16/03/2021 : On a enlevé les 12 individus pour lesquels on avait pas de valeur pour RS2 HF.
On a maintenant 45 individus
Insérer ici les graphes des valeurs manquantes
EGF : Echelle Globale de fonctionnnement
On a un score EGF et un score EGF hospitalisations : qu’est ce que le 2eme ?
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|
40 | 55 | 65 | 66.6 | 75 | 99 |
Figure 1.1: Distribution des scores EGF
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | NA’s |
---|---|---|---|---|---|---|
0 | 0 | 0 | 3.4 | 5.2 | 28 | 2 |
Frequence | % du Total | % Cumul | |
---|---|---|---|
non | 24 | 53.3 | 53.3 |
oui | 21 | 46.7 | 100.0 |
<NA> | 0 | 0.0 | 100.0 |
Total | 45 | 100.0 | 100.0 |
Frequence | % du Total | % Cumul | |
---|---|---|---|
0 | 18 | 40.0 | 40.0 |
1 | 12 | 26.7 | 66.7 |
>=2 | 15 | 33.3 | 100.0 |
<NA> | 0 | 0.0 | 100.0 |
Total | 45 | 100.0 | 100.0 |
Evenement | N | Ntotal | Proportion | NA |
---|---|---|---|---|
separation ou divorce des parents | 23 | 45 | 51.1% | 0 |
separation avec un parent avant l’âge d’un an | 9 | 45 | 20% | 0 |
separation avec les 2 parents de plus d’un an | 1 | 45 | 2.2% | 0 |
adoption | 4 | 45 | 8.9% | 0 |
placement en foyer | 4 | 45 | 8.9% | 0 |
placement en famille d’accueil | 1 | 45 | 2.2% | 0 |
mort du pere | 2 | 45 | 4.4% | 0 |
mort de la mere | 0 | 61 | 0% | 0 |
Deces d’un parent proche | 3 | 45 | 6.7% | 0 |
Rupture amoureuse | 1 | 45 | 2.2% | 0 |
Avortement | 1 | 45 | 2.2% | 0 |
Accident / catastrophe | 0 | 61 | 0% | 0 |
Autre | 18 | 0 | 40% | 2 |
Frequence | % du Total | % Cumul | |
---|---|---|---|
0 | 14 | 31.1 | 31.1 |
1 | 18 | 40.0 | 71.1 |
2 | 10 | 22.2 | 93.3 |
3 | 2 | 4.4 | 97.8 |
4 | 1 | 2.2 | 100.0 |
<NA> | 0 | 0.0 | 100.0 |
Total | 45 | 100.0 | 100.0 |
Frequence | % du Total | % Cumul | |
---|---|---|---|
0 | 32 | 71.1 | 71.1 |
1 | 13 | 28.9 | 100.0 |
<NA> | 0 | 0.0 | 100.0 |
Total | 45 | 100.0 | 100.0 |
D’apres le document scanne a l’IMM (bouquin de Corinne), voila les differents scores calculables pour la SCL-90 :
Scans du codage de SCL90
GSI : Gravite Globale = score total / 90
PST : diversite des symptomes = Nombres de reponses autres que 0
PSDI : Degre de malaise = score total divise par le PST
Voici les statistiques pour ces 3 indicateurs :
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | |
---|---|---|---|---|---|---|
SCL_GSI | 0.09 | 0.77 | 1.04 | 1.26 | 1.69 | 3.14 |
SCL_PST | 7.00 | 39.00 | 47.00 | 51.27 | 70.00 | 86.00 |
SCL_PSDI | 1.00 | 1.60 | 1.96 | 2.04 | 2.36 | 3.54 |
Statistiques par Sexe
vars | n | mean | sd | min | max | range | se | |
---|---|---|---|---|---|---|---|---|
SCL_GSI | 1 | 12 | 0.94 | 0.52 | 0.14 | 1.97 | 1.82 | 0.15 |
SCL_PST | 2 | 12 | 45.17 | 19.90 | 9.00 | 79.00 | 70.00 | 5.75 |
SCL_PSDI | 3 | 12 | 1.79 | 0.32 | 1.30 | 2.36 | 1.05 | 0.09 |
vars | n | mean | sd | min | max | range | se | |
---|---|---|---|---|---|---|---|---|
SCL_GSI | 1 | 33 | 1.38 | 0.83 | 0.09 | 3.14 | 3.06 | 0.14 |
SCL_PST | 2 | 33 | 53.48 | 21.00 | 7.00 | 86.00 | 79.00 | 3.66 |
SCL_PSDI | 3 | 33 | 2.13 | 0.66 | 1.00 | 3.54 | 2.54 | 0.11 |
Statistiques Alexithymiques / Non-Alexityhmiques
vars | n | mean | sd | min | max | range | se | |
---|---|---|---|---|---|---|---|---|
SCL_GSI | 1 | 21 | 0.76 | 0.48 | 0.09 | 2.21 | 2.12 | 0.11 |
SCL_PST | 2 | 21 | 37.00 | 17.08 | 7.00 | 80.00 | 73.00 | 3.73 |
SCL_PSDI | 3 | 21 | 1.70 | 0.41 | 1.00 | 2.49 | 1.49 | 0.09 |
vars | n | mean | sd | min | max | range | se | |
---|---|---|---|---|---|---|---|---|
SCL_GSI | 1 | 24 | 1.71 | 0.72 | 0.47 | 3.14 | 2.68 | 0.15 |
SCL_PST | 2 | 24 | 63.75 | 15.09 | 30.00 | 86.00 | 56.00 | 3.08 |
SCL_PSDI | 3 | 24 | 2.33 | 0.59 | 1.40 | 3.54 | 2.14 | 0.12 |
Figure 1.2: Distributions des 3 indicateurs SCL90
On a aussi la structure factorielle suivante, que j’ai pour l’instant laisse de côte :
Figure 1.3: Valeurs moyennes des sous dimensions de la SCL 90
La TAS 20 est composee de 20 items.
La TAS 20 se divise en 3 sous-scores correspondants aux 3 dimensions suivantes :
Le Score total est l’addition de ces 3 sous-scores.
On a calcule les 3 sous-scores, ainsi que les categories definies selon des seuils :
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | |
---|---|---|---|---|---|---|
TAS1 | 9 | 18 | 23 | 22.27 | 26 | 33 |
TAS2 | 5 | 11 | 16 | 15.67 | 20 | 25 |
TAS3 | 8 | 13 | 18 | 17.33 | 20 | 29 |
TASTOT | 25 | 43 | 60 | 55.91 | 66 | 78 |
Figure 1.4: Scores aux sous dimensions de la TAS
Figure 1.5: Distribution des scores TAS totaux
Freq | % Total | % Total Cum. | |
---|---|---|---|
Alexithymie (>=56) | 24 | 53.3 | 53.3 |
Modéré (44< <56)· | 8 | 17.8 | 71.1 |
Non-Alexithtymie(<=44) | 13 | 28.9 | 100.0 |
Total | 45 | 100.0 | 100.0 |
Freq | % Total | % Total Cum. | |
---|---|---|---|
a Non-Alexithymie (<56) | 21 | 46.7 | 46.7 |
b Alexithymie (>=56) | 24 | 53.3 | 100.0 |
Total | 45 | 100.0 | 100.0 |
Alexithymie (>=56) | Modéré (44< <56) | Non-Alexithtymie(<=44) | |
---|---|---|---|
F | 57.6 | 21.2 | 21.2 |
M | 41.7 | 8.3 | 50.0 |
a Non-Alexithymie (<56) | b Alexithymie (>=56) | |
---|---|---|
F | 42.4 | 57.6 |
M | 58.3 | 41.7 |
vars | n | mean | sd | min | max | range | se | |
---|---|---|---|---|---|---|---|---|
TAS1 | 1 | 12 | 19.8 | 3.8 | 15 | 26 | 11 | 1.1 |
TAS2 | 2 | 12 | 14.2 | 3.8 | 8 | 20 | 12 | 1.1 |
TAS3 | 3 | 12 | 16.9 | 3.3 | 11 | 22 | 11 | 0.9 |
TASTOT | 4 | 12 | 50.4 | 9.3 | 41 | 63 | 22 | 2.7 |
vars | n | mean | sd | min | max | range | se | |
---|---|---|---|---|---|---|---|---|
TAS1 | 1 | 33 | 23.2 | 5.7 | 9 | 33 | 24 | 1.0 |
TAS2 | 2 | 33 | 16.2 | 5.9 | 5 | 25 | 20 | 1.0 |
TAS3 | 3 | 33 | 17.5 | 5.2 | 8 | 29 | 21 | 0.9 |
TASTOT | 4 | 33 | 57.9 | 15.3 | 25 | 78 | 53 | 2.7 |
=> HETEROGENEITE PLUS FORTE CHEZ LES GARCONS
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | |
---|---|---|---|---|---|---|
MAIA_noticing | 1.00 | 2.75 | 3.25 | 3.22 | 3.75 | 4.75 |
MAIA_notdistracting | 0.00 | 1.33 | 2.00 | 2.16 | 3.00 | 5.00 |
MAIA_notworrying | 0.33 | 1.67 | 3.33 | 2.89 | 4.00 | 5.00 |
MAIA_attentionreg | 0.14 | 1.43 | 2.43 | 2.56 | 3.57 | 5.00 |
MAIA_emoaware | 0.40 | 2.20 | 3.80 | 3.29 | 4.20 | 5.00 |
MAIA_selfregul | 0.00 | 0.75 | 1.75 | 2.00 | 3.50 | 4.75 |
MAIA_bodylisten | 0.00 | 0.33 | 1.33 | 1.67 | 2.33 | 4.67 |
MAIA_trust | 0.00 | 0.33 | 2.00 | 2.21 | 4.00 | 5.00 |
MAIA_total | 41.00 | 65.00 | 82.00 | 82.47 | 97.00 | 135.00 |
Figure 1.6: Multidimensional Assessment of Interoceptive Awareness
On presente ici les statistiques des indicateurs HF_p (pourcentage) et HF_abs (valeur absolue)
On presente cet indicateur pendant les phases :
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|
2.4 | 10.5 | 18.1 | 23.1 | 32.3 | 65.3 |
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|
64.3 | 290.1 | 642.6 | 1202.5 | 1261.9 | 8932.7 |
On ventile les moyennes des quatre indicateurs par des caracteristiques socio-economiques :
Lorsque possible (la variable categorielle a seulement 2 categories), j’ai ajoute la p-value d’un test de difference de moyenne). Une p-value inferieure a 0,05 veut dire que la difference est statistiquement significative.
NOTE sur les CATEGORIES :
Pour les CSP, du aux faibles effectifs, j’ai binarise la CSP en “cadre” ou “Autre”.
Il n’y a qu’une fugue qui a les infos, donc pas possible calculer la moyenne ni le test
sexe | mean_RS2_HF_p | mean_RS2_HF_abs | mean_CC_HF_p | mean_CC_HF_abs |
F | 25.3 | 1261.4 | 11.5 | 1901.6 |
M | 17.0 | 1040.6 | 11.2 | 1859.2 |
p-value T-test | 0.064 | 0.598 | 0.924 | 0.956 |
age_median | ||||
<=17 ans | 21.7 | 1309.1 | 11.2 | 1887.9 |
>17ans | 25.0 | 1056.6 | 11.6 | 1894.4 |
p-value T-test | 0.502 | 0.586 | 0.878 | 0.993 |
divorce | ||||
non | 21.6 | 979.3 | 10.0 | 1465.9 |
oui | 24.5 | 1416.0 | 12.5 | 2233.9 |
p-value T-test | 0.567 | 0.386 | 0.371 | 0.249 |
fugues | ||||
0 | 23.3 | 1212.5 | 11.1 | 1824.7 |
NA | NaN | NaN | NaN | NaN |
hospi_psy_nb_C | ||||
1 | 25.2 | 890.9 | 13.1 | 1807.5 |
2 | 31.0 | 1973.3 | 7.1 | 1326.9 |
3 | 17.6 | 891.8 | 11.1 | 1512.7 |
NA | NA | NA | NA | NA |
CSP_mere_C | ||||
CSP autre | 22.8 | 1338.9 | 11.7 | 2067.0 |
CSP cadre | 23.5 | 997.9 | 10.9 | 1606.8 |
p-value T-test | 0.896 | 0.45 | 0.739 | 0.451 |
CSP_pere_C | ||||
CSP autre | 24.2 | 1239.6 | 11.0 | 1941.0 |
CSP cadre | 22.2 | 1172.8 | 11.9 | 1833.6 |
p-value T-test | 0.69 | 0.895 | 0.75 | 0.875 |
ATCD_mal_phy | ||||
0 | 23.7 | 1264 | 11.6 | 1916.4 |
1 | 21.7 | 1051.2 | 10.9 | 1836.1 |
p-value T-test | 0.722 | 0.633 | 0.809 | 0.926 |
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
[[13]]
[[14]]
[[15]]
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
[[13]]
[[14]]
[[15]]
Avec MAIA :
BDD54 <-readRDS(paste(dropbox,"UIMM/RELADO/BDD DESC" ,sep=""))
cor.test(BDD54$MAIA_total,BDD54$RS2_HF_p, use="pairwise.complete.obs" , method="pearson")
Pearson's product-moment correlation
data: BDD54$MAIA_total and BDD54$RS2_HF_p
t = 1.3555, df = 43, p-value = 0.1823
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.09685771 0.46814786
sample estimates:
cor
0.2024315
cor.test(BDD54$MAIA_total,BDD54$RS2_HF_abs, use="pairwise.complete.obs", method ="pearson")
Pearson's product-moment correlation
data: BDD54$MAIA_total and BDD54$RS2_HF_abs
t = 1.2813, df = 43, p-value = 0.207
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.1078361 0.4594398
sample estimates:
cor
0.191768
cor.test(BDD54$MAIA_selfregul,BDD54$RS2_HF_p, use="pairwise.complete.obs", method ="pearson")
Pearson's product-moment correlation
data: BDD54$MAIA_selfregul and BDD54$RS2_HF_p
t = 1.6121, df = 43, p-value = 0.1143
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.05893039 0.49741039
sample estimates:
cor
0.2387331
cor.test(BDD54$MAIA_selfregul,BDD54$RS2_HF_abs, use="pairwise.complete.obs", method ="pearson")
Pearson's product-moment correlation
data: BDD54$MAIA_selfregul and BDD54$RS2_HF_abs
t = 2.279, df = 43, p-value = 0.02769
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.0384583 0.5671662
sample estimates:
cor
0.3282863
On cree les nouveaux indicateurs suivants :
La difference est calculee entre l’epreuve de Cyber ball et le Repos 2
delta_HF_abs <- LOG(CBT_HF_abs) - LOG(RS2_HF_abs)
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | NA’s |
---|---|---|---|---|---|---|
-2.6 | -0.6 | -0.1 | 0 | 0.6 | 2.3 | 15 |
Tests de différences de moyennes des sous dimensions de la MAIA entre HRV reactivity positive et negative modérée.
BDDex <- BDD54[which(BDD54$delta_HF_ex>=0),]
t.test(BDDex$MAIA_total ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_total by BDDex$delta_HF_ex
t = 3.0199, df = 33.43, p-value = 0.004817
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
7.016872 35.947834
sample estimates:
mean in group 0 mean in group 1
95.88235 74.40000
t.test(BDDex$MAIA_emoaware ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_emoaware by BDDex$delta_HF_ex
t = 2.121, df = 31.734, p-value = 0.04183
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.03318507 1.65387376
sample estimates:
mean in group 0 mean in group 1
3.823529 2.980000
t.test(BDDex$MAIA_noticing ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_noticing by BDDex$delta_HF_ex
t = 0.84104, df = 34.996, p-value = 0.406
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.3056371 0.7379900
sample estimates:
mean in group 0 mean in group 1
3.441176 3.225000
t.test(BDDex$MAIA_notdistracting ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_notdistracting by BDDex$delta_HF_ex
t = -1.1196, df = 33.987, p-value = 0.2708
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.2061433 0.3492806
sample estimates:
mean in group 0 mean in group 1
1.921569 2.350000
t.test(BDDex$MAIA_notworrying ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_notworrying by BDDex$delta_HF_ex
t = 1.1493, df = 34.6, p-value = 0.2583
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.3768111 1.3591640
sample estimates:
mean in group 0 mean in group 1
3.274510 2.783333
t.test(BDDex$MAIA_attentionreg ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_attentionreg by BDDex$delta_HF_ex
t = 0.81577, df = 34.466, p-value = 0.4202
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.5246162 1.2288178
sample estimates:
mean in group 0 mean in group 1
2.823529 2.471429
t.test(BDDex$MAIA_selfregul ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_selfregul by BDDex$delta_HF_ex
t = 2.3108, df = 34.916, p-value = 0.02687
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.1308569 2.0250254
sample estimates:
mean in group 0 mean in group 1
2.602941 1.525000
t.test(BDDex$MAIA_bodylisten ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_bodylisten by BDDex$delta_HF_ex
t = 3.6051, df = 34.967, p-value = 0.0009625
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.5717789 2.0458682
sample estimates:
mean in group 0 mean in group 1
2.392157 1.083333
t.test(BDDex$MAIA_trust ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_trust by BDDex$delta_HF_ex
t = 2.6007, df = 34.73, p-value = 0.01357
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.3075081 2.4983742
sample estimates:
mean in group 0 mean in group 1
3.019608 1.616667
Croisements avec autres échelles
variables | moyenne de Delta HF (abs) |
---|---|
age_median | |
<=17 ans | 0.11 |
>17ans | -0.23 |
sexe | |
F | 0.06 |
M | -0.29 |
EGF_Q4 | |
(29.9,47.2] | 0.63 |
(47.2,64.5] | -0.16 |
(64.5,81.8] | 0.11 |
(81.8,99.1] | -0.32 |
SCL_GSI_Q4 | |
(0.0858,0.853] | -0.30 |
(0.853,1.62] | 0.23 |
(1.62,2.38] | -0.29 |
(2.38,3.15] | 0.49 |
TAS1_Q4 | |
(8.98,15] | -0.45 |
(15,21] | 0.02 |
(21,27] | -0.19 |
(27,33] | 0.50 |
TAS2_Q4 | |
(4.98,10] | 0.19 |
(10,15] | -0.28 |
(15,20] | -0.31 |
(20,25] | 0.67 |
TAS3_Q4 | |
(7.98,13.2] | -0.26 |
(13.2,18.5] | 0.18 |
(18.5,23.8] | 0.09 |
(23.8,29] | -0.37 |
TASTOT_Q4 | |
(24.9,38.2] | -0.41 |
(38.2,51.5] | -0.09 |
(51.5,64.8] | 0.01 |
(64.8,78.1] | 0.15 |
meditation | |
0 | -0.09 |
1 | 0.12 |
autoM | |
non | -0.23 |
oui | 0.17 |
TS_nb | |
0 | -0.15 |
1 | 0.52 |
>=2 | -0.33 |
MAIA_noticing_Q | |
(0.996,1.94] | -0.27 |
(1.94,2.88] | -0.47 |
(2.88,3.81] | 0.12 |
(3.81,4.75] | 0.23 |
MAIA_notdistracting_Q | |
(-0.005,1.25] | 0.40 |
(1.25,2.5] | -0.33 |
(2.5,3.75] | -0.03 |
(3.75,5] | 0.61 |
MAIA_notworrying_Q | |
(0.329,1.5] | -0.07 |
(1.5,2.67] | -0.70 |
(2.67,3.83] | 0.25 |
(3.83,5] | 0.17 |
MAIA_attentionreg_Q | |
(0.138,1.36] | -0.04 |
(1.36,2.57] | -0.33 |
(2.57,3.79] | 0.13 |
(3.79,5] | 0.24 |
MAIA_emoaware_Q | |
(0.395,1.55] | 0.22 |
(1.55,2.7] | -0.11 |
(2.7,3.85] | -0.27 |
(3.85,5] | 0.06 |
MAIA_selfregul_Q | |
(-0.00475,1.19] | 0.24 |
(1.19,2.38] | -0.13 |
(2.38,3.56] | 0.02 |
(3.56,4.75] | -0.33 |
MAIA_bodylisten_Q | |
(-0.00467,1.17] | 0.12 |
(1.17,2.33] | 0.00 |
(2.33,3.5] | 0.01 |
(3.5,4.67] | -0.68 |
MAIA_trust_Q | |
(-0.005,1.25] | 0.12 |
(1.25,2.5] | -0.03 |
(2.5,3.75] | -0.07 |
(3.75,5] | -0.21 |
MAIA_total_Q | |
(40.9,64.5] | -0.04 |
(64.5,88] | -0.14 |
(88,112] | 0.02 |
(112,135] | 0.15 |
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
[[13]]
[[14]]
[[15]]
On créé un indicateur de Delta HF en 3 catégories : - HRV reactivite positive : >= 0 - HRV reactivite negative moderee : < 0 - HRV reactivite negative forte : ( < (moyenne - 1sd) )
Figure 4.1: Distribution de Delta HF
Delta HF moyen | Delta HF “extreme” | |
---|---|---|
TAS1 | 22.30 | 23.33 |
TAS2 | 15.39 | 16.22 |
TAS3 | 16.76 | 18.33 |
age | 17.73 | 18.22 |
Sexe01 | 0.79 | 0.56 |
SCL_GSI | 1.28 | 1.34 |
SCL_PSDI | 2.03 | 2.07 |
SCL_PST | 51.06 | 55.78 |
coherence.ratio | 4.15 | 2.30 |
RS2_HF_p | 24.10 | 20.83 |
RS2_HF_abs | 1096.88 | 1747.43 |
autoM01 | 0.42 | 0.78 |
TS_bin01 | 0.55 | 0.67 |
On fait ici des tests de differences de moyennes des sous dimensions de la MAIA entre les HRV reactivity>=0 et <0 (on laisse de cote les tres bas)
BDDex <- BDD54[which(BDD54$delta_HF_ex>=0),]
t.test(BDDex$MAIA_total ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_total by BDDex$delta_HF_ex
t = 3.0199, df = 33.43, p-value = 0.004817
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
7.016872 35.947834
sample estimates:
mean in group 0 mean in group 1
95.88235 74.40000
t.test(BDDex$MAIA_emoaware ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_emoaware by BDDex$delta_HF_ex
t = 2.121, df = 31.734, p-value = 0.04183
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.03318507 1.65387376
sample estimates:
mean in group 0 mean in group 1
3.823529 2.980000
t.test(BDDex$MAIA_noticing ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_noticing by BDDex$delta_HF_ex
t = 0.84104, df = 34.996, p-value = 0.406
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.3056371 0.7379900
sample estimates:
mean in group 0 mean in group 1
3.441176 3.225000
t.test(BDDex$MAIA_notdistracting ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_notdistracting by BDDex$delta_HF_ex
t = -1.1196, df = 33.987, p-value = 0.2708
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.2061433 0.3492806
sample estimates:
mean in group 0 mean in group 1
1.921569 2.350000
t.test(BDDex$MAIA_notworrying ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_notworrying by BDDex$delta_HF_ex
t = 1.1493, df = 34.6, p-value = 0.2583
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.3768111 1.3591640
sample estimates:
mean in group 0 mean in group 1
3.274510 2.783333
t.test(BDDex$MAIA_attentionreg ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_attentionreg by BDDex$delta_HF_ex
t = 0.81577, df = 34.466, p-value = 0.4202
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.5246162 1.2288178
sample estimates:
mean in group 0 mean in group 1
2.823529 2.471429
t.test(BDDex$MAIA_selfregul ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_selfregul by BDDex$delta_HF_ex
t = 2.3108, df = 34.916, p-value = 0.02687
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.1308569 2.0250254
sample estimates:
mean in group 0 mean in group 1
2.602941 1.525000
t.test(BDDex$MAIA_bodylisten ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_bodylisten by BDDex$delta_HF_ex
t = 3.6051, df = 34.967, p-value = 0.0009625
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.5717789 2.0458682
sample estimates:
mean in group 0 mean in group 1
2.392157 1.083333
t.test(BDDex$MAIA_trust ~ BDDex$delta_HF_ex)
Welch Two Sample t-test
data: BDDex$MAIA_trust by BDDex$delta_HF_ex
t = 2.6007, df = 34.73, p-value = 0.01357
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.3075081 2.4983742
sample estimates:
mean in group 0 mean in group 1
3.019608 1.616667
Indicateur de coherence ratio fourni par Marie.
Mise a Jour 13/12/20 : Indicateur de coherence cardiaque mis a jour
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | NA’s |
---|---|---|---|---|---|---|
-1.7 | 0.5 | 1 | 0.9 | 1.6 | 3 | 4 |
TABLEAU : Moyenne de Coherence ratio par categories
variables | moyenne de coherence log |
---|---|
age_median | |
<=17 ans | 1.01 |
>17ans | 0.75 |
sexe | |
F | 0.91 |
M | 0.85 |
EGF_Q4 | |
(29.9,47.2] | 0.73 |
(47.2,64.5] | 0.62 |
(64.5,81.8] | 1.00 |
(81.8,99.1] | 1.40 |
SCL_GSI_Q4 | |
(0.0858,0.853] | 0.99 |
(0.853,1.62] | 0.87 |
(1.62,2.38] | 1.06 |
(2.38,3.15] | 0.18 |
TAS1_Q4 | |
(8.98,15] | 1.04 |
(15,21] | 0.88 |
(21,27] | 0.93 |
(27,33] | 0.61 |
TAS2_Q4 | |
(4.98,10] | 1.21 |
(10,15] | 0.99 |
(15,20] | 0.60 |
(20,25] | 0.80 |
TAS3_Q4 | |
(7.98,13.2] | 1.20 |
(13.2,18.5] | 0.80 |
(18.5,23.8] | 0.64 |
(23.8,29] | 1.11 |
TASTOT_Q4 | |
(24.9,38.2] | 1.35 |
(38.2,51.5] | 0.88 |
(51.5,64.8] | 0.83 |
(64.8,78.1] | 0.70 |
meditation | |
0 | 1.03 |
1 | 0.6 |
autoM | |
non | 0.96 |
oui | 0.84 |
TS_nb | |
0 | 0.68 |
1 | 0.82 |
>=2 | 1.19 |
MAIA_noticing_Q | |
(0.996,1.94] | 0.12 |
(1.94,2.88] | 0.58 |
(2.88,3.81] | 1.03 |
(3.81,4.75] | 1.09 |
MAIA_notdistracting_Q | |
(-0.005,1.25] | 0.91 |
(1.25,2.5] | 0.87 |
(2.5,3.75] | 0.82 |
(3.75,5] | 1.23 |
MAIA_notworrying_Q | |
(0.329,1.5] | 0.96 |
(1.5,2.67] | 0.88 |
(2.67,3.83] | 0.56 |
(3.83,5] | 1.09 |
MAIA_attentionreg_Q | |
(0.138,1.36] | 0.96 |
(1.36,2.57] | 0.73 |
(2.57,3.79] | 1.04 |
(3.79,5] | 0.81 |
MAIA_emoaware_Q | |
(0.395,1.55] | 0.97 |
(1.55,2.7] | 0.85 |
(2.7,3.85] | 0.82 |
(3.85,5] | 0.90 |
MAIA_selfregul_Q | |
(-0.00475,1.19] | 0.78 |
(1.19,2.38] | 0.80 |
(2.38,3.56] | 1.06 |
(3.56,4.75] | 0.98 |
MAIA_bodylisten_Q | |
(-0.00467,1.17] | 0.76 |
(1.17,2.33] | 1.01 |
(2.33,3.5] | 0.63 |
(3.5,4.67] | 1.21 |
MAIA_trust_Q | |
(-0.005,1.25] | 0.86 |
(1.25,2.5] | 0.99 |
(2.5,3.75] | 1.13 |
(3.75,5] | 0.70 |
MAIA_total_Q | |
(40.9,64.5] | 0.92 |
(64.5,88] | 0.79 |
(88,112] | 0.94 |
(112,135] | 0.85 |
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
[[13]]
[[14]]
[[15]]
Graphe de HF repos en fonction du coherence ratio (log) (couleur = valeur de delta HF_extreme)
cor.test(BDD54$coherence.log,BDD54$RS2_HF_p, use = "complete.obs")
Pearson's product-moment correlation
data: BDD54$coherence.log and BDD54$RS2_HF_p
t = 0.45006, df = 43, p-value = 0.6549
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.2296777 0.3548738
sample estimates:
cor
0.06847251
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | NA’s | |
---|---|---|---|---|---|---|---|
EVA_RS1_Exp | -3 | -1.00 | 0.5 | 0.61 | 2.00 | 6 | 3 |
EVA_RS1_P | 0 | 1.00 | 2.0 | 2.79 | 4.00 | 9 | 4 |
EVA_RS1_E | -7 | 0.00 | 0.0 | 1.08 | 2.00 | 10 | 4 |
EVA_MM_Exp | -5 | -1.75 | 0.0 | -0.22 | 1.00 | 3 | 3 |
EVA_MM_P | 0 | 1.00 | 3.0 | 3.21 | 5.00 | 10 | 4 |
EVA_MM_E | -8 | -1.00 | 0.0 | 0.89 | 3.00 | 10 | 4 |
EVA_HBDT_Exp | -4 | -0.50 | 0.0 | 0.73 | 2.00 | 6 | 2 |
EVA_HBDT_P | 0 | 1.00 | 3.0 | 3.42 | 5.00 | 10 | 4 |
EVA_HBDT_E | -9 | 0.00 | 0.0 | 1.13 | 3.00 | 10 | 3 |
EVA_RS2_Exp | -3 | -1.00 | 0.0 | 0.62 | 2.00 | 5 | 2 |
EVA_RS2_P | -1 | 1.00 | 2.0 | 2.98 | 5.00 | 10 | 3 |
EVA_RS2_E | -8 | -1.00 | 0.0 | 1.17 | 3.00 | 10 | 3 |
EVA_CBT_Exp | -6 | -3.00 | -1.5 | -1.44 | 0.00 | 4 | 3 |
EVA_CBT_P | 0 | 1.00 | 4.0 | 3.77 | 6.00 | 10 | 4 |
EVA_CBT_E | -10 | -2.00 | 0.0 | 0.49 | 3.00 | 10 | 4 |
EVA_TSST_Exp | -8 | -3.50 | -2.0 | -1.71 | -1.00 | 5 | 2 |
EVA_TSST_P | 0 | 2.00 | 4.0 | 4.06 | 6.00 | 10 | 3 |
EVA_TSST_E | -10 | -2.75 | 0.0 | -0.06 | 3.00 | 10 | 3 |
EVA_CC_Exp | -3 | 0.00 | 2.0 | 1.42 | 2.50 | 6 | 2 |
EVA_CC_P | 0 | 1.00 | 2.0 | 2.80 | 4.75 | 10 | 3 |
EVA_CC_E | -9 | 0.00 | 1.0 | 1.15 | 5.00 | 10 | 4 |
EVA_IGT_Exp | -6 | -1.00 | 0.0 | 0.48 | 2.00 | 6 | 3 |
EVA_IGT_P | 0 | 1.00 | 2.0 | 3.29 | 5.25 | 10 | 5 |
EVA_IGT_E | -8 | -1.00 | 0.0 | 1.11 | 2.00 | 10 | 12 |
On cree les nouveaux indicateurs suivants :
La difference est calculee entre l’epreuve de Cyber ball et le Repos 2
delta_EVA_P <- EVA_CBT_P - EVA_RS2_P
delta_EVA_E <- EVA_CBT_E - EVA_RS2_E
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | NA’s | |
---|---|---|---|---|---|---|---|
P | -6 | 0 | 0 | 0.72 | 1 | 10 | 4 |
E | -12 | -1 | 0 | -0.62 | 0 | 9 | 4 |
Figure 6.1: Distribution des scores DELTA EVA P
Figure 6.2: Distribution des scores DELTA EVA E
variables | moyenne de delta_EVA_P |
---|---|
age_median | |
<=17 ans | 0.25 |
>17ans | 1.24 |
sexe | |
F | 0.51 |
M | 1.29 |
EGF_Q4 | |
(29.9,47.2] | 2.00 |
(47.2,64.5] | 0.00 |
(64.5,81.8] | 1.05 |
(81.8,99.1] | 1.12 |
SCL_GSI_Q4 | |
(0.0858,0.853] | 0.79 |
(0.853,1.62] | 0.60 |
(1.62,2.38] | 0.88 |
(2.38,3.15] | 1.20 |
TAS1_Q4 | |
(8.98,15] | 1.78 |
(15,21] | -0.23 |
(21,27] | 0.90 |
(27,33] | 0.89 |
TAS2_Q4 | |
(4.98,10] | 0.45 |
(10,15] | 1.73 |
(15,20] | 0.11 |
(20,25] | 0.88 |
TAS3_Q4 | |
(7.98,13.2] | 1.31 |
(13.2,18.5] | 0.56 |
(18.5,23.8] | 1.18 |
(23.8,29] | -1.75 |
TASTOT_Q4 | |
(24.9,38.2] | 0.14 |
(38.2,51.5] | 1.38 |
(51.5,64.8] | 1.00 |
(64.8,78.1] | 0.15 |
meditation | |
0 | 1 |
1 | 0.12 |
autoM | |
non | 0.60 |
oui | 0.82 |
TS_nb | |
0 | 0.83 |
1 | 0.43 |
>=2 | 0.81 |
MAIA_noticing_Q | |
(0.996,1.94] | 2.00 |
(1.94,2.88] | 0.67 |
(2.88,3.81] | 0.83 |
(3.81,4.75] | 0.47 |
MAIA_notdistracting_Q | |
(-0.005,1.25] | -0.36 |
(1.25,2.5] | 1.95 |
(2.5,3.75] | 0.55 |
(3.75,5] | -6.00 |
MAIA_notworrying_Q | |
(0.329,1.5] | 0.45 |
(1.5,2.67] | 2.45 |
(2.67,3.83] | 0.67 |
(3.83,5] | -0.13 |
MAIA_attentionreg_Q | |
(0.138,1.36] | 1.00 |
(1.36,2.57] | 1.69 |
(2.57,3.79] | 0.40 |
(3.79,5] | -0.17 |
MAIA_emoaware_Q | |
(0.395,1.55] | 0.40 |
(1.55,2.7] | 0.57 |
(2.7,3.85] | 0.60 |
(3.85,5] | 1.04 |
MAIA_selfregul_Q | |
(-0.00475,1.19] | 0.64 |
(1.19,2.38] | 0.55 |
(2.38,3.56] | 1.00 |
(3.56,4.75] | 1.20 |
MAIA_bodylisten_Q | |
(-0.00467,1.17] | 0.91 |
(1.17,2.33] | 0.06 |
(2.33,3.5] | 0.71 |
(3.5,4.67] | 2.33 |
MAIA_trust_Q | |
(-0.005,1.25] | 0.81 |
(1.25,2.5] | 1.67 |
(2.5,3.75] | -0.36 |
(3.75,5] | 1.21 |
MAIA_total_Q | |
(40.9,64.5] | 1.33 |
(64.5,88] | 0.44 |
(88,112] | 0.79 |
(112,135] | 0.62 |
variables | moyenne de delta_EVA_E |
---|---|
age_median | |
<=17 ans | -0.39 |
>17ans | -0.88 |
sexe | |
F | -0.87 |
M | 0.07 |
EGF_Q4 | |
(29.9,47.2] | -3.00 |
(47.2,64.5] | -0.65 |
(64.5,81.8] | -0.23 |
(81.8,99.1] | -0.75 |
SCL_GSI_Q4 | |
(0.0858,0.853] | -0.05 |
(0.853,1.62] | -0.85 |
(1.62,2.38] | -0.12 |
(2.38,3.15] | -2.80 |
TAS1_Q4 | |
(8.98,15] | -1.78 |
(15,21] | 1.38 |
(21,27] | -0.71 |
(27,33] | -2.22 |
TAS2_Q4 | |
(4.98,10] | 0.09 |
(10,15] | -0.87 |
(15,20] | -0.50 |
(20,25] | -1.50 |
TAS3_Q4 | |
(7.98,13.2] | -0.15 |
(13.2,18.5] | -0.83 |
(18.5,23.8] | -1.12 |
(23.8,29] | 0.75 |
TASTOT_Q4 | |
(24.9,38.2] | -0.71 |
(38.2,51.5] | 0.23 |
(51.5,64.8] | -0.58 |
(64.8,78.1] | -1.54 |
meditation | |
0 | -0.89 |
1 | -0.06 |
autoM | |
non | 0.24 |
oui | -1.39 |
TS_nb | |
0 | -0.13 |
1 | -1.00 |
>=2 | -1.00 |
MAIA_noticing_Q | |
(0.996,1.94] | -2.50 |
(1.94,2.88] | -0.20 |
(2.88,3.81] | -1.06 |
(3.81,4.75] | -0.07 |
MAIA_notdistracting_Q | |
(-0.005,1.25] | -0.45 |
(1.25,2.5] | -1.20 |
(2.5,3.75] | -0.15 |
(3.75,5] | -1.00 |
MAIA_notworrying_Q | |
(0.329,1.5] | -0.64 |
(1.5,2.67] | -2.18 |
(2.67,3.83] | -1.53 |
(3.83,5] | 1.40 |
MAIA_attentionreg_Q | |
(0.138,1.36] | -0.78 |
(1.36,2.57] | -0.94 |
(2.57,3.79] | -0.93 |
(3.79,5] | 0.25 |
MAIA_emoaware_Q | |
(0.395,1.55] | -0.2 |
(1.55,2.7] | -0.5 |
(2.7,3.85] | -0.9 |
(3.85,5] | -0.7 |
MAIA_selfregul_Q | |
(-0.00475,1.19] | -1.14 |
(1.19,2.38] | -0.25 |
(2.38,3.56] | -0.75 |
(3.56,4.75] | -0.60 |
MAIA_bodylisten_Q | |
(-0.00467,1.17] | -0.45 |
(1.17,2.33] | -0.94 |
(2.33,3.5] | -0.71 |
(3.5,4.67] | -0.33 |
MAIA_trust_Q | |
(-0.005,1.25] | -0.71 |
(1.25,2.5] | -1.00 |
(2.5,3.75] | 0.73 |
(3.75,5] | -1.43 |
MAIA_total_Q | |
(40.9,64.5] | -1.42 |
(64.5,88] | -0.06 |
(88,112] | -0.50 |
(112,135] | -1.00 |
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
[[13]]
[[14]]
[[15]]
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
[[13]]
[[14]]
[[15]]
[[1]]
[[2]]
[[1]]
[[2]]
Frequence | % du Total | % Cumul | |
---|---|---|---|
negatif | 25 | 43.9 | 43.9 |
positif (ou nul) | 28 | 49.1 | 93.0 |
<NA> | 4 | 7.0 | 100.0 |
Total | 57 | 100.0 | 100.0 |
Frequence | % du Total | % Cumul | |
---|---|---|---|
negatif | 11 | 19.3 | 19.3 |
positif (ou nul) | 42 | 73.7 | 93.0 |
<NA> | 4 | 7.0 | 100.0 |
Total | 57 | 100.0 | 100.0 |
delta_EVA_E_positif | mean_coherence.ratio |
negatif | 2.9 |
positif (ou nul) | 4.0 |
p-value T-test | 0.253 |
delta_EVA_E_positif | mean_delta_HF_abs |
negatif | 0.1 |
positif (ou nul) | -0.2 |
p-value T-test | 0.248 |
delta_EVA_P_positif | mean_coherence.ratio |
negatif | 5.5 |
positif (ou nul) | 2.9 |
p-value T-test | 0.203 |
delta_EVA_P_positif | mean_delta_HF_abs |
negatif | 0.2 |
positif (ou nul) | -0.1 |
p-value T-test | 0.354 |
delta_HF_extreme : -1 , 0 , 1
-1 si delta HF < ( moyenne - 1 sd)
1 si delta HF >= 0
0 si delta_HF entre les deux
% de TS en fonction de delta HF_ex
-1 0 1
0 0.4000000 0.5882353 0.3000000
1 0.6000000 0.4117647 0.7000000
Pearson's Chi-squared test with Yates' continuity correction
data: BDD54[which(BDD54$delta_HF_ex >= 0), ]$TS_bin and BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
X-squared = 2.047, df = 1, p-value = 0.1525
Automutilations :
proportions en fonction de Delta HF extreme (-1,0,1)
test du chi-2 parmi ceux ayant une reactivity positive.
-1 0 1
non 0.4000000 0.7647059 0.3000000
oui 0.6000000 0.2352941 0.7000000
Pearson's Chi-squared test with Yates' continuity correction
data: BDD54[which(BDD54$delta_HF_ex >= 0), ]$autoM and BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
X-squared = 6.1922, df = 1, p-value = 0.01283
SCL : t-tests (différences de moyennes) des sous dimensions puis score total de SCL parmi ceux qui ont une reactivité positive
Welch Two Sample t-test
data: BDD54[which(BDD54$delta_HF_ex >= 0), ]$SCL_GSI by BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
t = -2.1862, df = 33.986, p-value = 0.03579
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.04911569 -0.03826993
sample estimates:
mean in group 0 mean in group 1
1.001307 1.545000
Welch Two Sample t-test
data: BDD54[which(BDD54$delta_HF_ex >= 0), ]$SCL_PST by BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
t = -1.0457, df = 31.2, p-value = 0.3037
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-22.280166 7.174284
sample estimates:
mean in group 0 mean in group 1
47.64706 55.20000
Welch Two Sample t-test
data: BDD54[which(BDD54$delta_HF_ex >= 0), ]$SCL_PSDI by BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
t = -3.3001, df = 33.305, p-value = 0.00231
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.9670895 -0.2295872
sample estimates:
mean in group 0 mean in group 1
1.730986 2.329325
Welch Two Sample t-test
data: BDD54[which(BDD54$delta_HF_ex >= 0), ]$SCL_PSDI by BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
t = -3.3001, df = 33.305, p-value = 0.00231
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.9670895 -0.2295872
sample estimates:
mean in group 0 mean in group 1
1.730986 2.329325
MAIA :
moyennes selon le Delta HF extreme
de MAIA total
de MAIA selfregul
Group.1 x
1 -1 71.00000
2 0 95.88235
3 1 74.40000
Group.1 x
1 -1 1.950000
2 0 2.602941
3 1 1.525000
t-tests (différences de moyennes) de MAIA total parmi ceux qui ont une reactivité positive
Welch Two Sample t-test
data: BDD54[which(BDD54$delta_HF_ex >= 0), ]$MAIA_total by BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
t = 3.0199, df = 33.43, p-value = 0.004817
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
7.016872 35.947834
sample estimates:
mean in group 0 mean in group 1
95.88235 74.40000
EGF :
t-tests (différences de moyennes) de EGF parmi ceux qui ont une reactivité positive
Welch Two Sample t-test
data: BDD54[which(BDD54$delta_HF_ex >= 0), ]$EGF by BDD54[which(BDD54$delta_HF_ex >= 0), ]$delta_HF_ex
t = 1.1545, df = 34.229, p-value = 0.2563
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.881702 14.099349
sample estimates:
mean in group 0 mean in group 1
70.05882 64.95000
Comparer :
Delta EVA CBT-Repos2 avec Delta_HF_ex
Delta EVA CBT-CC
physique et Emotionnel à chaque fois.
BDD54$delta_EVA_CBT_RS2_E <- NA
BDD54$delta_EVA_CBT_RS2_E <- BDD54$EVA_CBT_E - BDD54$EVA_RS2_E
BDD54$delta_EVA_CBT_RS2_P <- NA
BDD54$delta_EVA_CBT_RS2_P <- BDD54$EVA_CBT_P - BDD54$EVA_RS2_P
BDD54$delta_EVA_CBT_CC_E <- NA
BDD54$delta_EVA_CBT_CC_E <- BDD54$EVA_CBT_E - BDD54$EVA_CC_E
BDD54$delta_EVA_CBT_CC_P <- NA
BDD54$delta_EVA_CBT_CC_P <- BDD54$EVA_CBT_P - BDD54$EVA_CC_P
library(ggpubr)
ggboxplot(BDD54, x = "delta_HF_ex", y = "delta_EVA_CBT_RS2_E")
aggregate(BDD54$delta_EVA_CBT_RS2_E, list(BDD54$delta_HF_ex), mean, na.rm=TRUE)
Group.1 x
1 -1 -0.80000000
2 0 0.05882353
3 1 -0.94444444
ggboxplot(BDD54, x = "delta_HF_ex", y = "delta_EVA_CBT_RS2_P")
aggregate(BDD54$delta_EVA_CBT_RS2_P, list(BDD54$delta_HF_ex), mean, na.rm=TRUE)
Group.1 x
1 -1 2.6000000
2 0 0.4705882
3 1 0.3888889
ggboxplot(BDD54, x = "delta_HF_ex", y = "delta_EVA_CBT_CC_E")
aggregate(BDD54$delta_EVA_CBT_CC_E, list(BDD54$delta_HF_ex), mean, na.rm=TRUE)
Group.1 x
1 -1 -1.4000000
2 0 -0.3750000
3 1 -0.5555556
ggboxplot(BDD54, x = "delta_HF_ex", y = "delta_EVA_CBT_CC_P")
aggregate(BDD54$delta_EVA_CBT_CC_P, list(BDD54$delta_HF_ex), mean, na.rm=TRUE)
Group.1 x
1 -1 2.6000000
2 0 1.2352941
3 1 0.4444444