00 5.00
MAIA_total 41.00 65.00 82.00 82.47 97.00 135.00
Multidimensional Assessment of Interoceptive Awareness

Figure 1.6: Multidimensional Assessment of Interoceptive Awareness

2 HF : Repos

On presente ici les statistiques des indicateurs HF_p (pourcentage) et HF_abs (valeur absolue)

On presente cet indicateur pendant les phases :

  • de repos au debut de l’experimentation (RS2)
Table 2.1: RS2 HF_p
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.4 10.5 18.1 23.1 32.3 65.3
Table 2.1: RS2 HF_abs
Min. 1st Qu. Median Mean 3rd Qu. Max.
64.3 290.1 642.6 1202.5 1261.9 8932.7

On ventile les moyennes des quatre indicateurs par des caracteristiques socio-economiques :

Lorsque possible (la variable categorielle a seulement 2 categories), j’ai ajoute la p-value d’un test de difference de moyenne). Une p-value inferieure a 0,05 veut dire que la difference est statistiquement significative.

NOTE sur les CATEGORIES :

Pour les CSP, du aux faibles effectifs, j’ai binarise la CSP en “cadre” ou “Autre”.

Il n’y a qu’une fugue qui a les infos, donc pas possible calculer la moyenne ni le test

sexe mean_RS2_HF_p mean_RS2_HF_abs mean_CC_HF_p mean_CC_HF_abs
F 25.3 1261.4 11.5 1901.6
M 17.0 1040.6 11.2 1859.2
p-value T-test 0.064 0.598 0.924 0.956
age_median
<=17 ans 21.7 1309.1 11.2 1887.9
>17ans 25.0 1056.6 11.6 1894.4
p-value T-test 0.502 0.586 0.878 0.993
divorce
non 21.6 979.3 10.0 1465.9
oui 24.5 1416.0 12.5 2233.9
p-value T-test 0.567 0.386 0.371 0.249
fugues
0 23.3 1212.5 11.1 1824.7
NA NaN NaN NaN NaN
hospi_psy_nb_C
1 25.2 890.9 13.1 1807.5
2 31.0 1973.3 7.1 1326.9
3 17.6 891.8 11.1 1512.7
NA NA NA NA NA
CSP_mere_C
CSP autre 22.8 1338.9 11.7 2067.0
CSP cadre 23.5 997.9 10.9 1606.8
p-value T-test 0.896 0.45 0.739 0.451
CSP_pere_C
CSP autre 24.2 1239.6 11.0 1941.0
CSP cadre 22.2 1172.8 11.9 1833.6
p-value T-test 0.69 0.895 0.75 0.875
ATCD_mal_phy
0 23.7 1264 11.6 1916.4
1 21.7 1051.2 10.9 1836.1
p-value T-test 0.722 0.633 0.809 0.926

2.1 plots : HF_abs repos

[[1]] [[2]] [[3]] [[4]] [[5]] [[6]] [[7]] [[8]] [[9]] [[10]] [[11]] [[12]] [[13]] [[14]] [[15]]

2.2 plots : HF_p repos

[[1]] [[2]] [[3]] [[4]] [[5]] [[6]] [[7]] [[8]] [[9]] [[10]] [[11]] [[12]] [[13]] [[14]] [[15]]

2.3 Correlations avec MAIA

Avec MAIA :

BDD54  <-readRDS(paste(dropbox,"UIMM/RELADO/BDD DESC"         ,sep=""))

cor.test(BDD54$MAIA_total,BDD54$RS2_HF_p, use="pairwise.complete.obs" , method="pearson")

    Pearson's product-moment correlation

data:  BDD54$MAIA_total and BDD54$RS2_HF_p
t = 1.3555, df = 43, p-value = 0.1823
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.09685771  0.46814786
sample estimates:
      cor 
0.2024315 
cor.test(BDD54$MAIA_total,BDD54$RS2_HF_abs, use="pairwise.complete.obs", method ="pearson")

    Pearson's product-moment correlation

data:  BDD54$MAIA_total and BDD54$RS2_HF_abs
t = 1.2813, df = 43, p-value = 0.207
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.1078361  0.4594398
sample estimates:
     cor 
0.191768 
cor.test(BDD54$MAIA_selfregul,BDD54$RS2_HF_p, use="pairwise.complete.obs", method ="pearson")

    Pearson's product-moment correlation

data:  BDD54$MAIA_selfregul and BDD54$RS2_HF_p
t = 1.6121, df = 43, p-value = 0.1143
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.05893039  0.49741039
sample estimates:
      cor 
0.2387331 
cor.test(BDD54$MAIA_selfregul,BDD54$RS2_HF_abs, use="pairwise.complete.obs", method ="pearson")

    Pearson's product-moment correlation

data:  BDD54$MAIA_selfregul and BDD54$RS2_HF_abs
t = 2.279, df = 43, p-value = 0.02769
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.0384583 0.5671662
sample estimates:
      cor 
0.3282863 

3 DELTA HF

On cree les nouveaux indicateurs suivants :

La difference est calculee entre l’epreuve de Cyber ball et le Repos 2

delta_HF_abs <- LOG(CBT_HF_abs) - LOG(RS2_HF_abs)

Table 3.1: Delta HF (valeur absolue)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
-2.6 -0.6 -0.1 0 0.6 2.3 15

3.1 DELTA HF et autres echelles

Tests de différences de moyennes des sous dimensions de la MAIA entre HRV reactivity positive et negative modérée.

BDDex <- BDD54[which(BDD54$delta_HF_ex>=0),]

t.test(BDDex$MAIA_total ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_total by BDDex$delta_HF_ex
t = 3.0199, df = 33.43, p-value = 0.004817
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  7.016872 35.947834
sample estimates:
mean in group 0 mean in group 1 
       95.88235        74.40000 
t.test(BDDex$MAIA_emoaware ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_emoaware by BDDex$delta_HF_ex
t = 2.121, df = 31.734, p-value = 0.04183
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.03318507 1.65387376
sample estimates:
mean in group 0 mean in group 1 
       3.823529        2.980000 
t.test(BDDex$MAIA_noticing ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_noticing by BDDex$delta_HF_ex
t = 0.84104, df = 34.996, p-value = 0.406
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.3056371  0.7379900
sample estimates:
mean in group 0 mean in group 1 
       3.441176        3.225000 
t.test(BDDex$MAIA_notdistracting ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_notdistracting by BDDex$delta_HF_ex
t = -1.1196, df = 33.987, p-value = 0.2708
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.2061433  0.3492806
sample estimates:
mean in group 0 mean in group 1 
       1.921569        2.350000 
t.test(BDDex$MAIA_notworrying ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_notworrying by BDDex$delta_HF_ex
t = 1.1493, df = 34.6, p-value = 0.2583
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.3768111  1.3591640
sample estimates:
mean in group 0 mean in group 1 
       3.274510        2.783333 
t.test(BDDex$MAIA_attentionreg ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_attentionreg by BDDex$delta_HF_ex
t = 0.81577, df = 34.466, p-value = 0.4202
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.5246162  1.2288178
sample estimates:
mean in group 0 mean in group 1 
       2.823529        2.471429 
t.test(BDDex$MAIA_selfregul ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_selfregul by BDDex$delta_HF_ex
t = 2.3108, df = 34.916, p-value = 0.02687
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.1308569 2.0250254
sample estimates:
mean in group 0 mean in group 1 
       2.602941        1.525000 
t.test(BDDex$MAIA_bodylisten ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_bodylisten by BDDex$delta_HF_ex
t = 3.6051, df = 34.967, p-value = 0.0009625
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.5717789 2.0458682
sample estimates:
mean in group 0 mean in group 1 
       2.392157        1.083333 
t.test(BDDex$MAIA_trust ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_trust by BDDex$delta_HF_ex
t = 2.6007, df = 34.73, p-value = 0.01357
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.3075081 2.4983742
sample estimates:
mean in group 0 mean in group 1 
       3.019608        1.616667 

Croisements avec autres échelles

variables moyenne de Delta HF (abs)
age_median
<=17 ans 0.11
>17ans -0.23
sexe
F 0.06
M -0.29
EGF_Q4
(29.9,47.2] 0.63
(47.2,64.5] -0.16
(64.5,81.8] 0.11
(81.8,99.1] -0.32
SCL_GSI_Q4
(0.0858,0.853] -0.30
(0.853,1.62] 0.23
(1.62,2.38] -0.29
(2.38,3.15] 0.49
TAS1_Q4
(8.98,15] -0.45
(15,21] 0.02
(21,27] -0.19
(27,33] 0.50
TAS2_Q4
(4.98,10] 0.19
(10,15] -0.28
(15,20] -0.31
(20,25] 0.67
TAS3_Q4
(7.98,13.2] -0.26
(13.2,18.5] 0.18
(18.5,23.8] 0.09
(23.8,29] -0.37
TASTOT_Q4
(24.9,38.2] -0.41
(38.2,51.5] -0.09
(51.5,64.8] 0.01
(64.8,78.1] 0.15
meditation
0 -0.09
1 0.12
autoM
non -0.23
oui 0.17
TS_nb
0 -0.15
1 0.52
>=2 -0.33
MAIA_noticing_Q
(0.996,1.94] -0.27
(1.94,2.88] -0.47
(2.88,3.81] 0.12
(3.81,4.75] 0.23
MAIA_notdistracting_Q
(-0.005,1.25] 0.40
(1.25,2.5] -0.33
(2.5,3.75] -0.03
(3.75,5] 0.61
MAIA_notworrying_Q
(0.329,1.5] -0.07
(1.5,2.67] -0.70
(2.67,3.83] 0.25
(3.83,5] 0.17
MAIA_attentionreg_Q
(0.138,1.36] -0.04
(1.36,2.57] -0.33
(2.57,3.79] 0.13
(3.79,5] 0.24
MAIA_emoaware_Q
(0.395,1.55] 0.22
(1.55,2.7] -0.11
(2.7,3.85] -0.27
(3.85,5] 0.06
MAIA_selfregul_Q
(-0.00475,1.19] 0.24
(1.19,2.38] -0.13
(2.38,3.56] 0.02
(3.56,4.75] -0.33
MAIA_bodylisten_Q
(-0.00467,1.17] 0.12
(1.17,2.33] 0.00
(2.33,3.5] 0.01
(3.5,4.67] -0.68
MAIA_trust_Q
(-0.005,1.25] 0.12
(1.25,2.5] -0.03
(2.5,3.75] -0.07
(3.75,5] -0.21
MAIA_total_Q
(40.9,64.5] -0.04
(64.5,88] -0.14
(88,112] 0.02
(112,135] 0.15

3.2 plots

[[1]] [[2]] [[3]] [[4]] [[5]] [[6]] [[7]] [[8]] [[9]] [[10]] [[11]] [[12]] [[13]] [[14]] [[15]]

4 Delta HF extremes

On créé un indicateur de Delta HF en 3 catégories : - HRV reactivite positive : >= 0 - HRV reactivite negative moderee : < 0 - HRV reactivite negative forte : ( < (moyenne - 1sd) )

Distribution de Delta HF

Figure 4.1: Distribution de Delta HF

Table 4.1: Caracteristiques Delta HF extremes vs. moyens
Delta HF moyen Delta HF “extreme”
TAS1 22.30 23.33
TAS2 15.39 16.22
TAS3 16.76 18.33
age 17.73 18.22
Sexe01 0.79 0.56
SCL_GSI 1.28 1.34
SCL_PSDI 2.03 2.07
SCL_PST 51.06 55.78
coherence.ratio 4.15 2.30
RS2_HF_p 24.10 20.83
RS2_HF_abs 1096.88 1747.43
autoM01 0.42 0.78
TS_bin01 0.55 0.67

4.1 Tests avec MAIA

On fait ici des tests de differences de moyennes des sous dimensions de la MAIA entre les HRV reactivity>=0 et <0 (on laisse de cote les tres bas)

BDDex <- BDD54[which(BDD54$delta_HF_ex>=0),]

t.test(BDDex$MAIA_total ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_total by BDDex$delta_HF_ex
t = 3.0199, df = 33.43, p-value = 0.004817
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  7.016872 35.947834
sample estimates:
mean in group 0 mean in group 1 
       95.88235        74.40000 
t.test(BDDex$MAIA_emoaware ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_emoaware by BDDex$delta_HF_ex
t = 2.121, df = 31.734, p-value = 0.04183
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.03318507 1.65387376
sample estimates:
mean in group 0 mean in group 1 
       3.823529        2.980000 
t.test(BDDex$MAIA_noticing ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_noticing by BDDex$delta_HF_ex
t = 0.84104, df = 34.996, p-value = 0.406
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.3056371  0.7379900
sample estimates:
mean in group 0 mean in group 1 
       3.441176        3.225000 
t.test(BDDex$MAIA_notdistracting ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_notdistracting by BDDex$delta_HF_ex
t = -1.1196, df = 33.987, p-value = 0.2708
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.2061433  0.3492806
sample estimates:
mean in group 0 mean in group 1 
       1.921569        2.350000 
t.test(BDDex$MAIA_notworrying ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_notworrying by BDDex$delta_HF_ex
t = 1.1493, df = 34.6, p-value = 0.2583
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.3768111  1.3591640
sample estimates:
mean in group 0 mean in group 1 
       3.274510        2.783333 
t.test(BDDex$MAIA_attentionreg ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_attentionreg by BDDex$delta_HF_ex
t = 0.81577, df = 34.466, p-value = 0.4202
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.5246162  1.2288178
sample estimates:
mean in group 0 mean in group 1 
       2.823529        2.471429 
t.test(BDDex$MAIA_selfregul ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_selfregul by BDDex$delta_HF_ex
t = 2.3108, df = 34.916, p-value = 0.02687
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.1308569 2.0250254
sample estimates:
mean in group 0 mean in group 1 
       2.602941        1.525000 
t.test(BDDex$MAIA_bodylisten ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_bodylisten by BDDex$delta_HF_ex
t = 3.6051, df = 34.967, p-value = 0.0009625
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.5717789 2.0458682
sample estimates:
mean in group 0 mean in group 1 
       2.392157        1.083333 
t.test(BDDex$MAIA_trust ~ BDDex$delta_HF_ex)

    Welch Two Sample t-test

data:  BDDex$MAIA_trust by BDDex$delta_HF_ex
t = 2.6007, df = 34.73, p-value = 0.01357
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.3075081 2.4983742
sample estimates:
mean in group 0 mean in group 1 
       3.019608        1.616667 

5 Coherence ratio

Indicateur de coherence ratio fourni par Marie.

Mise a Jour 13/12/20 : Indicateur de coherence cardiaque mis a jour

(#tab:coherence ratio)Coherence ratio (log)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
-1.7 0.5 1 0.9 1.6 3 4

TABLEAU : Moyenne de Coherence ratio par categories

variables moyenne de coherence log
age_median
<=17 ans 1.01
>17ans 0.75
sexe
F 0.91
M 0.85
EGF_Q4
(29.9,47.2] 0.73
(47.2,64.5] 0.62
(64.5,81.8] 1.00
(81.8,99.1] 1.40
SCL_GSI_Q4
(0.0858,0.853] 0.99
(0.853,1.62] 0.87
(1.62,2.38] 1.06
(2.38,3.15] 0.18
TAS1_Q4
(8.98,15] 1.04
(15,21] 0.88
(21,27] 0.93
(27,33] 0.61
TAS2_Q4
(4.98,10] 1.21
(10,15] 0.99
(15,20] 0.60
(20,25] 0.80
TAS3_Q4
(7.98,13.2] 1.20
(13.2,18.5] 0.80
(18.5,23.8] 0.64
(23.8,29] 1.11
TASTOT_Q4
(24.9,38.2] 1.35
(38.2,51.5] 0.88
(51.5,64.8] 0.83
(64.8,78.1] 0.70
meditation
0 1.03
1 0.6
autoM
non 0.96
oui 0.84
TS_nb
0 0.68
1 0.82
>=2 1.19
MAIA_noticing_Q
(0.996,1.94] 0.12
(1.94,2.88] 0.58
(2.88,3.81] 1.03
(3.81,4.75] 1.09
MAIA_notdistracting_Q
(-0.005,1.25] 0.91
(1.25,2.5] 0.87
(2.5,3.75] 0.82
(3.75,5] 1.23
MAIA_notworrying_Q
(0.329,1.5] 0.96
(1.5,2.67] 0.88
(2.67,3.83] 0.56
(3.83,5] 1.09
MAIA_attentionreg_Q
(0.138,1.36] 0.96
(1.36,2.57] 0.73
(2.57,3.79] 1.04
(3.79,5] 0.81
MAIA_emoaware_Q
(0.395,1.55] 0.97
(1.55,2.7] 0.85
(2.7,3.85] 0.82
(3.85,5] 0.90
MAIA_selfregul_Q
(-0.00475,1.19] 0.78
(1.19,2.38] 0.80
(2.38,3.56] 1.06
(3.56,4.75] 0.98
MAIA_bodylisten_Q
(-0.00467,1.17] 0.76
(1.17,2.33] 1.01
(2.33,3.5] 0.63
(3.5,4.67] 1.21
MAIA_trust_Q
(-0.005,1.25] 0.86
(1.25,2.5] 0.99
(2.5,3.75] 1.13
(3.75,5] 0.70
MAIA_total_Q
(40.9,64.5] 0.92
(64.5,88] 0.79
(88,112] 0.94
(112,135] 0.85

5.1 plots

[[1]] [[2]] [[3]] [[4]] [[5]] [[6]] [[7]] [[8]] [[9]] [[10]] [[11]] [[12]] [[13]] [[14]] [[15]]

5.2 HF repos et coherence ratio

Graphe de HF repos en fonction du coherence ratio (log) (couleur = valeur de delta HF_extreme)

cor.test(BDD54$coherence.log,BDD54$RS2_HF_p, use = "complete.obs")

    Pearson's product-moment correlation

data:  BDD54$coherence.log and BDD54$RS2_HF_p
t = 0.45006, df = 43, p-value = 0.6549
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.2296777  0.3548738
sample estimates:
       cor 
0.06847251 

6 Delta EVA

Table 6.1: Statistiques des EVA
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
EVA_RS1_Exp -3 -1.00 0.5 0.61 2.00 6 3
EVA_RS1_P 0 1.00 2.0 2.79 4.00 9 4
EVA_RS1_E -7 0.00 0.0 1.08 2.00 10 4
EVA_MM_Exp -5 -1.75 0.0 -0.22 1.00 3 3
EVA_MM_P 0 1.00 3.0 3.21 5.00 10 4
EVA_MM_E -8 -1.00 0.0 0.89 3.00 10 4
EVA_HBDT_Exp -4 -0.50 0.0 0.73 2.00 6 2
EVA_HBDT_P 0 1.00 3.0 3.42 5.00 10 4
EVA_HBDT_E -9 0.00 0.0 1.13 3.00 10 3
EVA_RS2_Exp -3 -1.00 0.0 0.62 2.00 5 2
EVA_RS2_P -1 1.00 2.0 2.98 5.00 10 3
EVA_RS2_E -8 -1.00 0.0 1.17 3.00 10 3
EVA_CBT_Exp -6 -3.00 -1.5 -1.44 0.00 4 3
EVA_CBT_P 0 1.00 4.0 3.77 6.00 10 4
EVA_CBT_E -10 -2.00 0.0 0.49 3.00 10 4
EVA_TSST_Exp -8 -3.50 -2.0 -1.71 -1.00 5 2
EVA_TSST_P 0 2.00 4.0 4.06 6.00 10 3
EVA_TSST_E -10 -2.75 0.0 -0.06 3.00 10 3
EVA_CC_Exp -3 0.00 2.0 1.42 2.50 6 2
EVA_CC_P 0 1.00 2.0 2.80 4.75 10 3
EVA_CC_E -9 0.00 1.0 1.15 5.00 10 4
EVA_IGT_Exp -6 -1.00 0.0 0.48 2.00 6 3
EVA_IGT_P 0 1.00 2.0 3.29 5.25 10 5
EVA_IGT_E -8 -1.00 0.0 1.11 2.00 10 12

On cree les nouveaux indicateurs suivants :

La difference est calculee entre l’epreuve de Cyber ball et le Repos 2

delta_EVA_P <- EVA_CBT_P - EVA_RS2_P

delta_EVA_E <- EVA_CBT_E - EVA_RS2_E

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
P -6 0 0 0.72 1 10 4
E -12 -1 0 -0.62 0 9 4
Distribution des scores DELTA EVA P

Figure 6.1: Distribution des scores DELTA EVA P

Distribution des scores DELTA EVA E

Figure 6.2: Distribution des scores DELTA EVA E

6.1 Delta EVA et autres echelles

6.1.1 EVA physique

variables moyenne de delta_EVA_P
age_median
<=17 ans 0.25
>17ans 1.24
sexe
F 0.51
M 1.29
EGF_Q4
(29.9,47.2] 2.00
(47.2,64.5] 0.00
(64.5,81.8] 1.05
(81.8,99.1] 1.12
SCL_GSI_Q4
(0.0858,0.853] 0.79
(0.853,1.62] 0.60
(1.62,2.38] 0.88
(2.38,3.15] 1.20
TAS1_Q4
(8.98,15] 1.78
(15,21] -0.23
(21,27] 0.90
(27,33] 0.89
TAS2_Q4
(4.98,10] 0.45
(10,15] 1.73
(15,20] 0.11
(20,25] 0.88
TAS3_Q4
(7.98,13.2] 1.31
(13.2,18.5] 0.56
(18.5,23.8] 1.18
(23.8,29] -1.75
TASTOT_Q4
(24.9,38.2] 0.14
(38.2,51.5] 1.38
(51.5,64.8] 1.00
(64.8,78.1] 0.15
meditation
0 1
1 0.12
autoM
non 0.60
oui 0.82
TS_nb
0 0.83
1 0.43
>=2 0.81
MAIA_noticing_Q
(0.996,1.94] 2.00
(1.94,2.88] 0.67
(2.88,3.81] 0.83
(3.81,4.75] 0.47
MAIA_notdistracting_Q
(-0.005,1.25] -0.36
(1.25,2.5] 1.95
(2.5,3.75] 0.55
(3.75,5] -6.00
MAIA_notworrying_Q
(0.329,1.5] 0.45
(1.5,2.67] 2.45
(2.67,3.83] 0.67
(3.83,5] -0.13
MAIA_attentionreg_Q
(0.138,1.36] 1.00
(1.36,2.57] 1.69
(2.57,3.79] 0.40
(3.79,5] -0.17
MAIA_emoaware_Q
(0.395,1.55] 0.40
(1.55,2.7] 0.57
(2.7,3.85] 0.60
(3.85,5] 1.04
MAIA_selfregul_Q
(-0.00475,1.19] 0.64
(1.19,2.38] 0.55
(2.38,3.56] 1.00
(3.56,4.75] 1.20
MAIA_bodylisten_Q
(-0.00467,1.17] 0.91
(1.17,2.33] 0.06
(2.33,3.5] 0.71
(3.5,4.67] 2.33
MAIA_trust_Q
(-0.005,1.25] 0.81
(1.25,2.5] 1.67
(2.5,3.75] -0.36
(3.75,5] 1.21
MAIA_total_Q
(40.9,64.5] 1.33
(64.5,88] 0.44
(88,112] 0.79
(112,135] 0.62

6.1.2 EVA Emotionnel

variables moyenne de delta_EVA_E
age_median
<=17 ans -0.39
>17ans -0.88
sexe
F -0.87
M 0.07
EGF_Q4
(29.9,47.2] -3.00
(47.2,64.5] -0.65
(64.5,81.8] -0.23
(81.8,99.1] -0.75
SCL_GSI_Q4
(0.0858,0.853] -0.05
(0.853,1.62] -0.85
(1.62,2.38] -0.12
(2.38,3.15] -2.80
TAS1_Q4
(8.98,15] -1.78
(15,21] 1.38
(21,27] -0.71
(27,33] -2.22
TAS2_Q4
(4.98,10] 0.09
(10,15] -0.87
(15,20] -0.50
(20,25] -1.50
TAS3_Q4
(7.98,13.2] -0.15
(13.2,18.5] -0.83
(18.5,23.8] -1.12
(23.8,29] 0.75
TASTOT_Q4
(24.9,38.2] -0.71
(38.2,51.5] 0.23
(51.5,64.8] -0.58
(64.8,78.1] -1.54
meditation
0 -0.89
1 -0.06
autoM
non 0.24
oui -1.39
TS_nb
0 -0.13
1 -1.00
>=2 -1.00
MAIA_noticing_Q
(0.996,1.94] -2.50
(1.94,2.88] -0.20
(2.88,3.81] -1.06
(3.81,4.75] -0.07
MAIA_notdistracting_Q
(-0.005,1.25] -0.45
(1.25,2.5] -1.20
(2.5,3.75] -0.15
(3.75,5] -1.00
MAIA_notworrying_Q
(0.329,1.5] -0.64
(1.5,2.67] -2.18
(2.67,3.83] -1.53
(3.83,5] 1.40
MAIA_attentionreg_Q
(0.138,1.36] -0.78
(1.36,2.57] -0.94
(2.57,3.79] -0.93
(3.79,5] 0.25
MAIA_emoaware_Q
(0.395,1.55] -0.2
(1.55,2.7] -0.5
(2.7,3.85] -0.9
(3.85,5] -0.7
MAIA_selfregul_Q
(-0.00475,1.19] -1.14
(1.19,2.38] -0.25
(2.38,3.56] -0.75
(3.56,4.75] -0.60
MAIA_bodylisten_Q
(-0.00467,1.17] -0.45
(1.17,2.33] -0.94
(2.33,3.5] -0.71
(3.5,4.67] -0.33
MAIA_trust_Q
(-0.005,1.25] -0.71
(1.25,2.5] -1.00
(2.5,3.75] 0.73
(3.75,5] -1.43
MAIA_total_Q
(40.9,64.5] -1.42
(64.5,88] -0.06
(88,112] -0.50
(112,135] -1.00

6.1.3 plots delta_EVA Physique

[[1]] [[2]] [[3]] [[4]] [[5]] [[6]] [[7]] [[8]] [[9]] [[10]] [[11]] [[12]] [[13]] [[14]] [[15]]

6.1.4 plots delta_EVA Emotionnel

[[1]] [[2]] [[3]] [[4]] [[5]] [[6]] [[7]] [[8]] [[9]] [[10]] [[11]] [[12]] [[13]] [[14]] [[15]]

6.1.5 plots delta_EVA et delta_HRV

[[1]] [[2]] [[1]] [[2]]

6.2 delta_EVA + et -

Table 6.2: Frequences delta_EVA_E
Frequence % du Total % Cumul
negatif 25 43.9 43.9
positif (ou nul) 28 49.1 93.0
<NA> 4 7.0 100.0
Total 57 100.0 100.0
Table 6.2: Frequences delta_EVA_P
Frequence % du Total % Cumul
negatif 11 19.3 19.3
positif (ou nul) 42 73.7 93.0
<NA> 4 7.0 100.0
Total 57 100.0 100.0

6.2.1 croisement avec HRV

delta_EVA_E_positif mean_coherence.ratio
negatif 2.9
positif (ou nul) 4.0
p-value T-test 0.253
delta_EVA_E_positif mean_delta_HF_abs
negatif 0.1
positif (ou nul) -0.2
p-value T-test 0.248
delta_EVA_P_positif mean_coherence.ratio
negatif 5.5
positif (ou nul) 2.9
p-value T-test 0.203
delta_EVA_P_positif mean_delta_HF_abs
negatif 0.2
positif (ou nul) -0.1
p-value T-test 0.354

7 ANALYSES MARS 2021

delta_HF_extreme : -1 , 0 , 1

-1 si delta HF < ( moyenne - 1 sd)

1 si delta HF >= 0

0 si delta_HF entre les deux

7.1 HRV reactivity

% de TS en fonction de delta HF_ex

   
           -1         0         1
  0 0.4000000 0.5882353 0.3000000
  1 0.6000000 0.4117647 0.7000000

    Pearson's Chi-squared test with Yates' continuity correction

data:  BDD54[which(BDD54$delta_HF_ex >= 0), ]$TS_bin and BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
X-squared = 2.047, df = 1, p-value = 0.1525

Automutilations :

proportions en fonction de Delta HF extreme (-1,0,1)

test du chi-2 parmi ceux ayant une reactivity positive.

     
             -1         0         1
  non 0.4000000 0.7647059 0.3000000
  oui 0.6000000 0.2352941 0.7000000

    Pearson's Chi-squared test with Yates' continuity correction

data:  BDD54[which(BDD54$delta_HF_ex >= 0), ]$autoM and BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
X-squared = 6.1922, df = 1, p-value = 0.01283

SCL : t-tests (différences de moyennes) des sous dimensions puis score total de SCL parmi ceux qui ont une reactivité positive


    Welch Two Sample t-test

data:  BDD54[which(BDD54$delta_HF_ex >= 0), ]$SCL_GSI by BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
t = -2.1862, df = 33.986, p-value = 0.03579
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.04911569 -0.03826993
sample estimates:
mean in group 0 mean in group 1 
       1.001307        1.545000 

    Welch Two Sample t-test

data:  BDD54[which(BDD54$delta_HF_ex >= 0), ]$SCL_PST by BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
t = -1.0457, df = 31.2, p-value = 0.3037
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -22.280166   7.174284
sample estimates:
mean in group 0 mean in group 1 
       47.64706        55.20000 

    Welch Two Sample t-test

data:  BDD54[which(BDD54$delta_HF_ex >= 0), ]$SCL_PSDI by BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
t = -3.3001, df = 33.305, p-value = 0.00231
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.9670895 -0.2295872
sample estimates:
mean in group 0 mean in group 1 
       1.730986        2.329325 

    Welch Two Sample t-test

data:  BDD54[which(BDD54$delta_HF_ex >= 0), ]$SCL_PSDI by BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
t = -3.3001, df = 33.305, p-value = 0.00231
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.9670895 -0.2295872
sample estimates:
mean in group 0 mean in group 1 
       1.730986        2.329325 

MAIA :

moyennes selon le Delta HF extreme

de MAIA total

de MAIA selfregul

  Group.1        x
1      -1 71.00000
2       0 95.88235
3       1 74.40000
  Group.1        x
1      -1 1.950000
2       0 2.602941
3       1 1.525000

t-tests (différences de moyennes) de MAIA total parmi ceux qui ont une reactivité positive


    Welch Two Sample t-test

data:  BDD54[which(BDD54$delta_HF_ex >= 0), ]$MAIA_total by BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
t = 3.0199, df = 33.43, p-value = 0.004817
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  7.016872 35.947834
sample estimates:
mean in group 0 mean in group 1 
       95.88235        74.40000 

EGF :

t-tests (différences de moyennes) de EGF parmi ceux qui ont une reactivité positive


    Welch Two Sample t-test

data:  BDD54[which(BDD54$delta_HF_ex >= 0), ]$EGF by BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
t = 1.1545, df = 34.229, p-value = 0.2563
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.881702 14.099349
sample estimates:
mean in group 0 mean in group 1 
       70.05882        64.95000 

7.2 Comparaisons deltas

Comparer :

Delta EVA CBT-Repos2 avec Delta_HF_ex

Delta EVA CBT-CC

physique et Emotionnel à chaque fois.

BDD54$delta_EVA_CBT_RS2_E <- NA
BDD54$delta_EVA_CBT_RS2_E <- BDD54$EVA_CBT_E - BDD54$EVA_RS2_E

BDD54$delta_EVA_CBT_RS2_P <- NA
BDD54$delta_EVA_CBT_RS2_P <- BDD54$EVA_CBT_P - BDD54$EVA_RS2_P

BDD54$delta_EVA_CBT_CC_E <- NA
BDD54$delta_EVA_CBT_CC_E <- BDD54$EVA_CBT_E - BDD54$EVA_CC_E

BDD54$delta_EVA_CBT_CC_P <- NA
BDD54$delta_EVA_CBT_CC_P <- BDD54$EVA_CBT_P - BDD54$EVA_CC_P
library(ggpubr)
ggboxplot(BDD54, x = "delta_HF_ex", y = "delta_EVA_CBT_RS2_E")

aggregate(BDD54$delta_EVA_CBT_RS2_E, list(BDD54$delta_HF_ex), mean, na.rm=TRUE)
  Group.1           x
1      -1 -0.80000000
2       0  0.05882353
3       1 -0.94444444
ggboxplot(BDD54, x = "delta_HF_ex", y = "delta_EVA_CBT_RS2_P")

aggregate(BDD54$delta_EVA_CBT_RS2_P, list(BDD54$delta_HF_ex), mean, na.rm=TRUE)
  Group.1         x
1      -1 2.6000000
2       0 0.4705882
3       1 0.3888889
ggboxplot(BDD54, x = "delta_HF_ex", y = "delta_EVA_CBT_CC_E")

aggregate(BDD54$delta_EVA_CBT_CC_E, list(BDD54$delta_HF_ex), mean, na.rm=TRUE)
  Group.1          x
1      -1 -1.4000000
2       0 -0.3750000
3       1 -0.5555556
ggboxplot(BDD54, x = "delta_HF_ex", y = "delta_EVA_CBT_CC_P")

aggregate(BDD54$delta_EVA_CBT_CC_P, list(BDD54$delta_HF_ex), mean, na.rm=TRUE)
  Group.1         x
1      -1 2.6000000
2       0 1.2352941
3       1 0.4444444