library(kableExtra)
library(tidyverse)
library(ggplot2)
library(dplyr)
library(TSstudio)
library(RColorBrewer)
library(GGally)
library(grid)
library(gridExtra)
library(mlbench)
library(psych)
library(cowplot)
library(corrplot)
library(caret)
library(geoR)
library(reshape)
library(naniar)
library(mice)
library(DMwR)
library(AppliedPredictiveModeling)
library(pls)
library(glmnet)
library(elasticnet)
library(earth)
library(kernlab)
library(randomForest)
library(vip)
library(party)
library(Cubist)
library(gbm)
library(rpart.plot)
Recreate the simulated data from Exercise 7.2:
set.seed(200)
simulated <- mlbench.friedman1(200, sd = 1)
simulated <- cbind(simulated$x, simulated$y)
simulated <- as.data.frame(simulated)
colnames(simulated)[ncol(simulated)] <- "y"
model1 <- randomForest(y ~ ., data = simulated,
importance = TRUE,
ntree = 1000)
rfImp1 <- varImp(model1, scale = FALSE)
rfImp1
## Warning: namespace 'highr' is not available and has been replaced
## by .GlobalEnv when processing object '<unknown>'
Overall | |
---|---|
V1 | 8.7322354 |
V2 | 6.4153694 |
V3 | 0.7635918 |
V4 | 7.6151188 |
V5 | 2.0235246 |
V6 | 0.1651112 |
V7 | -0.0059617 |
V8 | -0.1663626 |
V9 | -0.0952927 |
V10 | -0.0749448 |
rfImp1 <- model1$importance
vip(model1, color = 'red', fill='orange') +
ggtitle('Random Forest Model Variable Importance')
## Warning in vip.default(model1, color = "red", fill = "orange"): Arguments
## `width`, `alpha`, `color`, `fill`, `size`, and `shape` have all been deprecated
## in favor of the new `mapping` and `aesthetics` arguments. They will be removed
## in version 0.3.0.
Did the random forest model significantly use the uninformative predictors (V6 – V10)?
No it did not. The predictors V6 ~ V10 have very little importance, compared to other predictors such as V1, V2, V4, and V5.
## [1] 0.9460206
Fit another random forest model to these data. Did the importance score for V1 change?
model2 <- randomForest(y ~ ., data = simulated, importance = TRUE, ntree = 1000)
rfImp2 <- varImp(model2, scale = FALSE)
rfImp2
Overall | |
---|---|
V1 | 5.6911997 |
V2 | 6.0689606 |
V3 | 0.6297022 |
V4 | 7.0475224 |
V5 | 1.8723844 |
V6 | 0.1356906 |
V7 | -0.0134564 |
V8 | -0.0437056 |
V9 | 0.0084044 |
V10 | 0.0289481 |
duplicate1 | 4.2833158 |
grid.arrange(vip(model1, color = 'red', fill='dodgerblue4') +
ggtitle('Model1 Var Imp'), vip(model2, color = 'green', fill='red') +
ggtitle('Model2 Var Imp'), ncol = 2)
## Warning in vip.default(model1, color = "red", fill = "dodgerblue4"): Arguments
## `width`, `alpha`, `color`, `fill`, `size`, and `shape` have all been deprecated
## in favor of the new `mapping` and `aesthetics` arguments. They will be removed
## in version 0.3.0.
## Warning in vip.default(model2, color = "green", fill = "red"): Arguments
## `width`, `alpha`, `color`, `fill`, `size`, and `shape` have all been deprecated
## in favor of the new `mapping` and `aesthetics` arguments. They will be removed
## in version 0.3.0.
When we add one predictor that is highly correlated with V1, the importance score for V1 decreases. V4 is now the most important predictor.
What happens when you add another predictor that is also highly correlated with V1?
simulated$duplicate2 <- simulated$V1 + rnorm(200) * .2
model3 <- randomForest(y ~ ., data = simulated, importance = TRUE, ntree = 1000)
rfImp3 <- varImp(model3, scale = FALSE)
rfImp3
Overall | |
---|---|
V1 | 5.4817443 |
V2 | 6.5652231 |
V3 | 0.5417128 |
V4 | 7.3729648 |
V5 | 1.9337776 |
V6 | 0.2005519 |
V7 | -0.0207655 |
V8 | -0.0428728 |
V9 | -0.0437961 |
V10 | -0.0381072 |
duplicate1 | 4.2048649 |
duplicate2 | 0.7558199 |
When we add yet another predictor that is also highly correlated with V1, the importance of V1 in our model decreases once more.
## V1 V2 V3 V4 V5 V6
## 1.676818578 4.640157148 0.013789059 5.546792297 0.984086706 0.012814670
## V7 V8 V9 V10 duplicate1 duplicate2
## -0.011072713 0.005586275 -0.011191165 0.001480628 1.758185691 -0.008242676
The importances using conditional inference trees seem to show the same pattern in the predictors that are chosen by the model. V6-V10 are still less importance, but we do see that V3 has become less important relative to the results of the traditional random forest model.
model4 <- cubist(x = simulated[, names(simulated)[names(simulated) != 'y']],
y = simulated[,c('y')])
# Conditional variable importance
cfImp4 <- varImp(model4, conditional = TRUE)
cfImp4
Overall | |
---|---|
V1 | 50 |
V2 | 50 |
V4 | 50 |
V5 | 50 |
duplicate1 | 50 |
V3 | 0 |
V6 | 0 |
V7 | 0 |
V8 | 0 |
V9 | 0 |
V10 | 0 |
duplicate2 | 0 |
Overall | |
---|---|
V1 | 50 |
V2 | 50 |
V4 | 50 |
V5 | 50 |
duplicate1 | 50 |
V3 | 0 |
V6 | 0 |
V7 | 0 |
V8 | 0 |
V9 | 0 |
V10 | 0 |
duplicate2 | 0 |
old.par <- par(mfrow=c(1, 2))
barplot((t(cfImp4)),horiz = TRUE, main = 'Conditional', col = rainbow(3))
barplot((t(cfImp5)),horiz = TRUE, main = 'Un-Conditional', col = rainbow(5))
gbmGrid = expand.grid(interaction.depth = seq(1,5, by=2), n.trees = seq(100, 1000, by = 100), shrinkage = 0.1, n.minobsinnode = 5)
model4 <- train(y ~ ., data = simulated, tuneGrid = gbmGrid, verbose = FALSE, method = 'gbm' )
# Conditional variable importance
cfImp4 <- varImp(model4, conditional = TRUE)
cfImp4
## gbm variable importance
##
## Overall
## V4 100.000
## V2 75.915
## V1 62.233
## duplicate1 45.773
## V5 40.044
## V3 24.998
## V10 5.108
## V6 2.605
## V7 2.188
## V9 2.057
## V8 1.036
## duplicate2 0.000
## gbm variable importance
##
## Overall
## V4 100.000
## V2 75.915
## V1 62.233
## duplicate1 45.773
## V5 40.044
## V3 24.998
## V10 5.108
## V6 2.605
## V7 2.188
## V9 2.057
## V8 1.036
## duplicate2 0.000
old.par <- par(mfrow=c(1, 2))
barplot((t(cfImp4$importance)),horiz = TRUE, main = 'Conditional', col = rainbow(3))
barplot((t(cfImp5$importance)),horiz = TRUE, main = 'Un-Conditional', col = rainbow(5))
We can see that conditional and un-conditional variable importance is same for Cubist and Boosted Trees algorithms.
Use a simulation to show tree bias with different granularities.
Let’s create a simulated dataset there output variable Y is combination of two input variable V1 and V2. V1 has high number distinct values (2-500) compared to V2 (2-10).
V1 <- runif(1000, 2,500)
V2 <- rnorm(1000, 2,10)
V3 <- rnorm(1000, 1,1000)
y <- V2 + V1
df <- data.frame(V1, V2, V3, y)
model3 <- cforest(y ~ ., data = df)
cfImp4 <- varimp(model3, conditional = FALSE)
barplot(sort(cfImp4),horiz = TRUE, main = 'Un-Conditional', col = rainbow(5))
We can see that Random Forest algorithm gives high score to variable V1 which has more number of distinct values.
Let’s reverse the granularity of V1 and V2 variable respectively. Output variable y will remain unchanged. Let’s fit the Random Forest tree and observe the variable importance.
V1 <- runif(1000, 2,10)
V2 <- rnorm(1000, 2,500)
V3 <- rnorm(1000, 1,1000)
y <- V2 + V1
df <- data.frame(V1, V2, V3, y)
model3 <- cforest(y ~ ., data = df)
cfImp4 <- varimp(model3, conditional = FALSE)
barplot(sort(cfImp4),horiz = TRUE, main = 'Un-Conditional', col = rainbow(5))
We can see that Random forest algorithm now gives high score to V2 variable since it is more granular (high number of distinct values 2-500).
In stochastic gradient boosting the bagging fraction and learning rate will govern the construction of the trees as they are guided by the gradient. Although the optimal values of these parameters should be obtained through the tuning process, it is helpful to understand how the magnitudes of these parameters affect magnitudes of variable importance. Figure 8.24 provides the variable importance plots for boosting using two extreme values for the bagging fraction (0.1 and 0.9) and the learning rate (0.1 and 0.9) for the solubility data. The left-hand plot has both parameters set to 0.1, and the right-hand plot has both set to 0.9:
Figure 8.24
Model on right have high bagging fraction rate (0.9). This means more and more trees saw the same fraction of data and diversity in variable selction is reduced. It results in few predictors dominating the importance score compared to left model which has very granular bagging fraction (0.1).
Model with lower learning rate and bagging fraction should be more predictive on other sample. It has a balanced mix of selected important predictors rather than veyr few predictors with very high importance in the right hand side model. Right hand side model cna be over bias to the training data and can fail to generalize on test data due to its stong fiting on training dataset.
As we increase the interaction depth, trees are allowed to grow more deep. This will result in more and more predictors to consider for tree splitting chioce. This will spread the variable importance to more variables rather than selecting very few predictors with very high importance.
Refer to Exercises 6.3 and 7.5 which describe a chemical manufacturing process. Use the same data imputation, data splitting, and pre-processing steps as before and train several tree-based models:
data(ChemicalManufacturingProcess)
ChemicalManufacturingProcess %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>%
scroll_box(width="100%",height="300px")
Yield | BiologicalMaterial01 | BiologicalMaterial02 | BiologicalMaterial03 | BiologicalMaterial04 | BiologicalMaterial05 | BiologicalMaterial06 | BiologicalMaterial07 | BiologicalMaterial08 | BiologicalMaterial09 | BiologicalMaterial10 | BiologicalMaterial11 | BiologicalMaterial12 | ManufacturingProcess01 | ManufacturingProcess02 | ManufacturingProcess03 | ManufacturingProcess04 | ManufacturingProcess05 | ManufacturingProcess06 | ManufacturingProcess07 | ManufacturingProcess08 | ManufacturingProcess09 | ManufacturingProcess10 | ManufacturingProcess11 | ManufacturingProcess12 | ManufacturingProcess13 | ManufacturingProcess14 | ManufacturingProcess15 | ManufacturingProcess16 | ManufacturingProcess17 | ManufacturingProcess18 | ManufacturingProcess19 | ManufacturingProcess20 | ManufacturingProcess21 | ManufacturingProcess22 | ManufacturingProcess23 | ManufacturingProcess24 | ManufacturingProcess25 | ManufacturingProcess26 | ManufacturingProcess27 | ManufacturingProcess28 | ManufacturingProcess29 | ManufacturingProcess30 | ManufacturingProcess31 | ManufacturingProcess32 | ManufacturingProcess33 | ManufacturingProcess34 | ManufacturingProcess35 | ManufacturingProcess36 | ManufacturingProcess37 | ManufacturingProcess38 | ManufacturingProcess39 | ManufacturingProcess40 | ManufacturingProcess41 | ManufacturingProcess42 | ManufacturingProcess43 | ManufacturingProcess44 | ManufacturingProcess45 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
38.00 | 6.25 | 49.58 | 56.97 | 12.74 | 19.51 | 43.73 | 100.00 | 16.66 | 11.44 | 3.46 | 138.09 | 18.83 | NA | NA | NA | NA | NA | NA | NA | NA | 43.00 | NA | NA | NA | 35.5 | 4898 | 6108 | 4682 | 35.5 | 4865 | 6049 | 4665 | 0.0 | NA | NA | NA | 4873 | 6074 | 4685 | 10.7 | 21.0 | 9.9 | 69.1 | 156 | 66 | 2.4 | 486 | 0.019 | 0.5 | 3 | 7.2 | NA | NA | 11.6 | 3.0 | 1.8 | 2.4 |
42.44 | 8.01 | 60.97 | 67.48 | 14.65 | 19.36 | 53.14 | 100.00 | 19.04 | 12.55 | 3.46 | 153.67 | 21.05 | 0.0 | 0.0 | NA | 917 | 1032.2 | 210.0 | 177 | 178 | 46.57 | NA | NA | 0 | 34.0 | 4869 | 6095 | 4617 | 34.0 | 4867 | 6097 | 4621 | 0.0 | 3 | 0 | 3 | 4869 | 6107 | 4630 | 11.2 | 21.4 | 9.9 | 68.7 | 169 | 66 | 2.6 | 508 | 0.019 | 2.0 | 2 | 7.2 | 0.1 | 0.15 | 11.1 | 0.9 | 1.9 | 2.2 |
42.03 | 8.01 | 60.97 | 67.48 | 14.65 | 19.36 | 53.14 | 100.00 | 19.04 | 12.55 | 3.46 | 153.67 | 21.05 | 0.0 | 0.0 | NA | 912 | 1003.6 | 207.1 | 178 | 178 | 45.07 | NA | NA | 0 | 34.8 | 4878 | 6087 | 4617 | 34.8 | 4877 | 6078 | 4621 | 0.0 | 4 | 1 | 4 | 4897 | 6116 | 4637 | 11.1 | 21.3 | 9.4 | 69.3 | 173 | 66 | 2.6 | 509 | 0.018 | 0.7 | 2 | 7.2 | 0.0 | 0.00 | 12.0 | 1.0 | 1.8 | 2.3 |
41.42 | 8.01 | 60.97 | 67.48 | 14.65 | 19.36 | 53.14 | 100.00 | 19.04 | 12.55 | 3.46 | 153.67 | 21.05 | 0.0 | 0.0 | NA | 911 | 1014.6 | 213.3 | 177 | 177 | 44.92 | NA | NA | 0 | 34.8 | 4897 | 6102 | 4635 | 34.8 | 4872 | 6073 | 4611 | 0.0 | 5 | 2 | 5 | 4892 | 6111 | 4630 | 11.1 | 21.3 | 9.4 | 69.3 | 171 | 68 | 2.5 | 496 | 0.018 | 1.2 | 2 | 7.2 | 0.0 | 0.00 | 10.6 | 1.1 | 1.8 | 2.1 |
42.49 | 7.47 | 63.33 | 72.25 | 14.02 | 17.91 | 54.66 | 100.00 | 18.22 | 12.80 | 3.05 | 147.61 | 21.05 | 10.7 | 0.0 | NA | 918 | 1027.5 | 205.7 | 178 | 178 | 44.96 | NA | NA | 0 | 34.6 | 4992 | 6233 | 4733 | 33.9 | 4886 | 6102 | 4659 | -0.7 | 8 | 4 | 18 | 4930 | 6151 | 4684 | 11.3 | 21.6 | 9.0 | 69.4 | 171 | 70 | 2.5 | 468 | 0.017 | 0.2 | 2 | 7.3 | 0.0 | 0.00 | 11.0 | 1.1 | 1.7 | 2.1 |
43.57 | 6.12 | 58.36 | 65.31 | 15.17 | 21.79 | 51.23 | 100.00 | 18.30 | 12.13 | 3.78 | 151.88 | 20.76 | 12.0 | 0.0 | NA | 924 | 1016.8 | 208.9 | 178 | 178 | 45.32 | NA | NA | 0 | 34.0 | 4985 | 6222 | 4786 | 33.4 | 4862 | 6115 | 4696 | -0.6 | 9 | 1 | 1 | 4871 | 6128 | 4687 | 11.4 | 21.7 | 10.1 | 68.2 | 173 | 70 | 2.5 | 490 | 0.018 | 0.4 | 2 | 7.2 | 0.0 | 0.00 | 11.5 | 2.2 | 1.8 | 2.0 |
43.12 | 7.48 | 64.47 | 72.41 | 13.82 | 17.71 | 54.45 | 100.00 | 18.72 | 12.95 | 3.04 | 147.11 | 20.75 | 11.5 | 0.0 | 1.56 | 933 | 988.9 | 210.0 | 177 | 178 | 49.36 | 11.6 | 11.5 | 0 | 32.4 | 4745 | 5999 | 4486 | 33.8 | 4758 | 6013 | 4522 | 1.4 | 1 | 1 | 1 | 4795 | 6057 | 4572 | 11.2 | 21.2 | 11.2 | 67.6 | 159 | 65 | 2.5 | 475 | 0.019 | 0.8 | 2 | 7.3 | 0.0 | 0.00 | 11.7 | 0.7 | 2.0 | 2.2 |
43.06 | 6.94 | 63.60 | 72.06 | 15.70 | 19.42 | 54.72 | 100.00 | 18.85 | 13.13 | 3.85 | 154.20 | 21.45 | 12.0 | 0.0 | 1.55 | 929 | 1010.9 | 211.7 | 178 | 178 | 48.68 | 10.2 | 11.3 | 0 | 33.6 | 4854 | 6105 | 4626 | 33.6 | 4766 | 6022 | 4552 | 0.0 | 2 | 2 | 2 | 4806 | 6059 | 4586 | 11.1 | 21.2 | 10.9 | 67.9 | 161 | 65 | 2.5 | 478 | 0.019 | 1.0 | 2 | 7.3 | 0.0 | 0.00 | 11.4 | 0.8 | 2.0 | 2.2 |
41.49 | 6.94 | 63.60 | 72.06 | 15.70 | 19.42 | 54.72 | 100.00 | 18.85 | 13.13 | 3.85 | 154.20 | 21.45 | 12.0 | 0.0 | 1.56 | 928 | 1003.5 | 208.7 | 177 | 177 | 47.20 | 9.7 | 11.1 | 0 | 33.9 | 4893 | 6144 | 4658 | 33.9 | 4769 | 6033 | 4556 | 0.0 | 3 | 3 | 3 | 4842 | 6103 | 4609 | 11.3 | 21.5 | 10.5 | 68.0 | 160 | 65 | 2.5 | 491 | 0.019 | 1.2 | 3 | 7.4 | 0.0 | 0.00 | 11.4 | 0.9 | 1.9 | 2.1 |
42.45 | 6.94 | 63.60 | 72.06 | 15.70 | 19.42 | 54.72 | 100.00 | 18.85 | 13.13 | 3.85 | 154.20 | 21.45 | 12.0 | 0.0 | 1.55 | 938 | 1003.8 | 209.8 | 177 | 177 | 47.11 | 10.1 | 10.2 | 0 | 34.3 | 4846 | 6077 | 4614 | 35.3 | 4840 | 6091 | 4614 | 1.0 | 4 | 1 | 4 | 4893 | 6135 | 4650 | 11.4 | 21.7 | 9.8 | 68.5 | 164 | 66 | 2.5 | 488 | 0.019 | 1.8 | 3 | 7.1 | 0.0 | 0.00 | 11.3 | 0.8 | 1.9 | 2.4 |
42.04 | 7.17 | 61.23 | 70.01 | 13.36 | 18.67 | 52.83 | 100.00 | 17.88 | 12.62 | 2.90 | 143.28 | 20.21 | 10.3 | 0.0 | 1.55 | 932 | 983.1 | 209.4 | 177 | 177 | 46.24 | 9.0 | 9.5 | 0 | 35.8 | 4944 | 6156 | 4690 | 35.8 | 4900 | 6126 | 4665 | 0.0 | 6 | 3 | 6 | 4925 | 6161 | 4687 | 11.5 | 21.9 | 9.4 | 68.7 | 166 | 67 | 2.5 | 493 | 0.019 | 1.5 | 2 | 7.0 | 0.0 | 0.00 | 11.0 | 1.0 | 1.9 | 1.8 |
42.68 | 7.17 | 61.23 | 70.01 | 13.36 | 18.67 | 52.83 | 100.00 | 17.88 | 12.62 | 2.90 | 143.28 | 20.21 | 10.3 | 0.0 | 1.55 | 930 | 992.0 | 209.4 | 178 | 178 | 46.10 | 8.8 | 9.7 | 0 | 35.6 | 4959 | 6178 | 4708 | 35.2 | 4878 | 6134 | 4673 | -0.4 | 7 | 4 | 7 | 4924 | 6161 | 4692 | 11.5 | 22.0 | 9.4 | 68.6 | 169 | 67 | 2.5 | 498 | 0.018 | 0.3 | 3 | 7.0 | 0.0 | 0.00 | 11.2 | 0.8 | 2.0 | 1.8 |
43.44 | 7.17 | 61.23 | 70.01 | 13.36 | 18.67 | 52.83 | 100.00 | 17.88 | 12.62 | 2.90 | 143.28 | 20.21 | 10.3 | 0.0 | 1.55 | 934 | 1004.1 | 207.8 | 177 | 177 | 47.53 | 9.3 | 10.4 | 0 | 35.1 | 4917 | 6158 | 4704 | 35.1 | 4835 | 6090 | 4651 | 0.0 | 8 | 1 | 8 | 4888 | 6129 | 4653 | 11.4 | 21.7 | 9.9 | 68.4 | 166 | 68 | 2.4 | 490 | 0.018 | 1.1 | 3 | 7.1 | 0.0 | 0.00 | 11.1 | 0.8 | 1.9 | 2.4 |
40.28 | 7.63 | 60.51 | 69.24 | 17.59 | 20.67 | 52.83 | 100.00 | 18.74 | 13.21 | 4.94 | 158.42 | 21.77 | 11.1 | 0.0 | 1.59 | 934 | 1036.8 | 209.1 | 178 | 178 | 45.28 | 9.6 | 9.8 | 0 | 34.9 | 4882 | 6108 | 4655 | 35.8 | 4858 | 6070 | 4628 | 0.9 | 10 | 2 | 2 | 4911 | 6124 | 4684 | 11.1 | 21.5 | 9.4 | 69.1 | 161 | 66 | 2.4 | 490 | 0.019 | 0.6 | 3 | 7.4 | 0.0 | 0.00 | 11.7 | 0.6 | 1.7 | 1.9 |
41.50 | 6.23 | 62.93 | 69.74 | 11.80 | 20.54 | 54.57 | 100.00 | 18.89 | 12.82 | 2.30 | 152.83 | 22.18 | 11.3 | 0.0 | NA | 930 | 1120.7 | 207.8 | 177 | 177 | 46.44 | 9.4 | 10.2 | 0 | 35.3 | 4918 | 6156 | 4690 | 35.3 | 4849 | 6093 | 4646 | 0.0 | 11 | 3 | 15 | 4874 | 6125 | 4659 | 11.3 | 21.6 | 9.9 | 68.5 | 160 | 64 | 2.5 | 490 | 0.019 | 1.6 | 3 | 7.2 | 0.0 | 0.00 | 11.6 | 0.8 | 1.9 | 2.0 |
41.21 | 7.13 | 60.30 | 68.18 | 13.80 | 20.72 | 52.49 | 100.00 | 18.68 | 12.75 | 3.25 | 152.82 | 21.35 | 11.1 | 0.0 | NA | 928 | 1073.6 | 207.1 | 177 | 177 | 45.40 | 9.6 | 10.2 | 0 | 35.4 | 4805 | 6124 | 4666 | 35.5 | 4842 | 6091 | 4641 | 0.1 | 12 | 4 | 16 | 4848 | 6095 | 4630 | 11.1 | 21.2 | 10.3 | 68.5 | 166 | 66 | 2.5 | 493 | 0.019 | 1.2 | 3 | 7.3 | 0.1 | 0.20 | 11.6 | 1.0 | 1.9 | 2.5 |
40.89 | 7.85 | 58.22 | 66.95 | 15.38 | 20.86 | 50.84 | 100.00 | 18.51 | 12.70 | 4.01 | 152.82 | 20.70 | 11.1 | 0.0 | NA | 928 | 1027.5 | 205.9 | 177 | 177 | 45.54 | 9.0 | 10.0 | 0 | 35.8 | 4942 | 6177 | 4725 | 35.8 | 4858 | 6100 | 4656 | 0.0 | 1 | 1 | 1 | 4860 | 6100 | 4659 | 11.1 | 21.3 | 10.0 | 68.7 | 167 | 68 | 2.5 | 495 | 0.019 | 1.3 | 3 | 7.4 | 0.0 | 0.00 | 11.5 | 1.1 | 1.9 | 2.3 |
40.14 | 7.64 | 59.44 | 67.22 | 15.67 | 21.50 | 52.02 | 100.00 | 18.72 | 12.86 | 4.16 | 156.51 | 21.47 | 12.4 | 0.0 | NA | 930 | 1021.4 | 208.4 | 177 | 177 | 45.73 | 9.5 | 10.6 | 0 | 35.5 | 4899 | 6123 | 4692 | 35.5 | 4811 | 6041 | 4636 | 0.0 | 2 | 1 | 2 | 4815 | 6055 | 4631 | 10.8 | 20.9 | 10.6 | 69.0 | 157 | 64 | 2.5 | 497 | 0.020 | 1.1 | 3 | 7.4 | 0.0 | 0.00 | 11.7 | 1.7 | 1.8 | 2.2 |
39.30 | 7.51 | 59.74 | 67.28 | 15.72 | 21.80 | 52.30 | 100.00 | 18.81 | 12.98 | 4.24 | 158.36 | 21.82 | 12.7 | 0.0 | NA | 929 | 1092.2 | 207.5 | 178 | 178 | 44.46 | 8.9 | 9.8 | 0 | 35.5 | 4957 | 6181 | 4751 | 35.5 | 4887 | 6124 | 4710 | 0.0 | 3 | 2 | 3 | 4876 | 6109 | 4696 | 11.1 | 21.4 | 9.8 | 68.8 | 156 | 64 | 2.4 | 514 | 0.021 | 0.7 | 3 | 7.3 | 0.0 | 0.00 | 11.6 | 1.8 | 1.7 | 2.3 |
39.53 | 7.51 | 59.74 | 67.28 | 15.72 | 21.80 | 52.30 | 100.00 | 18.81 | 12.98 | 4.24 | 158.36 | 21.82 | 12.7 | 0.0 | NA | 929 | 1175.3 | 204.1 | 177 | 177 | 45.02 | 8.9 | 9.9 | 0 | 35.6 | 4961 | 6180 | 4775 | 35.6 | 4869 | 6094 | 4690 | 0.0 | 4 | 3 | 4 | 4850 | 6094 | 4665 | 11.0 | 21.2 | 10.1 | 68.7 | 155 | 62 | 2.5 | 490 | 0.020 | 1.2 | 2 | 7.3 | 0.0 | 0.00 | 11.4 | 1.5 | 1.5 | 2.0 |
40.22 | 7.51 | 59.74 | 67.28 | 15.72 | 21.80 | 52.30 | 100.00 | 18.81 | 12.98 | 4.24 | 158.36 | 21.82 | 12.7 | 0.0 | 1.56 | 925 | 1102.8 | 206.6 | 178 | 178 | 45.22 | 9.0 | 10.0 | 0 | 35.2 | 4949 | 6161 | 4766 | 35.2 | 4871 | 6108 | 4705 | 0.0 | 5 | 4 | 5 | 4879 | 6117 | 4696 | 11.1 | 21.5 | 9.9 | 68.7 | 157 | 63 | 2.5 | 495 | 0.020 | 0.9 | 3 | 7.3 | 0.1 | 0.20 | 11.4 | 2.0 | 1.6 | 2.0 |
41.18 | 7.08 | 61.83 | 70.69 | 13.43 | 17.72 | 53.27 | 100.00 | 19.14 | 13.38 | 3.02 | 153.10 | 21.90 | 10.9 | 0.0 | NA | 936 | 1024.4 | 218.7 | 178 | 178 | 47.04 | NA | NA | 0 | 33.2 | 4791 | 6026 | 4482 | 35.7 | 0 | 6111 | 0 | 2.5 | 6 | 2 | 16 | 4918 | 6152 | 4618 | 11.4 | 21.1 | 8.8 | 70.1 | 162 | 68 | 2.4 | 479 | 0.018 | 0.9 | 2 | 7.4 | 0.0 | 0.00 | 11.9 | 0.8 | 1.9 | 2.1 |
40.70 | 6.58 | 58.38 | 67.17 | 12.22 | 18.46 | 51.45 | 100.00 | 18.22 | 12.83 | 2.69 | 148.49 | 21.23 | 11.1 | 0.0 | NA | 937 | 997.7 | 209.6 | 177 | 177 | 46.43 | NA | NA | 0 | 32.9 | NA | 6002 | 0 | 36.5 | 4902 | 6120 | 4621 | 3.6 | 7 | 3 | 17 | 4906 | 6134 | 4626 | 11.2 | 21.0 | 8.9 | 70.1 | 160 | 66 | 2.4 | 492 | 0.019 | 1.5 | 3 | 7.4 | 0.0 | 0.00 | 11.6 | 0.8 | 1.9 | 2.4 |
41.89 | 6.27 | 56.23 | 64.98 | 11.47 | 18.93 | 50.31 | 100.00 | 17.64 | 12.48 | 2.49 | 145.61 | 20.81 | 11.3 | 0.0 | NA | 940 | 1031.3 | 215.1 | 177 | 177 | 47.09 | NA | NA | 0 | 33.6 | 4864 | 6085 | 4615 | 35.1 | 4847 | 6072 | 4607 | 1.5 | 1 | 1 | 1 | 4875 | 6095 | 4606 | 11.2 | 20.9 | 9.5 | 69.7 | 161 | 65 | 2.5 | 468 | 0.018 | 1.3 | 2 | 7.2 | 0.0 | 0.00 | 11.4 | 1.1 | 2.0 | 1.8 |
43.38 | 8.17 | 63.66 | 73.44 | 18.37 | 23.76 | 56.64 | 100.00 | 17.94 | 12.18 | 4.15 | 151.54 | 20.27 | 9.0 | 0.0 | 1.54 | 934 | 1007.3 | 209.4 | 178 | 178 | 47.28 | 11.1 | 9.0 | 0 | 33.3 | 4750 | 5994 | 4517 | 36.3 | 4887 | 6146 | 4653 | 3.0 | 5 | 5 | 12 | 4907 | 6150 | 4631 | 11.5 | 21.3 | 9.2 | 69.5 | 167 | 66 | 2.5 | 505 | 0.019 | 1.0 | 2 | 7.2 | 0.0 | 0.00 | 11.5 | 0.7 | 1.7 | 2.4 |
36.83 | 6.60 | 55.74 | 66.25 | 11.83 | 22.52 | 48.95 | 100.00 | 16.67 | 12.11 | 2.75 | 140.84 | 19.07 | 11.6 | 0.0 | 1.52 | 930 | 950.7 | 203.6 | 178 | 178 | 38.89 | 9.2 | 7.6 | 0 | 37.3 | 4840 | 5988 | 4577 | 40.0 | 4971 | 6114 | 4657 | 2.7 | 1 | 1 | 6 | 4990 | 6160 | 4693 | 11.0 | 21.0 | 7.5 | 71.5 | 161 | 65 | 2.5 | 500 | 0.019 | 0.9 | 3 | 6.9 | 0.0 | 0.00 | 11.8 | 0.8 | 1.7 | 2.2 |
35.25 | 6.90 | 54.26 | 60.99 | 12.22 | 20.16 | 47.23 | 100.00 | 16.57 | 11.73 | 3.06 | 139.52 | 18.62 | 9.2 | 0.0 | 1.53 | 926 | 955.8 | 203.0 | 177 | 178 | 39.02 | 8.4 | 7.5 | 0 | 38.0 | 4894 | 6022 | 4590 | 40.0 | 4971 | 6107 | 4675 | 2.0 | 2 | 2 | 7 | 4966 | 6112 | 4660 | 10.7 | 20.6 | 7.6 | 71.9 | 159 | 65 | 2.4 | 492 | 0.019 | 0.9 | 3 | 7.1 | 0.0 | 0.00 | 11.7 | 0.7 | 1.7 | 2.0 |
36.12 | 6.86 | 55.66 | 63.43 | 12.53 | 20.39 | 48.94 | 100.00 | 16.71 | 11.94 | 3.07 | 142.45 | 19.12 | 9.2 | 0.0 | 1.54 | 922 | 975.8 | 203.6 | 178 | 178 | 40.46 | 7.8 | 7.5 | 0 | 38.1 | 4942 | 6081 | 4645 | 39.3 | 4967 | 6117 | 4664 | 1.2 | 3 | 3 | 8 | 4961 | 6112 | 4649 | 10.7 | 20.5 | 7.6 | 71.8 | 157 | 64 | 2.5 | 522 | 0.021 | 0.9 | 3 | 7.4 | 0.0 | 0.00 | 11.6 | 1.3 | 1.7 | 2.2 |
38.52 | 6.67 | 63.44 | 76.94 | 14.28 | 21.67 | 58.42 | 100.00 | 17.47 | 13.12 | 3.10 | 158.66 | 21.88 | 9.2 | 0.0 | 1.52 | 924 | 986.9 | 206.4 | 177 | 177 | 42.67 | 7.5 | 7.7 | 0 | 38.6 | 5055 | 6213 | 4714 | 37.7 | 4960 | 6123 | 4639 | -0.9 | 4 | 4 | 9 | 4966 | 6137 | 4641 | 10.8 | 20.7 | 7.6 | 71.7 | 158 | 63 | 2.5 | 499 | 0.020 | 1.9 | 3 | 7.3 | 0.1 | 0.20 | 11.7 | 0.8 | 1.7 | 2.2 |
38.35 | 6.53 | 61.68 | 77.15 | 11.81 | 21.12 | 59.38 | 100.00 | 17.31 | 12.83 | 2.14 | 154.56 | 22.18 | 10.4 | 0.0 | 1.52 | 921 | 1001.1 | 205.5 | 178 | 178 | 44.95 | 9.4 | 9.0 | 0 | 35.3 | 4831 | 6017 | 4556 | 35.3 | 4866 | 6028 | 4573 | 0.0 | 6 | 4 | 4 | 4863 | 6039 | 4564 | 10.6 | 20.1 | 9.0 | 70.9 | 157 | 64 | 2.5 | 504 | 0.020 | 0.7 | 3 | 6.8 | 0.0 | 0.00 | 11.6 | 0.5 | 1.9 | 2.2 |
39.98 | 6.89 | 61.54 | 76.07 | 12.41 | 21.14 | 57.89 | 100.00 | 17.42 | 12.79 | 2.35 | 153.00 | 21.58 | 10.3 | 0.0 | 1.54 | 928 | 1006.7 | 206.2 | 177 | 177 | 46.27 | 9.0 | 9.1 | 0 | 35.4 | 4872 | 6050 | 4585 | 35.0 | 4857 | 6036 | 4579 | -0.4 | 7 | 1 | 5 | 4872 | 6060 | 4583 | 10.7 | 20.4 | 9.1 | 70.6 | 160 | 63 | 2.5 | 486 | 0.019 | 1.6 | 2 | 7.1 | 0.0 | 0.00 | 11.7 | 0.6 | 2.0 | 2.4 |
41.87 | 7.13 | 61.39 | 74.10 | 13.27 | 20.96 | 55.95 | 100.00 | 17.58 | 12.63 | 2.61 | 151.00 | 20.80 | 11.2 | 0.0 | 1.53 | 926 | 1024.0 | 208.2 | 178 | 178 | 47.08 | 10.7 | 9.5 | 0 | 33.5 | 4756 | 5972 | 4515 | 34.0 | 4854 | 6069 | 4600 | 0.5 | 8 | 2 | 6 | 4842 | 6057 | 4574 | 10.9 | 20.4 | 9.7 | 69.9 | 163 | 66 | 2.5 | 486 | 0.019 | 0.7 | 2 | 7.1 | 0.0 | 0.00 | 11.6 | 0.6 | 2.0 | 2.1 |
43.62 | 6.84 | 61.46 | 73.91 | 13.18 | 20.77 | 56.39 | 100.00 | 17.56 | 12.55 | 2.53 | 151.48 | 20.99 | 11.6 | 0.0 | 1.52 | 923 | 1041.2 | 207.3 | 177 | 177 | 48.77 | 10.1 | 10.5 | 0 | 33.4 | 4815 | 6033 | 4569 | 33.4 | 4773 | 5991 | 4521 | 0.0 | 9 | 3 | 7 | 4820 | 6042 | 4563 | 10.9 | 20.4 | 10.0 | 69.6 | 161 | 64 | 2.5 | 476 | 0.018 | 1.6 | 2 | 7.2 | 0.1 | 0.10 | 11.6 | 0.7 | 1.9 | 2.4 |
38.60 | 5.17 | 61.17 | 76.39 | 12.51 | 20.32 | 58.17 | 100.00 | 17.79 | 13.05 | 2.50 | 157.45 | 22.21 | 10.6 | 0.0 | 1.52 | 928 | 999.5 | 209.4 | 178 | 178 | 45.78 | 9.8 | 9.7 | 0 | 34.5 | 4811 | 5992 | 4578 | 34.5 | 4823 | 6010 | 4579 | 0.0 | 5 | 5 | 12 | 4829 | 6020 | 4590 | 10.6 | 20.1 | 9.7 | 70.3 | 156 | 61 | 2.5 | 496 | 0.020 | 1.1 | 2 | 7.5 | 0.1 | 0.10 | 11.6 | 0.5 | 1.8 | 2.3 |
39.65 | 7.01 | 61.30 | 72.71 | 13.23 | 24.85 | 54.89 | 100.00 | 17.38 | 12.47 | 2.76 | 149.46 | 20.42 | 11.6 | 0.0 | 1.53 | 925 | 1010.3 | 209.1 | 177 | 177 | 44.77 | 9.4 | 9.3 | 0 | 34.6 | 4852 | 6047 | 4852 | 34.4 | 4861 | 6073 | 4759 | -0.2 | 3 | 3 | 16 | 4854 | 6061 | 4654 | 10.7 | 20.4 | 9.5 | 70.1 | 155 | 61 | 2.5 | 507 | 0.020 | 1.7 | 3 | 7.3 | 0.0 | 0.00 | 11.7 | 0.6 | 1.9 | 2.6 |
40.87 | 6.30 | 57.04 | 70.03 | 11.70 | 18.04 | 50.50 | 100.00 | 17.27 | 12.79 | 2.41 | 145.62 | 20.18 | 12.5 | 0.0 | 1.53 | 930 | 1002.4 | 207.5 | 177 | 177 | 46.65 | 9.7 | 10.0 | 4549 | 33.9 | 4844 | 6057 | 4562 | 33.1 | 4821 | 6033 | 4547 | -0.8 | 1 | 1 | 13 | 4818 | 6041 | 4537 | 10.9 | 20.4 | 10.1 | 69.5 | 153 | 63 | 2.4 | 481 | 0.020 | 1.0 | 2 | 7.4 | 0.1 | 0.20 | 11.0 | 0.9 | 2.0 | 2.1 |
42.46 | 5.32 | 59.14 | 71.05 | 13.02 | 21.17 | 52.58 | 100.00 | 16.94 | 12.32 | 2.46 | 144.80 | 20.03 | 11.9 | 19.7 | 1.53 | 926 | 1019.6 | 206.4 | 178 | 178 | 46.17 | 9.4 | 10.2 | 4549 | 33.4 | 4854 | 6051 | 4595 | 32.2 | 4794 | 5992 | 4552 | -1.2 | 3 | 2 | 2 | 4798 | 5982 | 4534 | 10.4 | 19.8 | 10.1 | 70.1 | 166 | 65 | 2.6 | 495 | 0.019 | 0.9 | 3 | 7.1 | 0.0 | 0.00 | 11.2 | 1.1 | 1.9 | 2.4 |
42.66 | 5.32 | 59.14 | 71.05 | 13.02 | 21.17 | 52.58 | 100.00 | 16.94 | 12.32 | 2.46 | 144.80 | 20.03 | 11.9 | 19.9 | 1.52 | 924 | 1008.6 | 208.7 | 177 | 177 | 46.38 | 9.7 | 10.0 | 4549 | 33.1 | 4825 | 6028 | 4571 | 32.6 | 4798 | 5986 | 4552 | -0.5 | 4 | 3 | 3 | 4820 | 6006 | 4552 | 10.5 | 20.0 | 9.8 | 70.2 | 166 | 65 | 2.5 | 484 | 0.018 | 1.7 | 2 | 7.1 | 0.0 | 0.00 | 11.1 | 1.2 | 1.8 | 2.4 |
42.23 | 5.32 | 59.14 | 71.05 | 13.02 | 21.17 | 52.58 | 100.00 | 16.94 | 12.32 | 2.46 | 144.80 | 20.03 | 11.9 | 19.3 | 1.54 | 926 | 1014.3 | 208.7 | 178 | 178 | 45.92 | 9.5 | 10.0 | 4549 | 33.0 | 4838 | 6029 | 4593 | 32.6 | 4800 | 5991 | 4562 | -0.4 | 5 | 4 | 4 | 4820 | 6013 | 4554 | 10.6 | 20.1 | 9.8 | 70.1 | 166 | 68 | 2.4 | 506 | 0.019 | 0.0 | 2 | 7.1 | 0.1 | 0.20 | 11.0 | 1.5 | 1.8 | 2.4 |
41.43 | 5.71 | 57.68 | 69.37 | 12.26 | 21.32 | 50.79 | 100.00 | 17.01 | 12.44 | 2.46 | 143.94 | 19.78 | 11.0 | 19.5 | 1.52 | 924 | 1027.0 | 206.6 | 177 | 177 | 46.77 | 10.2 | 9.8 | 4549 | 32.8 | 4806 | 6002 | 4591 | 32.8 | 4831 | 6027 | 4603 | 0.0 | 7 | 2 | 6 | 4847 | 6053 | 4607 | 10.9 | 20.5 | 9.7 | 69.9 | 160 | 65 | 2.5 | 488 | 0.019 | 0.0 | 2 | 7.2 | 0.0 | 0.00 | 11.4 | 1.0 | 1.9 | 2.3 |
41.47 | 6.60 | 58.80 | 71.17 | 12.40 | 22.14 | 52.24 | 100.00 | 17.21 | 12.77 | 2.58 | 148.28 | 20.33 | 11.3 | 19.3 | 1.52 | 925 | 1015.0 | 205.9 | 178 | 178 | 46.69 | 9.8 | 10.0 | 4549 | 33.0 | 4828 | 6020 | 4587 | 32.6 | 4815 | 6005 | 4582 | -0.4 | 8 | 3 | 7 | 4837 | 6050 | 4598 | 10.9 | 20.4 | 9.8 | 59.8 | 159 | 64 | 2.5 | 493 | 0.019 | 0.0 | 2 | 7.2 | 0.0 | 0.00 | 10.9 | 1.0 | 1.9 | 2.2 |
42.07 | 6.76 | 55.42 | 69.80 | 11.25 | 18.15 | 49.89 | 100.00 | 17.61 | 13.40 | 2.57 | 151.50 | 20.88 | 10.8 | 22.5 | 1.48 | 936 | 954.7 | 211.2 | 177 | 177 | 45.95 | 11.1 | 10.5 | 4549 | 32.8 | 4713 | 5904 | 4467 | 32.8 | 4750 | 5927 | 4497 | 0.0 | 1 | 1 | 1 | 4784 | 5974 | 4543 | 10.3 | 19.6 | 10.1 | 70.3 | 157 | 61 | 2.6 | 509 | 0.020 | 1.1 | 3 | 7.4 | 0.0 | 0.00 | 11.4 | 0.7 | 1.8 | 2.4 |
44.35 | 6.76 | 55.42 | 69.80 | 11.25 | 18.15 | 49.89 | 100.00 | 17.61 | 13.40 | 2.57 | 151.50 | 20.88 | 10.8 | 20.5 | 1.53 | 923 | 954.0 | 210.0 | 178 | 177 | 46.66 | 8.1 | 8.9 | 4549 | 33.3 | 4934 | 6110 | 4635 | 32.5 | 4873 | 6058 | 4598 | -0.8 | 2 | 2 | 2 | 4900 | 6089 | 4617 | 10.8 | 20.5 | 8.6 | 70.8 | 163 | 64 | 2.5 | 498 | 0.019 | 0.9 | 3 | 7.3 | 0.1 | 0.10 | 11.4 | 0.7 | 2.0 | 2.4 |
44.16 | 6.76 | 55.42 | 69.80 | 11.25 | 18.15 | 49.89 | 100.00 | 17.61 | 13.40 | 2.57 | 151.50 | 20.88 | 10.8 | 21.5 | 1.55 | 930 | 969.3 | 208.7 | 177 | 178 | 47.33 | 9.3 | 9.3 | 4549 | 32.5 | 4836 | 6014 | 4564 | 32.3 | 4844 | 6032 | 4577 | -0.2 | 3 | 3 | 3 | 4869 | 6061 | 4603 | 10.7 | 20.3 | 9.0 | 70.7 | 160 | 63 | 2.5 | 501 | 0.020 | 1.0 | 3 | 7.1 | 0.0 | 0.00 | 11.0 | 0.7 | 1.8 | 2.4 |
43.33 | 6.77 | 58.76 | 72.74 | 12.12 | 20.65 | 53.17 | 100.00 | 17.59 | 13.31 | 2.61 | 154.06 | 21.31 | 11.4 | 20.5 | 1.56 | 928 | 980.3 | 208.2 | 178 | 178 | 46.78 | 9.0 | 8.8 | 4549 | 32.8 | 4869 | 6061 | 4583 | 32.3 | 4905 | 6117 | 4635 | -0.5 | 4 | 4 | 4 | 4885 | 6098 | 4611 | 11.0 | 20.6 | 8.9 | 70.4 | 162 | 64 | 2.5 | 490 | 0.019 | 0.3 | 2 | 7.1 | 0.0 | 0.00 | 10.5 | 0.9 | 1.8 | 2.1 |
42.61 | 6.95 | 60.31 | 73.97 | 12.42 | 19.05 | 52.31 | 100.00 | 17.64 | 13.28 | 2.75 | 151.21 | 20.75 | 12.2 | 20.5 | 1.50 | 926 | 986.4 | 208.7 | 177 | 177 | 46.48 | 8.5 | 9.2 | 4549 | 33.2 | 4914 | 6108 | 4594 | 32.4 | 4850 | 6025 | 4535 | -0.8 | 5 | 5 | 5 | 4854 | 6034 | 4547 | 10.6 | 20.0 | 9.1 | 70.9 | 165 | 65 | 2.5 | 490 | 0.019 | 1.2 | 3 | 7.0 | 0.0 | 0.00 | 10.7 | 0.7 | 1.8 | 2.3 |
42.96 | 6.95 | 60.31 | 73.97 | 12.42 | 19.05 | 52.31 | 100.00 | 17.64 | 13.28 | 2.75 | 151.21 | 20.75 | 12.2 | 20.5 | 1.50 | 925 | 977.8 | 227.4 | 178 | 178 | 46.03 | 9.4 | 9.1 | 4549 | 32.6 | 4833 | 6009 | 4521 | 32.6 | 4853 | 6027 | 4538 | 0.0 | 6 | 6 | 6 | 4864 | 6056 | 4556 | 10.7 | 20.2 | 9.0 | 70.7 | 168 | 65 | 2.6 | 492 | 0.018 | 0.7 | 3 | 7.4 | 0.0 | 0.00 | 11.1 | 1.1 | 1.8 | 2.1 |
43.84 | 6.95 | 60.31 | 73.97 | 12.42 | 19.05 | 52.31 | 100.00 | 17.64 | 13.28 | 2.75 | 151.21 | 20.75 | 12.2 | 20.0 | 1.56 | 927 | 1006.4 | 210.7 | 177 | 177 | 48.11 | 8.9 | 9.9 | 4549 | 32.6 | 4883 | 6146 | 4533 | 31.3 | 4812 | 6082 | 4484 | -1.3 | 7 | 1 | 7 | 4816 | 6086 | 4481 | 11.0 | 20.2 | 9.9 | 69.9 | 164 | 69 | 2.4 | 493 | 0.019 | 1.8 | 3 | 6.7 | 0.1 | 0.10 | 11.6 | 1.4 | 1.8 | 2.4 |
46.34 | 7.97 | 64.75 | 74.10 | 15.11 | 22.66 | 56.22 | 100.00 | 18.82 | 12.76 | 3.18 | 157.34 | 21.33 | 11.7 | 18.0 | 1.52 | 921 | 1002.4 | 209.8 | 177 | 178 | 47.45 | 9.5 | 9.6 | 4549 | 32.1 | 4855 | 6077 | 4563 | 31.5 | 4836 | 6055 | 4551 | -0.6 | 9 | 3 | 9 | 4850 | 6099 | 4548 | 11.2 | 20.7 | 9.6 | 69.7 | 167 | 68 | 2.4 | 490 | 0.018 | 0.6 | 3 | 7.3 | 0.0 | 0.00 | 11.6 | 1.3 | 1.8 | 2.1 |
39.74 | 6.94 | 57.02 | 69.51 | 13.45 | 18.44 | 50.16 | 100.00 | 17.55 | 12.83 | 3.09 | 149.60 | 20.25 | 10.4 | 19.0 | 1.52 | 923 | 971.2 | 207.8 | 178 | 178 | 44.65 | 8.9 | 9.1 | 4549 | 33.9 | 4852 | 6013 | 4518 | 33.6 | 4849 | 6015 | 4525 | -0.3 | 10 | 4 | 10 | 4866 | 6045 | 4531 | 10.6 | 20.0 | 8.8 | 71.2 | 170 | 68 | 2.5 | 490 | 0.018 | 0.8 | 3 | 7.3 | 0.0 | 0.00 | 11.6 | 0.9 | 1.8 | 2.0 |
41.12 | 6.94 | 57.02 | 69.51 | 13.45 | 18.44 | 50.16 | 100.00 | 17.55 | 12.83 | 3.09 | 149.60 | 20.25 | 10.4 | 18.0 | 1.53 | 918 | 977.6 | 204.8 | 177 | 177 | 46.47 | 8.9 | 9.4 | 4549 | 33.4 | 4869 | 6043 | 4547 | 32.8 | 4827 | 6014 | 4526 | -0.6 | 11 | 5 | 11 | 4846 | 6032 | 4521 | 10.6 | 20.0 | 9.2 | 70.8 | 169 | 67 | 2.5 | 504 | 0.019 | 1.3 | 3 | 7.1 | 0.0 | 0.00 | 11.4 | 2.5 | 1.8 | 2.1 |
40.14 | 6.94 | 57.02 | 69.51 | 13.45 | 18.44 | 50.16 | 100.00 | 17.55 | 12.83 | 3.09 | 149.60 | 20.25 | 10.4 | 19.5 | 1.54 | 926 | 989.2 | 206.4 | 178 | 178 | 47.33 | 8.7 | 11.0 | 4549 | 33.8 | 4874 | 6049 | 4551 | 33.1 | 4701 | 5890 | 4392 | -0.7 | 12 | 6 | 12 | 4721 | 5901 | 4416 | 10.0 | 18.9 | 10.8 | 70.2 | 162 | 65 | 2.5 | 496 | 0.019 | 0.4 | 3 | 7.1 | 0.1 | 0.20 | 11.4 | 1.0 | 1.8 | 2.2 |
42.69 | 7.56 | 61.62 | 72.17 | 14.46 | 21.02 | 53.78 | 100.00 | 18.33 | 12.82 | 3.18 | 154.71 | 20.95 | 11.1 | 19.5 | 1.54 | 929 | 989.6 | 205.5 | 177 | 177 | 46.34 | 9.0 | 9.5 | 4549 | 33.1 | 4867 | 6061 | 4567 | 32.5 | 4836 | 6033 | 4541 | -0.6 | 1 | 1 | 13 | 4861 | 6071 | 4550 | 10.9 | 20.5 | 9.3 | 70.3 | 165 | 66 | 2.5 | 495 | 0.019 | 1.9 | 3 | 7.4 | 0.0 | 0.00 | 11.4 | 1.1 | 2.0 | 2.3 |
40.15 | 6.87 | 57.33 | 71.52 | 13.22 | 15.62 | 50.85 | 100.00 | 17.74 | 13.16 | 2.91 | 148.45 | 20.44 | 9.7 | 19.5 | 1.54 | 923 | 1003.8 | 206.8 | 178 | 177 | 48.84 | 8.7 | 10.8 | 4549 | 33.6 | 4867 | 6039 | 4539 | 33.1 | 4718 | 5898 | 4404 | -0.5 | 2 | 2 | 14 | 4747 | 5929 | 4423 | 10.1 | 19.2 | 10.5 | 70.3 | 157 | 63 | 2.5 | 501 | 0.020 | 1.4 | 3 | 7.3 | 0.0 | 0.00 | 11.6 | 1.2 | 1.9 | 2.2 |
39.77 | 6.87 | 57.33 | 71.52 | 13.22 | 15.62 | 50.85 | 100.00 | 17.74 | 13.16 | 2.91 | 148.45 | 20.44 | 9.7 | 19.5 | 1.54 | 925 | 984.2 | 205.2 | 177 | 178 | 46.32 | 8.4 | 8.6 | 4549 | 33.7 | 4891 | 6059 | 4563 | 33.1 | 4880 | 6048 | 4555 | -0.6 | 3 | 3 | 15 | 4890 | 6069 | 4552 | 10.7 | 20.3 | 8.6 | 71.2 | 164 | 67 | 2.5 | 483 | 0.018 | 0.9 | 3 | 7.2 | 0.0 | 0.00 | 11.2 | 0.9 | 1.9 | 2.1 |
39.40 | 6.87 | 57.33 | 71.52 | 13.22 | 15.62 | 50.85 | 100.00 | 17.74 | 13.16 | 2.91 | 148.45 | 20.44 | 9.7 | 19.5 | 1.52 | 924 | 992.5 | 207.3 | 178 | 178 | 47.03 | 8.2 | 9.4 | 4549 | 33.9 | 4901 | 6055 | 4571 | 34.8 | 4816 | 5992 | 4493 | 0.9 | 4 | 4 | 16 | 4847 | 6021 | 4518 | 10.5 | 19.9 | 9.1 | 71.0 | 160 | 66 | 2.4 | 509 | 0.020 | 0.6 | 3 | 7.3 | 0.0 | 0.00 | 11.0 | 0.9 | 2.1 | 2.2 |
39.14 | 6.65 | 55.61 | 68.93 | 12.72 | 15.91 | 48.64 | 100.00 | 17.87 | 13.31 | 2.98 | 146.08 | 20.33 | 10.7 | 19.5 | 1.50 | 924 | 987.0 | 206.2 | 177 | 177 | 45.66 | 10.3 | 9.4 | 4549 | 33.8 | 4747 | 5918 | 4447 | 34.5 | 4829 | 6006 | 4531 | 0.7 | 5 | 5 | 17 | 4853 | 6033 | 4545 | 10.6 | 20.1 | 9.2 | 70.7 | 156 | 63 | 2.5 | 463 | 0.019 | 1.1 | 2 | 7.3 | 0.1 | 0.20 | 11.0 | 1.0 | 1.9 | 2.2 |
40.36 | 6.65 | 55.61 | 68.93 | 12.72 | 15.91 | 48.64 | 100.00 | 17.87 | 13.31 | 2.98 | 146.08 | 20.33 | 10.7 | 19.5 | 1.52 | 926 | 991.5 | 211.4 | 178 | 178 | 47.09 | 10.3 | 9.8 | 4549 | 33.5 | 4765 | 5946 | 4471 | 33.9 | 4808 | 5991 | 4509 | 0.4 | 6 | 6 | 18 | 4820 | 6016 | 4524 | 10.6 | 20.0 | 9.7 | 70.3 | 156 | 64 | 2.4 | 488 | 0.020 | 0.5 | 3 | 7.3 | 0.0 | 0.00 | 11.3 | 0.0 | 2.0 | 2.2 |
42.31 | 6.65 | 55.61 | 68.93 | 12.72 | 15.91 | 48.64 | 100.00 | 17.87 | 13.31 | 2.98 | 146.08 | 20.33 | 10.7 | 18.0 | 1.58 | 920 | 1003.2 | 207.8 | 177 | 177 | 49.04 | 11.1 | 10.2 | 4549 | 32.5 | 4724 | 5926 | 4441 | 33.5 | 4792 | 6002 | 4506 | 1.0 | 7 | 1 | 1 | 4811 | 6016 | 4519 | 10.7 | 20.1 | 10.0 | 69.9 | 157 | 63 | 2.5 | 512 | 0.020 | 1.4 | 3 | 7.1 | 0.0 | 0.00 | 11.8 | 11.0 | 1.9 | 2.3 |
40.49 | 6.72 | 57.24 | 71.27 | 12.25 | 16.58 | 50.88 | 100.00 | 18.18 | 13.60 | 2.75 | 151.23 | 21.30 | 9.3 | 20.0 | 1.57 | 928 | 983.2 | 208.0 | 177 | 178 | 46.30 | 9.4 | 9.1 | 4549 | 34.6 | 4813 | 5957 | 4491 | 35.2 | 4834 | 5983 | 4514 | 0.6 | 9 | 3 | 3 | 4863 | 6019 | 4541 | 10.4 | 19.9 | 8.8 | 71.3 | 160 | 63 | 2.5 | 499 | 0.019 | 0.8 | 3 | 7.0 | 0.0 | 0.00 | 11.5 | 0.7 | 1.8 | 2.3 |
40.57 | 6.57 | 55.93 | 69.48 | 11.95 | 18.00 | 50.50 | 100.00 | 17.92 | 13.23 | 2.63 | 151.67 | 21.29 | 8.7 | 19.0 | 1.60 | 921 | 980.8 | 206.2 | 178 | 178 | 46.37 | 9.6 | 9.1 | 4549 | 34.6 | 4803 | 5958 | 4506 | 35.0 | 4846 | 6009 | 4535 | 0.4 | 10 | 4 | 4 | 4867 | 6041 | 4554 | 10.6 | 20.1 | 8.9 | 71.0 | 161 | 64 | 2.5 | 513 | 0.020 | 0.7 | 3 | 7.1 | 0.1 | 0.10 | 11.6 | 0.9 | 1.8 | 2.2 |
38.20 | 6.16 | 54.67 | 66.95 | 11.15 | 17.25 | 48.12 | 100.83 | 17.97 | 13.12 | 2.48 | 149.03 | 20.88 | 9.1 | 20.0 | 1.51 | 925 | 982.3 | 205.9 | 177 | 177 | 46.32 | 10.4 | 9.0 | 4549 | 34.0 | 4756 | 5917 | 4484 | 35.3 | 4858 | 6039 | 4557 | 1.3 | 11 | 5 | 5 | 4877 | 6051 | 4587 | 10.7 | 20.3 | 8.9 | 70.8 | 153 | 61 | 2.5 | 484 | 0.020 | 1.3 | 2 | 7.1 | 0.0 | 0.00 | 11.7 | 0.8 | 1.8 | 2.1 |
38.70 | 6.16 | 54.67 | 66.95 | 11.15 | 17.25 | 48.12 | 100.83 | 17.97 | 13.12 | 2.48 | 149.03 | 20.88 | 9.1 | 19.5 | 1.51 | 923 | 983.4 | 206.2 | 178 | 178 | 46.02 | 10.2 | 8.7 | 4549 | 34.1 | 4772 | 5957 | 4494 | 35.4 | 4885 | 6065 | 4571 | 1.3 | 12 | 6 | 6 | 4889 | 6069 | 4590 | 10.8 | 20.4 | 8.8 | 70.8 | 156 | 62 | 2.5 | 502 | 0.020 | 0.5 | 3 | 7.1 | 0.0 | 0.00 | 11.6 | 0.8 | 1.8 | 2.0 |
38.94 | 6.16 | 54.67 | 66.95 | 11.15 | 17.25 | 48.12 | 100.83 | 17.97 | 13.12 | 2.48 | 149.03 | 20.88 | 9.1 | 19.5 | 1.49 | 928 | 1004.5 | 206.8 | 177 | 177 | 48.17 | 9.6 | 10.2 | 4549 | 33.9 | 4828 | 6010 | 4550 | 33.9 | 4763 | 5949 | 4510 | 0.0 | 1 | 1 | 7 | 4814 | 6010 | 4545 | 10.4 | 19.8 | 9.7 | 70.5 | 150 | 60 | 2.5 | 492 | 0.021 | 1.1 | 2 | 7.1 | 0.0 | 0.00 | 11.5 | 0.7 | 1.9 | 2.3 |
41.90 | 6.37 | 52.67 | 64.34 | 12.02 | 17.40 | 46.52 | 100.00 | 17.38 | 12.48 | 2.75 | 144.50 | 19.82 | 11.0 | 20.0 | 1.50 | 927 | 1016.1 | 210.3 | 178 | 177 | 47.44 | 11.2 | 9.9 | 4549 | 32.7 | 4716 | 5937 | 4476 | 34.1 | 4818 | 6043 | 4586 | 1.4 | 2 | 2 | 8 | 4835 | 6074 | 4592 | 10.9 | 20.4 | 9.7 | 69.8 | 162 | 63 | 2.6 | 492 | 0.019 | 1.0 | 2 | 7.0 | 0.0 | 0.00 | 11.6 | 0.9 | 2.0 | 2.3 |
42.03 | 6.37 | 52.67 | 64.34 | 12.02 | 17.40 | 46.52 | 100.00 | 17.38 | 12.48 | 2.75 | 144.50 | 19.82 | 11.0 | 19.5 | 1.51 | 922 | 999.7 | 213.3 | 177 | 178 | 47.30 | 10.9 | 10.1 | 4549 | 33.3 | 4742 | 5963 | 4505 | 33.9 | 4800 | 6038 | 4578 | 0.6 | 3 | 3 | 9 | 4841 | 6084 | 4593 | 11.0 | 20.5 | 9.7 | 69.8 | 163 | 63 | 2.6 | 498 | 0.019 | 1.0 | 3 | 6.9 | 0.0 | 0.00 | 11.7 | 1.4 | 1.9 | 1.8 |
41.96 | 6.37 | 52.67 | 64.34 | 12.02 | 17.40 | 46.52 | 100.00 | 17.38 | 12.48 | 2.75 | 144.50 | 19.82 | 11.0 | 19.5 | 1.50 | 923 | 1013.9 | 209.6 | 178 | 178 | 48.11 | 11.0 | 10.4 | 4549 | 32.9 | 4737 | 5967 | 4499 | 33.5 | 4785 | 6025 | 4558 | 0.6 | 4 | 4 | 10 | 4819 | 6065 | 4575 | 10.9 | 20.4 | 10.0 | 69.6 | 160 | 62 | 2.6 | 504 | 0.020 | 0.5 | 3 | 6.8 | 0.0 | 0.00 | 11.7 | 1.4 | 1.9 | 1.8 |
41.85 | 6.31 | 54.42 | 66.13 | 11.97 | 18.40 | 48.01 | 100.00 | 17.81 | 12.75 | 2.76 | 147.17 | 20.41 | 12.0 | 19.5 | 1.48 | 923 | 994.0 | 206.8 | 178 | 178 | 46.00 | 9.7 | 9.6 | 4549 | 34.2 | 4818 | 6019 | 4583 | 34.2 | 4830 | 6031 | 4603 | 0.0 | 6 | 6 | 12 | 4857 | 6065 | 4613 | 10.7 | 20.3 | 9.3 | 70.4 | 162 | 64 | 2.5 | 494 | 0.019 | 0.4 | 3 | 7.0 | 0.0 | 0.00 | 11.2 | 1.2 | 1.9 | 1.8 |
39.71 | 6.27 | 53.51 | 66.52 | 11.83 | 16.95 | 46.62 | 100.00 | 17.76 | 13.31 | 2.87 | 143.65 | 20.35 | 10.0 | 20.0 | 1.49 | 929 | 960.0 | 210.7 | 177 | 177 | 45.05 | 9.4 | 9.0 | 0 | 34.8 | 4824 | 5974 | 4534 | 35.4 | 4862 | 6021 | 4567 | 0.6 | 1 | 1 | 13 | 4877 | 6036 | 4569 | 10.4 | 20.0 | 8.7 | 71.3 | 156 | 62 | 2.5 | 500 | 0.020 | 1.1 | 3 | 7.3 | 0.0 | 0.00 | 11.9 | 1.2 | 1.8 | 2.5 |
39.38 | 6.27 | 53.51 | 66.52 | 11.83 | 16.95 | 46.62 | 100.00 | 17.76 | 13.31 | 2.87 | 143.65 | 20.35 | 10.2 | 19.0 | 1.48 | 921 | 961.3 | 205.0 | 178 | 177 | 43.83 | 8.9 | 8.4 | 0 | 35.5 | 4862 | 6023 | 4568 | 35.5 | 4905 | 6066 | 4597 | 0.0 | 2 | 2 | 14 | 4901 | 6063 | 4588 | 10.6 | 20.2 | 8.4 | 71.4 | 159 | 63 | 2.5 | 487 | 0.019 | 0.9 | 3 | 7.1 | 0.1 | 0.10 | 11.9 | 1.7 | 1.8 | 2.3 |
39.16 | 6.27 | 53.51 | 66.52 | 11.83 | 16.95 | 46.62 | 100.00 | 17.76 | 13.31 | 2.87 | 143.65 | 20.35 | 10.2 | 19.0 | 1.48 | 921 | 969.7 | 207.8 | 177 | 178 | 43.86 | 8.4 | 8.3 | 0 | 35.5 | 4897 | 6043 | 4584 | 35.5 | 4907 | 6064 | 4596 | 0.0 | 3 | 3 | 15 | 4916 | 6075 | 4595 | 10.6 | 20.3 | 8.2 | 70.5 | 158 | 62 | 2.6 | 484 | 0.019 | 0.7 | 3 | 7.0 | 0.0 | 0.00 | 11.5 | 1.7 | 1.9 | 2.2 |
39.38 | 6.58 | 52.50 | 63.29 | 12.24 | 18.28 | 46.04 | 100.00 | 17.67 | 12.47 | 2.85 | 144.40 | 19.85 | 9.5 | 19.0 | 1.47 | 923 | 989.7 | 205.7 | 177 | 177 | 47.40 | 9.7 | 9.5 | 0 | 34.2 | 4836 | 6047 | 4588 | 33.9 | 4854 | 6072 | 4603 | -0.3 | 5 | 5 | 17 | 4876 | 6106 | 4609 | 11.1 | 20.8 | 9.3 | 69.9 | 162 | 65 | 2.5 | 494 | 0.019 | 1.3 | 3 | 7.1 | 0.0 | 0.00 | 11.7 | 1.2 | 1.8 | 1.9 |
40.08 | 6.45 | 53.18 | 64.98 | 12.11 | 18.77 | 46.80 | 100.00 | 17.58 | 12.69 | 2.79 | 145.90 | 19.96 | 10.9 | 19.5 | 1.51 | 923 | 996.4 | 206.2 | 178 | 178 | 47.52 | 10.2 | 9.9 | 0 | 33.5 | 4810 | 6039 | 4568 | 33.5 | 4827 | 6057 | 4580 | 0.0 | 6 | 6 | 18 | 4825 | 6063 | 4582 | 11.0 | 20.5 | 9.9 | 69.6 | 160 | 63 | 2.6 | 500 | 0.020 | 0.6 | 2 | 7.0 | 0.0 | 0.00 | 11.5 | 1.2 | 1.8 | 1.8 |
39.17 | 6.39 | 58.85 | 73.45 | 12.69 | 16.92 | 51.25 | 100.00 | 17.92 | 13.50 | 2.62 | 151.25 | 20.89 | 11.3 | 21.5 | 1.55 | 935 | 976.4 | 204.8 | 177 | 177 | 45.88 | 8.5 | 9.1 | 0 | 34.8 | 4879 | 6044 | 4574 | 34.4 | 4841 | 6018 | 4565 | -0.4 | 7 | 1 | 1 | 4849 | 6041 | 4557 | 10.3 | 19.6 | 8.9 | 71.6 | 158 | 64 | 2.5 | 495 | 0.020 | 1.1 | 3 | 7.4 | 0.1 | 0.10 | 11.7 | 0.8 | 2.0 | 2.3 |
38.37 | 6.39 | 58.85 | 73.45 | 12.69 | 16.92 | 51.25 | 100.00 | 17.92 | 13.50 | 2.62 | 151.25 | 20.89 | 11.3 | 22.2 | 1.54 | 933 | 971.6 | 208.0 | 178 | 177 | 45.52 | 8.2 | 8.7 | 0 | 35.2 | 4899 | 6059 | 4609 | 34.5 | 4867 | 6037 | 4583 | -0.7 | 8 | 2 | 2 | 4883 | 6045 | 4583 | 10.2 | 19.6 | 8.3 | 72.1 | 156 | 62 | 2.5 | 497 | 0.020 | 1.9 | 2 | 7.1 | 0.0 | 0.00 | 11.8 | 0.8 | 2.0 | 2.1 |
38.76 | 6.39 | 58.85 | 73.45 | 12.69 | 16.92 | 51.25 | 100.00 | 17.92 | 13.50 | 2.62 | 151.25 | 20.89 | 11.3 | 22.0 | 1.54 | 933 | 974.0 | 205.9 | 177 | 178 | 45.11 | 8.7 | 8.6 | 0 | 35.0 | 4857 | 6028 | 4569 | 34.6 | 4870 | 6051 | 4582 | -0.4 | 9 | 3 | 3 | 4890 | 6058 | 4587 | 10.3 | 19.7 | 8.3 | 72.0 | 159 | 64 | 2.5 | 497 | 0.020 | 0.7 | 2 | 7.0 | 0.0 | 0.00 | 11.6 | 1.3 | 1.9 | 2.4 |
38.73 | 6.35 | 56.93 | 70.87 | 12.27 | 18.06 | 49.92 | 100.00 | 17.76 | 13.29 | 2.61 | 150.06 | 20.65 | 11.5 | 22.5 | 1.55 | 932 | 978.0 | 209.4 | 178 | 178 | 45.57 | 9.8 | 9.3 | 0 | 34.2 | 4795 | 5991 | 4520 | 34.2 | 4844 | 6031 | 4579 | 0.0 | 10 | 4 | 4 | 4859 | 6058 | 4581 | 10.5 | 19.8 | 8.9 | 71.2 | 157 | 61 | 2.6 | 507 | 0.020 | 0.8 | 3 | 7.1 | 0.0 | 0.00 | 11.6 | 0.6 | 2.0 | 2.3 |
38.95 | 6.17 | 53.80 | 65.53 | 12.70 | 18.65 | 47.67 | 100.00 | 16.82 | 12.11 | 2.58 | 142.66 | 19.64 | 11.4 | 21.5 | 1.55 | 932 | 980.2 | 205.7 | 177 | 177 | 44.92 | 8.7 | 9.1 | 0 | 35.1 | 4889 | 6089 | 4619 | 34.5 | 4857 | 6063 | 4594 | -0.6 | 11 | 5 | 5 | 4876 | 6087 | 4601 | 10.6 | 20.0 | 8.8 | 71.2 | 163 | 65 | 2.5 | 498 | 0.019 | 1.7 | 3 | 7.0 | 0.0 | 0.00 | 11.4 | 1.3 | 1.9 | 2.2 |
40.41 | 6.97 | 58.18 | 71.85 | 14.25 | 17.08 | 50.06 | 100.00 | 18.02 | 13.51 | 3.37 | 148.92 | 20.33 | 11.0 | 21.5 | 1.55 | 937 | 993.4 | 205.5 | 177 | 177 | 46.11 | 9.3 | 9.4 | 0 | 34.5 | 4835 | 6014 | 4527 | 34.5 | 4827 | 5994 | 4525 | 0.0 | 1 | 1 | 7 | 4835 | 6015 | 4537 | 10.3 | 19.5 | 9.1 | 71.3 | 156 | 63 | 2.5 | 494 | 0.020 | 1.0 | 3 | 7.1 | 0.0 | 0.00 | 11.4 | 0.8 | 2.0 | 2.5 |
39.90 | 6.97 | 58.18 | 71.85 | 14.25 | 17.08 | 50.06 | 100.00 | 18.02 | 13.51 | 3.37 | 148.92 | 20.33 | 11.0 | 22.0 | 1.52 | 931 | 990.5 | 207.1 | 178 | 177 | 46.12 | 8.4 | 9.3 | 0 | 35.2 | 4899 | 6061 | 4572 | 33.8 | 4813 | 5977 | 4515 | -1.4 | 2 | 2 | 8 | 4834 | 6015 | 4526 | 10.3 | 19.5 | 9.1 | 71.4 | 154 | 61 | 2.5 | 517 | 0.021 | 1.2 | 3 | 7.1 | 0.0 | 0.00 | 11.3 | 0.9 | 2.1 | 2.2 |
39.79 | 6.97 | 58.18 | 71.85 | 14.25 | 17.08 | 50.06 | 100.00 | 18.02 | 13.51 | 3.37 | 148.92 | 20.33 | 11.0 | 22.0 | 1.53 | 935 | 982.9 | 206.6 | 177 | 178 | 44.55 | 8.2 | 8.4 | 0 | 35.2 | 4897 | 6048 | 4572 | 34.8 | 4881 | 6059 | 4584 | -0.4 | 3 | 3 | 9 | 4898 | 6073 | 4573 | 10.5 | 19.9 | 8.3 | 71.8 | 159 | 65 | 2.4 | 495 | 0.019 | 0.3 | 2 | 7.1 | 0.0 | 0.00 | 11.3 | 1.0 | 1.9 | 2.1 |
41.25 | 8.81 | 63.99 | 78.25 | 23.09 | 19.96 | 53.87 | 100.00 | 18.84 | 14.08 | 6.87 | 158.73 | 20.57 | 12.7 | 22.0 | 1.55 | 934 | 1000.7 | 205.5 | 178 | 178 | 45.10 | 8.6 | 8.8 | 0 | 34.9 | 4844 | 5990 | 4524 | 34.9 | 4825 | 5981 | 4517 | 0.0 | 4 | 4 | 10 | 4878 | 6049 | 4546 | 10.3 | 19.6 | 8.4 | 72.1 | 167 | 65 | 2.6 | 507 | 0.019 | 0.2 | 3 | 7.1 | 0.0 | 0.00 | 11.6 | 1.2 | 1.9 | 2.2 |
41.00 | 6.80 | 57.21 | 70.34 | 13.98 | 16.81 | 48.46 | 100.00 | 17.91 | 13.34 | 3.37 | 146.67 | 19.95 | 11.2 | 20.5 | 1.55 | 934 | 1000.8 | 205.2 | 178 | 178 | 44.99 | 9.1 | 8.5 | 0 | 34.7 | 4829 | 5998 | 4550 | 34.7 | 4879 | 6040 | 4573 | 0.0 | 6 | 6 | 12 | 4881 | 6060 | 4576 | 10.5 | 19.9 | 8.6 | 71.5 | 164 | 65 | 2.5 | 492 | 0.019 | 0.3 | 3 | 7.1 | 0.0 | 0.00 | 11.5 | 1.6 | 1.9 | 2.4 |
41.59 | 6.80 | 57.21 | 70.34 | 13.98 | 16.81 | 48.46 | 100.00 | 17.91 | 13.34 | 3.37 | 146.67 | 19.95 | 11.2 | 21.0 | 1.55 | 939 | 1171.2 | 206.4 | 177 | 178 | 45.64 | 8.9 | 9.1 | 0 | 35.1 | 4853 | 6022 | 4582 | 34.8 | 4826 | 5996 | 4564 | -0.3 | 1 | 1 | 13 | 4866 | 6051 | 4567 | 10.4 | 19.7 | 8.7 | 71.6 | 164 | 66 | 2.5 | 506 | 0.019 | 0.9 | 2 | 7.2 | 0.0 | 0.00 | 11.5 | 1.5 | 1.9 | 2.4 |
40.91 | 6.80 | 57.21 | 70.34 | 13.98 | 16.81 | 48.46 | 100.00 | 17.91 | 13.34 | 3.37 | 146.67 | 19.95 | 11.2 | 22.0 | 1.54 | 936 | 979.2 | 208.7 | 178 | 178 | 44.62 | 8.6 | 8.4 | 0 | 35.0 | 4864 | 6030 | 4577 | 34.8 | 4887 | 6068 | 4599 | -0.2 | 2 | 2 | 14 | 4907 | 6087 | 4602 | 10.5 | 20.0 | 8.2 | 71.8 | 165 | 68 | 2.4 | 493 | 0.019 | 0.9 | 2 | 7.1 | 0.0 | 0.00 | 11.6 | 1.6 | 2.0 | 2.4 |
38.99 | 6.30 | 51.96 | 64.07 | 12.65 | 19.23 | 44.66 | 100.00 | 17.16 | 12.71 | 3.15 | 142.11 | 19.13 | 11.6 | 21.0 | 1.55 | 932 | 994.5 | 207.8 | 177 | 177 | 45.45 | 9.4 | 9.4 | 0 | 34.8 | 4841 | 6048 | 4631 | 34.1 | 4839 | 6062 | 4631 | -0.7 | 3 | 3 | 15 | 4867 | 6082 | 4642 | 10.7 | 20.2 | 9.1 | 70.7 | 160 | 64 | 2.5 | 499 | 0.019 | 1.4 | 3 | 7.2 | 0.0 | 0.00 | 11.5 | 1.0 | 1.9 | 2.4 |
38.81 | 6.30 | 51.96 | 64.07 | 12.65 | 19.23 | 44.66 | 100.00 | 17.16 | 12.71 | 3.15 | 142.11 | 19.13 | 11.6 | 21.5 | 1.55 | 937 | 989.2 | 205.2 | 178 | 178 | 45.52 | 9.3 | 9.5 | 0 | 34.5 | 4841 | 6052 | 4635 | 33.9 | 4830 | 6038 | 4618 | -0.6 | 4 | 4 | 16 | 4844 | 6067 | 4632 | 10.7 | 20.1 | 9.4 | 70.5 | 159 | 64 | 2.5 | 513 | 0.020 | 0.9 | 2 | 7.1 | 0.1 | 0.10 | 11.7 | 1.1 | 1.8 | 2.1 |
39.30 | 6.30 | 51.96 | 64.07 | 12.65 | 19.23 | 44.66 | 100.00 | 17.16 | 12.71 | 3.15 | 142.11 | 19.13 | 11.6 | 21.5 | 1.55 | 939 | 983.7 | 206.4 | 177 | 177 | 46.10 | 9.4 | 9.6 | 0 | 34.6 | 4832 | 6035 | 4624 | 34.3 | 4822 | 6039 | 4617 | -0.3 | 5 | 5 | 17 | 4838 | 6053 | 4622 | 10.6 | 20.0 | 9.4 | 70.6 | 159 | 62 | 2.5 | 498 | 0.020 | 1.2 | 2 | 7.2 | 0.0 | 0.00 | 11.7 | 1.1 | 1.9 | 2.3 |
40.77 | 6.45 | 55.09 | 69.18 | 11.98 | 17.22 | 47.12 | 100.00 | 17.74 | 13.47 | 2.86 | 148.00 | 20.04 | 10.8 | 21.5 | 1.54 | 937 | 960.4 | 204.8 | 177 | 178 | 43.52 | 8.1 | 8.3 | 0 | 35.8 | 4893 | 6028 | 4564 | 35.5 | 4879 | 6026 | 4556 | -0.3 | 7 | 2 | 2 | 4873 | 6023 | 4546 | 10.2 | 19.5 | 8.4 | 72.1 | 163 | 65 | 2.5 | 486 | 0.019 | 0.8 | 2 | 7.2 | 0.0 | 0.00 | 11.5 | 1.1 | 1.9 | 2.3 |
39.27 | 6.45 | 55.09 | 69.18 | 11.98 | 17.22 | 47.12 | 100.00 | 17.74 | 13.47 | 2.86 | 148.00 | 20.04 | 10.8 | 21.5 | 1.55 | 935 | 954.8 | NA | 178 | 178 | 43.52 | 8.4 | 8.3 | 0 | 35.6 | 4866 | 6005 | 4550 | 35.6 | 4893 | 6046 | 4569 | 0.0 | 8 | 3 | 3 | 4897 | 6047 | 4572 | 10.3 | 19.7 | 8.1 | 72.2 | 157 | 64 | 2.5 | 493 | 0.020 | 1.2 | 2 | 7.2 | 0.0 | 0.00 | 11.3 | 0.8 | 1.9 | 2.1 |
40.06 | 6.45 | 55.09 | 69.18 | 11.98 | 17.22 | 47.12 | 100.00 | 17.74 | 13.47 | 2.86 | 148.00 | 20.04 | 10.8 | 21.7 | 1.55 | 938 | 975.8 | 205.2 | 177 | 177 | 44.11 | 8.4 | 8.3 | 0 | 35.4 | 4874 | 6012 | 4561 | 35.3 | 4885 | 6046 | 4571 | -0.1 | 9 | 4 | 4 | 4885 | 6042 | 4546 | 10.3 | 19.7 | 8.3 | 72.0 | 158 | 63 | 2.5 | 478 | 0.019 | 1.0 | 2 | 7.2 | 0.1 | 0.10 | 11.6 | 0.9 | 1.9 | 2.5 |
39.17 | 6.28 | 54.33 | 68.30 | 12.37 | 15.46 | 46.72 | 100.00 | 17.41 | 13.28 | 2.96 | 143.47 | 19.85 | 12.4 | 22.0 | 1.54 | 941 | 1009.1 | 206.4 | 178 | 178 | 46.33 | 8.7 | 9.2 | 0 | 34.2 | 4867 | 6034 | 4588 | 33.8 | 4835 | 6015 | 4569 | -0.4 | 10 | 5 | 5 | 4846 | 6019 | 4572 | 10.3 | 19.6 | 9.1 | 71.3 | 156 | 62 | 2.5 | 522 | 0.021 | 0.8 | 3 | 7.2 | 0.0 | 0.00 | 11.6 | 1.1 | 1.8 | 2.2 |
39.98 | 7.33 | 56.87 | 70.17 | 14.20 | 20.16 | 49.06 | 100.00 | 18.01 | 13.34 | 3.62 | 147.63 | 19.77 | 9.9 | 21.5 | 1.54 | 933 | 992.6 | 205.9 | 177 | 177 | 45.69 | 8.4 | 9.1 | 0 | 35.3 | 4896 | 6062 | 4614 | 34.5 | 4844 | 6021 | 4583 | -0.8 | 11 | 6 | 6 | 4870 | 6054 | 4595 | 10.5 | 19.9 | 8.8 | 71.3 | 154 | 60 | 2.5 | 492 | 0.020 | 1.1 | 2 | 7.2 | 0.0 | 0.00 | 11.5 | 0.9 | 1.8 | 2.0 |
39.91 | 7.22 | 57.32 | 71.02 | 14.05 | 19.16 | 49.21 | 100.00 | 18.02 | 13.43 | 3.52 | 148.07 | 19.87 | 10.0 | 21.5 | 1.55 | 937 | 1003.7 | 205.0 | 178 | 178 | 44.22 | 8.6 | 8.9 | 0 | 35.6 | 4848 | 6005 | 4559 | 35.6 | 4866 | 6028 | 4579 | 0.0 | 1 | 1 | 7 | 4887 | 6056 | 4575 | 10.4 | 19.8 | 8.4 | 71.8 | 158 | 63 | 2.5 | 491 | 0.019 | 0.9 | 2 | 7.2 | 0.0 | 0.00 | 11.9 | 0.9 | 1.9 | 2.5 |
40.77 | 6.19 | 53.59 | 66.40 | 11.99 | 18.73 | 47.41 | 100.00 | 17.04 | 12.58 | 2.45 | 146.20 | 19.83 | 9.1 | 21.5 | 1.53 | 931 | 1006.1 | 206.8 | 178 | 177 | 45.49 | 9.1 | 8.9 | 0 | 35.2 | 4839 | 6020 | 4559 | 35.2 | 4849 | 6024 | 4576 | 0.0 | 3 | 3 | 9 | 4872 | 6054 | 4566 | 10.5 | 19.9 | 8.8 | 71.4 | 164 | 66 | 2.5 | 490 | 0.019 | 1.0 | 2 | 7.2 | 0.1 | 0.10 | 11.8 | 0.8 | 1.9 | 2.3 |
39.86 | 5.98 | 54.10 | 66.50 | 11.73 | 18.80 | 47.98 | 100.00 | 17.35 | 12.75 | 2.51 | 147.95 | 20.25 | 10.6 | 22.0 | 1.53 | 934 | 1001.0 | 204.8 | 177 | 177 | 44.09 | 8.8 | 8.7 | 0 | 35.3 | 4853 | 6021 | 4566 | 35.3 | 4864 | 6043 | 4582 | 0.0 | 4 | 4 | 10 | 4889 | 6070 | 4590 | 10.5 | 20.0 | 8.5 | 71.6 | 160 | 64 | 2.5 | 482 | 0.019 | 1.0 | 2 | 7.2 | 0.0 | 0.00 | 11.6 | 0.8 | 1.9 | 2.2 |
40.03 | 5.98 | 54.10 | 66.50 | 11.73 | 18.80 | 47.98 | 100.00 | 17.35 | 12.75 | 2.51 | 147.95 | 20.25 | 10.6 | 22.0 | 1.54 | 937 | 994.9 | 205.0 | 178 | 178 | 44.56 | 9.3 | 9.0 | 0 | 35.2 | 4815 | 5991 | 4541 | 35.2 | 4834 | 6008 | 4555 | 0.0 | 5 | 5 | 11 | 4862 | 6040 | 4562 | 10.4 | 19.7 | 8.8 | 71.5 | 159 | 64 | 2.5 | 499 | 0.020 | 0.7 | 2 | 7.2 | 0.0 | 0.00 | 11.6 | 0.9 | 2.0 | 2.1 |
40.81 | 5.98 | 54.10 | 66.50 | 11.73 | 18.80 | 47.98 | 100.00 | 17.35 | 12.75 | 2.51 | 147.95 | 20.25 | 10.6 | 20.9 | 1.55 | 933 | 1001.3 | 205.2 | 177 | 177 | 45.14 | 9.1 | NA | 0 | 35.1 | 4834 | 6022 | 4560 | 34.8 | 4859 | 6030 | 4568 | -0.3 | 6 | 6 | 12 | 4869 | 6050 | 4574 | 10.5 | 19.9 | 8.8 | 71.3 | 160 | 64 | 2.5 | 493 | 0.019 | 0.9 | 2 | 7.3 | 0.0 | 0.00 | 11.5 | 0.9 | 1.9 | 2.1 |
37.94 | 5.85 | 51.75 | 64.02 | 10.41 | 20.40 | 44.30 | 100.00 | 16.96 | 12.68 | 2.34 | 143.33 | 19.63 | 11.5 | 22.0 | 1.54 | 934 | 1004.3 | 205.0 | 177 | 178 | 43.73 | 11.4 | 8.7 | 0 | 34.3 | 4701 | 5914 | 4579 | 35.7 | 4911 | 6124 | 4705 | 1.4 | 2 | 2 | 14 | 4923 | 6137 | 4710 | 11.0 | 20.7 | 8.6 | 70.7 | 154 | 63 | 2.4 | 490 | 0.020 | 0.8 | 3 | 7.2 | 0.1 | 0.10 | 11.7 | 1.1 | 1.9 | 2.2 |
37.73 | 5.85 | 51.75 | 64.02 | 10.41 | 20.40 | 44.30 | 100.00 | 16.96 | 12.68 | 2.34 | 143.33 | 19.63 | 11.5 | 21.0 | 1.55 | 934 | 1008.1 | 204.6 | 178 | 177 | 44.35 | 8.7 | 9.2 | 0 | 35.3 | 4895 | 6079 | 4670 | 34.3 | 4850 | 6022 | 4634 | -1.0 | 3 | 3 | 15 | 4855 | 6046 | 4644 | 10.5 | 19.9 | 9.2 | 70.9 | 151 | 60 | 2.5 | 491 | 0.020 | 1.3 | 2 | 7.2 | 0.0 | 0.00 | 11.5 | 0.9 | 1.9 | 2.3 |
37.30 | 5.85 | 51.75 | 64.02 | 10.41 | 20.40 | 44.30 | 100.00 | 16.96 | 12.68 | 2.34 | 143.33 | 19.63 | 11.5 | 21.5 | 1.53 | 937 | 1004.8 | 206.6 | 177 | 177 | 44.13 | 8.9 | 9.3 | 0 | 35.3 | 4865 | 6037 | 4651 | 34.8 | 4839 | 6003 | 4619 | -0.5 | 4 | 4 | 16 | 4856 | 6041 | 4634 | 10.4 | 19.9 | 9.1 | 71.1 | 150 | 60 | 2.5 | 486 | 0.020 | 1.6 | 2 | 7.2 | 0.0 | 0.00 | 11.5 | 0.8 | 1.9 | 2.3 |
37.86 | 6.01 | 51.83 | 63.80 | 11.22 | 19.69 | 44.57 | 100.00 | 17.09 | 12.57 | 2.55 | 143.07 | 19.47 | 11.8 | 21.9 | 1.54 | 937 | 992.8 | 204.6 | 178 | 178 | 43.49 | 8.8 | 9.0 | 0 | 35.4 | 4864 | 6025 | 4607 | 35.0 | 4847 | 6024 | 4614 | -0.4 | 5 | 5 | 17 | 4865 | 6041 | 4606 | 10.4 | 19.7 | 8.8 | 71.4 | 154 | 62 | 2.5 | 507 | 0.021 | 0.8 | 3 | 7.2 | 0.0 | 0.00 | 11.6 | 1.1 | 1.8 | 2.3 |
38.05 | 5.89 | 51.28 | 64.04 | 9.99 | 16.90 | 44.74 | 100.00 | 16.79 | 13.04 | 2.33 | 142.66 | 19.67 | 12.3 | 21.7 | 1.55 | 936 | 974.0 | 206.4 | 177 | 177 | 42.66 | 8.9 | 8.7 | 0 | 35.5 | 4838 | 5997 | 4571 | 35.5 | 4855 | 6021 | 4584 | 0.0 | 6 | 6 | 18 | 4886 | 6051 | 4594 | 10.3 | 19.7 | 8.3 | 72.0 | 157 | 63 | 2.5 | 498 | 0.020 | 1.3 | 3 | 7.2 | 0.0 | 0.00 | 11.4 | 1.0 | 1.8 | 2.4 |
37.87 | 5.90 | 51.44 | 63.61 | 10.49 | 18.04 | 44.73 | 100.00 | 17.18 | 12.95 | 2.46 | 143.84 | 19.85 | 11.8 | 21.6 | 1.55 | 937 | 987.7 | 206.6 | 178 | 178 | 43.58 | 8.7 | 9.1 | 0 | 35.3 | 4861 | 6020 | 4611 | 34.9 | 4837 | 6007 | 4593 | -0.4 | 7 | 1 | 1 | 4845 | 6019 | 4590 | 10.2 | 19.6 | 9.0 | 71.4 | 156 | 62 | 2.5 | 496 | 0.020 | 0.7 | 3 | 7.3 | 0.1 | 0.10 | 11.8 | 0.6 | 1.9 | 2.1 |
38.60 | 5.90 | 51.44 | 63.61 | 10.49 | 18.04 | 44.73 | 100.00 | 17.18 | 12.95 | 2.46 | 143.84 | 19.85 | 11.8 | 21.8 | 1.55 | 936 | 987.9 | 205.5 | 177 | 177 | 44.70 | 9.3 | 9.1 | 0 | 35.2 | 4816 | 5983 | 4579 | 35.2 | 4834 | 5997 | 4583 | 0.0 | 8 | 2 | 2 | 4841 | 6010 | 4583 | 10.2 | 19.5 | 9.1 | 71.4 | 155 | 62 | 2.5 | 481 | 0.019 | 1.0 | 2 | 6.9 | 0.0 | 0.00 | 11.7 | 0.8 | 1.9 | 2.0 |
38.44 | 5.90 | 51.44 | 63.61 | 10.49 | 18.04 | 44.73 | 100.00 | 17.18 | 12.95 | 2.46 | 143.84 | 19.85 | 11.8 | 20.8 | 1.55 | 933 | 986.6 | 205.5 | 178 | 178 | 44.23 | 8.7 | 9.0 | 0 | 35.2 | 4873 | 6031 | 4606 | 34.8 | 4846 | 6014 | 4595 | -0.4 | 9 | 3 | 3 | 4853 | 6027 | 4605 | 0.0 | 19.7 | 9.0 | 71.4 | 156 | 62 | 2.5 | 493 | 0.020 | 0.5 | 3 | 7.1 | 0.0 | 0.00 | 11.9 | 0.8 | 1.9 | 2.3 |
39.42 | 5.79 | 53.96 | 66.53 | 10.40 | 18.26 | 47.57 | 100.00 | 17.24 | 12.99 | 2.16 | 146.64 | 20.57 | 9.8 | 22.0 | 1.54 | 932 | 992.3 | 208.4 | 177 | 177 | 45.61 | 9.0 | 8.9 | 0 | 35.1 | 4843 | 6016 | 4564 | 35.1 | 4850 | 6016 | 4569 | 0.0 | 10 | 4 | 4 | 4857 | 6036 | 4577 | 0.0 | 19.7 | 8.9 | 71.5 | 156 | 63 | 2.5 | 495 | 0.020 | 1.4 | 3 | 7.0 | 0.0 | 0.00 | 11.7 | 0.8 | 1.9 | 1.9 |
39.75 | 5.79 | 53.96 | 66.53 | 10.40 | 18.26 | 47.57 | 100.00 | 17.24 | 12.99 | 2.16 | 146.64 | 20.57 | 9.8 | 21.9 | 1.50 | 934 | 987.9 | 208.9 | 178 | 178 | 45.99 | 9.4 | 9.3 | 0 | 34.7 | 4807 | 5967 | 4536 | 34.7 | 4819 | 5997 | 4544 | 0.0 | 11 | 5 | 5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 156 | 62 | 2.5 | 485 | 0.019 | 0.7 | 3 | 7.0 | 0.0 | 0.00 | 11.6 | 0.8 | 1.9 | 2.4 |
39.51 | 5.79 | 53.96 | 66.53 | 10.40 | 18.26 | 47.57 | 100.00 | 17.24 | 12.99 | 2.16 | 146.64 | 20.57 | 9.8 | 22.4 | 1.48 | 937 | 994.3 | 211.4 | 177 | 177 | 46.01 | 9.0 | 8.9 | 0 | 35.0 | 4839 | 6013 | 4561 | 35.0 | 4856 | 6032 | 4571 | 0.0 | 12 | 6 | 6 | 4859 | 6037 | 4590 | 0.0 | 19.7 | 8.8 | 71.5 | 155 | 62 | 2.5 | 491 | 0.020 | 1.5 | 2 | 7.1 | 0.0 | 0.10 | 11.7 | 0.8 | 1.9 | 1.9 |
38.35 | 5.94 | 51.27 | 63.54 | 10.48 | 17.72 | 44.43 | 100.00 | 17.13 | 13.00 | 2.52 | 143.19 | 19.69 | 11.7 | 22.0 | 1.52 | 940 | 980.3 | 205.2 | 178 | 178 | 43.75 | 9.6 | 9.4 | 0 | 35.1 | 4793 | 5953 | 4550 | 35.4 | 4808 | 5972 | 4551 | 0.3 | 1 | 1 | 7 | 4854 | 6013 | 4594 | 0.0 | 19.5 | 8.9 | 71.6 | 155 | 63 | 2.5 | 510 | 0.021 | 0.6 | 3 | 7.3 | 0.0 | 0.00 | 11.5 | 0.9 | 1.8 | 2.4 |
40.38 | 6.40 | 58.73 | 71.51 | 12.29 | 17.09 | 50.62 | 100.00 | 17.44 | 13.10 | 2.58 | 147.66 | 20.25 | 11.4 | 20.5 | 1.57 | 929 | 976.0 | 204.8 | 178 | 177 | 43.75 | 9.5 | 7.9 | 0 | 35.2 | 4783 | 5932 | 4485 | 35.7 | 4935 | 6105 | 4602 | 0.5 | 3 | 3 | 9 | 4912 | 6080 | 4572 | 0.0 | 19.9 | 8.0 | 72.1 | 162 | 65 | 2.5 | 494 | 0.019 | 0.7 | 2 | 7.0 | 0.0 | 0.00 | 11.6 | 1.7 | 1.8 | 2.2 |
40.19 | 6.40 | 58.73 | 71.51 | 12.29 | 17.09 | 50.62 | 100.00 | 17.44 | 13.10 | 2.58 | 147.66 | 20.25 | 11.4 | 22.2 | 1.54 | 937 | 994.1 | 208.9 | 177 | 177 | 44.64 | 7.8 | 8.7 | 0 | 35.9 | 4937 | 6098 | 4602 | 34.7 | 4845 | 6014 | 4533 | -1.2 | 4 | 4 | 10 | 4859 | 6011 | 4535 | 0.0 | 19.3 | 8.6 | 72.1 | 158 | 63 | 2.5 | 488 | 0.019 | 0.7 | 3 | 7.0 | 0.0 | 0.00 | 11.3 | 1.2 | 1.9 | 2.3 |
39.96 | 6.40 | 58.73 | 71.51 | 12.29 | 17.09 | 50.62 | 100.00 | 17.44 | 13.10 | 2.58 | 147.66 | 20.25 | 11.4 | 22.3 | 1.53 | 936 | 983.2 | 213.7 | 178 | 178 | 43.84 | 8.1 | 8.7 | 0 | 35.7 | 4896 | 6050 | 4559 | 35.0 | 4849 | 6010 | 4536 | -0.7 | 5 | 5 | 11 | 4871 | 6027 | 4544 | 0.0 | 19.5 | 8.4 | 72.1 | 160 | 64 | 2.5 | 497 | 0.019 | 0.9 | 2 | 7.0 | 0.1 | 0.10 | 11.3 | 0.9 | 1.8 | 2.3 |
39.79 | 6.10 | 56.36 | 69.52 | 11.71 | 16.35 | 49.10 | 100.00 | 17.15 | 12.99 | 2.44 | 146.29 | 20.16 | 11.7 | 22.0 | 1.51 | 935 | 981.6 | 204.3 | 177 | 177 | 43.37 | 7.8 | 8.1 | 0 | 36.2 | 4936 | 6076 | 4602 | 35.3 | 4887 | 6033 | 4567 | -0.9 | 6 | 6 | 12 | 4884 | 6037 | 4563 | 0.0 | 19.5 | 8.2 | 72.3 | 161 | 65 | 2.5 | 500 | 0.019 | 0.7 | 3 | 7.1 | 0.0 | 0.00 | 11.4 | 1.1 | 1.8 | 2.3 |
41.86 | 5.78 | 53.70 | 67.22 | 11.17 | 15.44 | 47.33 | 100.00 | 16.76 | 12.81 | 2.30 | 144.34 | 19.95 | 12.0 | 21.2 | 1.55 | 942 | 992.0 | 204.1 | 177 | 177 | 44.94 | 9.1 | 9.0 | 0 | 34.7 | 4808 | 5941 | 4504 | 35.1 | 4822 | 5959 | 4526 | 0.4 | 7 | 1 | 13 | 4848 | 5976 | 4524 | 0.0 | 19.2 | 8.7 | 72.1 | 163 | 65 | 2.5 | 492 | 0.019 | 1.3 | 3 | 7.1 | 0.0 | 0.00 | 11.8 | 0.5 | 1.9 | 2.3 |
42.15 | 6.15 | 53.06 | 70.29 | 11.87 | 16.59 | 49.97 | 100.00 | 16.78 | 12.63 | 2.31 | 144.75 | 19.94 | 12.3 | 21.1 | 1.54 | 934 | 980.0 | 206.4 | 178 | 178 | 43.12 | 8.3 | 8.3 | 0 | 35.2 | 4880 | 6031 | 4567 | 35.2 | 4877 | 6035 | 4570 | 0.0 | 8 | 2 | 14 | 4902 | 6060 | 4566 | 0.0 | 19.9 | 8.1 | 72.0 | 167 | 68 | 2.5 | 501 | 0.019 | 0.4 | 3 | 7.2 | 0.0 | 0.00 | 11.8 | 0.6 | 1.9 | 2.2 |
43.88 | 6.40 | 52.62 | 72.39 | 12.34 | 17.38 | 51.77 | 100.00 | 16.80 | 12.51 | 2.32 | 145.03 | 19.93 | 12.5 | 21.0 | 1.55 | 938 | 997.8 | 205.7 | 177 | 177 | 45.23 | 8.5 | 9.1 | 0 | 34.9 | 4879 | 6047 | 4564 | 34.4 | 4827 | 6000 | 4535 | -0.5 | 1 | 1 | 15 | 4858 | 6029 | 4546 | 0.0 | 19.6 | 8.8 | 71.6 | 163 | 65 | 2.5 | 495 | 0.019 | 1.0 | 3 | 6.9 | 0.0 | 0.00 | 11.8 | 0.7 | 1.9 | 2.2 |
39.58 | 5.60 | 51.45 | 63.44 | 10.50 | 19.17 | 45.06 | 100.00 | 16.83 | 12.53 | 2.27 | 142.90 | 19.64 | 11.4 | 21.0 | 1.55 | 934 | 991.9 | 205.0 | 178 | 177 | 44.10 | 8.8 | 9.2 | 0 | 35.1 | 4869 | 6037 | 4622 | 34.7 | 4835 | 5999 | 4585 | -0.4 | 2 | 2 | 16 | 4857 | 6032 | 4598 | 0.0 | 19.7 | 9.0 | 71.3 | 153 | 61 | 2.5 | 500 | 0.020 | 0.9 | 3 | 7.0 | 0.1 | 0.10 | 11.7 | 0.8 | 1.9 | 2.0 |
40.19 | 5.60 | 51.45 | 63.44 | 10.50 | 19.17 | 45.06 | 100.00 | 16.83 | 12.53 | 2.27 | 142.90 | 19.64 | 11.4 | 20.9 | 1.54 | 934 | 986.1 | 204.1 | 177 | 178 | 43.92 | 9.0 | 9.1 | 0 | 35.1 | 4849 | 6011 | 4584 | 35.0 | 4844 | 6013 | 4589 | -0.1 | 3 | 3 | 17 | 4863 | 6036 | 4608 | 0.0 | 19.7 | 8.9 | 71.4 | 156 | 61 | 2.6 | 501 | 0.020 | 0.7 | 2 | 7.1 | 0.0 | 0.00 | 11.6 | 0.8 | 1.7 | 2.4 |
39.84 | 5.60 | 51.45 | 63.44 | 10.50 | 19.17 | 45.06 | 100.00 | 16.83 | 12.53 | 2.27 | 142.90 | 19.64 | 11.4 | 21.1 | 1.55 | 935 | 923.0 | 204.8 | 178 | 178 | 43.26 | 8.7 | 8.6 | 0 | 35.6 | 4876 | 6040 | 4598 | 35.2 | 4880 | 6037 | 4611 | -0.4 | 4 | 4 | 18 | 4873 | 6043 | 4601 | 0.0 | 19.8 | 8.7 | 71.5 | 157 | 61 | 2.6 | 497 | 0.020 | 0.5 | 3 | 6.9 | 0.0 | 0.00 | 11.9 | 0.5 | 1.9 | 2.2 |
40.59 | 5.43 | 49.10 | 62.08 | 10.11 | 19.09 | 44.45 | 100.00 | 16.54 | 12.21 | 2.11 | 141.49 | 19.46 | 12.0 | 21.2 | 1.55 | 935 | 1003.2 | 206.8 | 177 | 177 | 45.63 | 9.0 | 9.6 | 0 | 34.7 | 4872 | 6060 | 4633 | 34.1 | 4828 | 6015 | 4592 | -0.6 | 5 | 5 | 19 | 4844 | 6055 | 4617 | 0.0 | 20.0 | 9.4 | 70.6 | 149 | 59 | 2.6 | 486 | 0.020 | 1.1 | 3 | 6.9 | 0.0 | 0.00 | 11.6 | 0.5 | 1.7 | 1.9 |
40.66 | 6.02 | 50.01 | 60.82 | 11.79 | 19.43 | 43.24 | 100.00 | 17.54 | 12.61 | 3.08 | 142.33 | 19.17 | 12.3 | 21.5 | 1.55 | 939 | 995.2 | 205.7 | 178 | 178 | 46.51 | 9.8 | 10.1 | 0 | 33.9 | 4839 | 6053 | 4654 | 33.1 | 4806 | 6022 | 4623 | -0.8 | 6 | 6 | 20 | 4825 | 6053 | 4657 | 0.0 | 20.2 | 10.0 | 69.9 | 146 | 56 | 2.6 | 499 | 0.021 | 0.5 | 2 | 7.0 | 0.0 | 0.00 | 11.8 | 0.5 | 1.8 | 2.1 |
42.58 | 6.03 | 52.58 | 65.05 | 11.45 | 19.11 | 46.06 | 100.00 | 17.23 | 12.84 | 2.67 | 145.08 | 19.74 | 11.3 | 21.2 | 1.55 | 936 | 991.8 | 208.2 | 177 | 178 | 45.85 | 8.8 | 9.7 | 0 | 34.9 | 4882 | 6056 | 4600 | 33.9 | 4814 | 6004 | 4580 | -1.0 | 7 | 1 | 1 | 4820 | 6022 | 4585 | 0.0 | 19.8 | 9.6 | 70.6 | 159 | 64 | 2.5 | 489 | 0.019 | 0.9 | 2 | 7.1 | 0.1 | 0.20 | 11.5 | 0.5 | 1.9 | 2.2 |
43.42 | 6.08 | 52.89 | 66.72 | 11.23 | 19.06 | 47.29 | 100.00 | 17.03 | 12.96 | 2.49 | 147.33 | 20.04 | 11.2 | 20.8 | 1.55 | 935 | 994.7 | 207.3 | 178 | 178 | 46.95 | 8.9 | 9.8 | 0 | 34.3 | 4878 | 6072 | 4614 | 33.2 | 4811 | 6018 | 4567 | -1.1 | 8 | 2 | 2 | 4824 | 6045 | 4578 | 0.0 | 20.0 | 9.7 | 70.3 | 160 | 64 | 2.6 | 481 | 0.019 | 0.7 | 2 | 7.1 | 0.0 | 0.00 | 11.6 | 0.7 | 1.8 | 2.2 |
41.45 | 5.76 | 52.73 | 63.88 | 10.59 | 20.49 | 47.29 | 100.00 | 17.70 | 12.48 | 2.23 | 150.39 | 20.62 | 12.1 | 20.9 | 1.54 | 934 | 996.9 | 207.3 | 177 | 178 | 47.21 | 10.0 | 10.2 | 0 | 33.7 | 4812 | 6032 | 4626 | 33.2 | 4797 | 6019 | 4611 | -0.5 | 9 | 3 | 3 | 4809 | 6057 | 4623 | 0.0 | 20.2 | 10.1 | 69.7 | 151 | 58 | 2.5 | 498 | 0.021 | 1.1 | 3 | 7.1 | 0.0 | 0.00 | 11.5 | 0.6 | 1.9 | 2.2 |
41.31 | 5.79 | 52.70 | 64.33 | 10.70 | 20.09 | 47.21 | 100.00 | 17.54 | 12.55 | 2.27 | 149.52 | 20.48 | 11.9 | 21.2 | 1.55 | 935 | 996.5 | 209.1 | 178 | 178 | 46.23 | 9.3 | 10.0 | 0 | 34.4 | 4859 | 6063 | 4635 | 33.3 | 4804 | 6024 | 4601 | -1.1 | 10 | 4 | 4 | 4820 | 6050 | 4606 | 0.0 | 20.1 | 9.9 | 70.1 | 154 | 60 | 2.5 | 505 | 0.020 | 0.7 | 3 | 7.0 | 0.0 | 0.00 | 11.5 | 0.7 | 1.9 | 2.1 |
42.28 | 6.23 | 52.95 | 66.71 | 12.75 | 16.31 | 45.84 | 100.00 | 16.70 | 12.75 | 2.98 | 140.93 | 19.10 | 11.4 | 21.3 | 1.54 | 939 | 987.3 | 211.4 | 177 | 178 | 45.71 | 8.1 | 9.1 | 0 | 35.0 | 4905 | 6061 | 4595 | 33.8 | 4820 | 5982 | 4529 | -1.2 | 11 | 5 | 5 | 4829 | 6009 | 4534 | 0.0 | 19.5 | 9.1 | 71.4 | 160 | 63 | 2.5 | 507 | 0.020 | 1.0 | 3 | 7.2 | 0.0 | 0.00 | 11.4 | 0.6 | 1.9 | 2.2 |
41.62 | 6.23 | 52.95 | 66.71 | 12.75 | 16.31 | 45.84 | 100.00 | 16.70 | 12.75 | 2.98 | 140.93 | 19.10 | 11.4 | 21.3 | 1.55 | 939 | 981.9 | 205.7 | 178 | 178 | 44.99 | 8.3 | 8.8 | 0 | 34.8 | 4883 | 6030 | 4577 | 34.2 | 4855 | 6024 | 4558 | -0.6 | 12 | 6 | 6 | 4862 | 6035 | 4564 | 0.0 | 19.7 | 8.8 | 71.6 | 160 | 66 | 2.4 | 502 | 0.020 | 0.7 | 2 | 7.2 | 0.1 | 0.10 | 11.4 | 0.7 | 1.9 | 2.0 |
42.73 | 6.23 | 52.95 | 66.71 | 12.75 | 16.31 | 45.84 | 100.00 | 16.70 | 12.75 | 2.98 | 140.93 | 19.10 | 11.4 | 21.4 | 1.54 | 941 | 990.0 | 207.1 | 177 | 178 | 45.62 | 8.2 | 9.4 | 0 | 35.2 | 4903 | 6056 | 4550 | 34.1 | 4805 | 5955 | 4496 | -1.1 | 1 | 1 | 7 | 4832 | 5990 | 4533 | 0.0 | 19.3 | 9.1 | 71.6 | 162 | 65 | 2.5 | 500 | 0.019 | 0.4 | 2 | 7.0 | 0.0 | 0.00 | 11.7 | 0.5 | 2.0 | 2.2 |
41.66 | 6.26 | 55.94 | 69.22 | 12.07 | 18.08 | 48.92 | 100.00 | 17.56 | 13.14 | 2.60 | 148.53 | 20.45 | 12.2 | 21.5 | 1.55 | 939 | 1004.4 | 206.4 | 178 | 178 | 46.67 | 9.1 | 10.1 | 0 | 33.8 | 4853 | 6027 | 4544 | 33.4 | 4777 | 5962 | 4509 | -0.4 | 2 | 2 | 8 | 4856 | 6058 | 4580 | 0.0 | 20.0 | 9.1 | 70.9 | 158 | 64 | 2.5 | 516 | 0.020 | 0.8 | 3 | 7.0 | 0.0 | 0.00 | 11.4 | 0.5 | 1.9 | 2.3 |
40.89 | 6.26 | 55.94 | 69.22 | 12.07 | 18.08 | 48.92 | 100.00 | 17.56 | 13.14 | 2.60 | 148.53 | 20.45 | 12.2 | 21.4 | 1.55 | 936 | 990.8 | 208.2 | 177 | 177 | 45.23 | 8.9 | 8.2 | 0 | 34.4 | 4865 | 6034 | 4562 | 34.4 | 4926 | 6122 | 4643 | 0.0 | 3 | 3 | 9 | 4935 | 6145 | 4651 | 0.0 | 20.7 | 8.1 | 71.2 | 160 | 65 | 2.5 | 490 | 0.019 | 1.0 | 2 | 7.2 | 0.0 | 0.00 | 11.4 | 0.4 | 1.9 | 2.2 |
40.82 | 6.26 | 55.94 | 69.22 | 12.07 | 18.08 | 48.92 | 100.00 | 17.56 | 13.14 | 2.60 | 148.53 | 20.45 | 12.2 | 21.5 | 1.54 | 939 | 999.2 | 206.4 | 178 | 178 | 45.73 | 7.9 | 8.8 | 0 | 34.6 | 4950 | 6143 | 4665 | 33.6 | 4884 | 6084 | 4615 | -1.0 | 4 | 4 | 10 | 4895 | 6120 | 4632 | 0.0 | 20.5 | 8.6 | 70.9 | 158 | 65 | 2.4 | 501 | 0.020 | 0.4 | 3 | 7.2 | 0.0 | 0.00 | 11.6 | 0.6 | 1.8 | 2.1 |
39.77 | 6.36 | 53.18 | 66.57 | 12.07 | 16.22 | 46.51 | 100.00 | 17.19 | 12.97 | 2.80 | 144.38 | 19.51 | 10.8 | 21.2 | 1.55 | 940 | 998.9 | 208.9 | 178 | 178 | 46.36 | 8.2 | 9.2 | 0 | 34.9 | 4912 | 6091 | 4625 | 33.5 | 4842 | 6027 | 4575 | -1.4 | 1 | 1 | 12 | 4846 | 6040 | 4574 | 0.0 | 19.8 | 9.1 | 71.1 | 158 | 65 | 2.5 | 499 | 0.020 | 0.6 | 2 | 7.2 | 0.0 | 0.00 | 11.9 | 0.4 | 2.0 | 2.3 |
38.05 | 6.72 | 53.85 | 67.10 | 12.50 | 16.15 | 46.87 | 100.00 | 17.61 | 13.15 | 3.02 | 145.80 | 19.56 | 10.9 | NA | 1.55 | 934 | 1000.1 | 208.7 | 177 | 178 | 47.06 | 8.7 | 9.4 | 0 | 34.5 | 4875 | 6056 | 4596 | 33.4 | 4821 | 6003 | 4550 | -1.1 | 2 | 2 | 13 | 4816 | 6037 | 4568 | 0.0 | 19.8 | 9.6 | 70.6 | 152 | 62 | 2.5 | 495 | 0.020 | 1.3 | 2 | 7.3 | 0.0 | 0.00 | 11.8 | 0.4 | 1.9 | 2.2 |
37.86 | 5.18 | 48.60 | 61.04 | 9.38 | 16.30 | 43.78 | 100.00 | 15.88 | 12.16 | 1.87 | 138.14 | 19.20 | 11.3 | 21.4 | 1.54 | 936 | 1001.2 | 206.2 | 178 | 177 | 46.95 | 9.3 | 9.6 | 0 | 34.3 | 4830 | 6001 | 4581 | 33.6 | 4809 | 5977 | 4569 | -0.7 | 3 | 3 | 14 | 4817 | 6012 | 4584 | 0.0 | 19.6 | 9.6 | 70.8 | 150 | 62 | 2.4 | 502 | 0.021 | 1.1 | 3 | 7.2 | 0.0 | 0.00 | 11.8 | 0.4 | 1.9 | 2.4 |
38.03 | 5.18 | 48.60 | 61.04 | 9.38 | 16.30 | 43.78 | 100.00 | 15.88 | 12.16 | 1.87 | 138.14 | 19.20 | 11.3 | 21.3 | 1.55 | 936 | 1011.9 | 207.5 | 177 | 177 | 47.47 | 8.5 | 10.0 | 0 | 34.4 | 4893 | 6061 | 4635 | 32.6 | 4780 | 5952 | 4559 | -1.8 | 4 | 4 | 15 | 4785 | 5973 | 4557 | 0.0 | 19.3 | 10.0 | 70.6 | 149 | 60 | 2.5 | 500 | 0.021 | 1.1 | 2 | 7.2 | 0.0 | 0.00 | 11.7 | 0.5 | 1.8 | 2.4 |
37.39 | 5.18 | 48.60 | 61.04 | 9.38 | 16.30 | 43.78 | 100.00 | 15.88 | 12.16 | 1.87 | 138.14 | 19.20 | 11.3 | 21.3 | 1.55 | 936 | 998.6 | 206.2 | 178 | 178 | 46.06 | 9.3 | 9.3 | 0 | 34.4 | 4833 | 6004 | 4589 | 34.0 | 4831 | 6005 | 4601 | -0.4 | 5 | 5 | 16 | 4843 | 6014 | 4599 | 0.0 | 19.6 | 9.2 | 71.2 | 151 | 61 | 2.5 | 495 | 0.020 | 1.1 | 3 | 7.3 | 0.1 | 0.10 | 11.7 | 0.5 | 1.9 | 2.4 |
39.16 | 6.29 | 50.64 | 63.92 | 11.46 | 13.24 | 43.50 | 100.00 | 16.58 | 12.88 | 2.90 | 136.35 | 18.35 | 12.2 | 21.6 | 1.55 | 940 | 1002.1 | 207.5 | 178 | 178 | 46.58 | 9.7 | 9.3 | 0 | 33.4 | 4792 | 5964 | 4540 | 33.8 | 4822 | 5985 | 4562 | 0.4 | 7 | 1 | 1 | 4841 | 5996 | 4569 | 0.0 | 19.4 | 9.1 | 71.5 | 153 | 64 | 2.4 | 502 | 0.021 | 1.1 | 3 | 7.3 | 0.0 | 0.00 | 11.8 | 0.5 | 1.8 | 2.1 |
37.64 | 6.10 | 50.60 | 63.37 | 10.90 | 19.05 | 44.18 | 100.00 | 17.37 | 13.10 | 2.67 | 146.66 | 19.73 | 10.0 | NA | 1.55 | 935 | 986.1 | 205.2 | 177 | 178 | 46.06 | 9.5 | 9.5 | 0 | 34.7 | 4823 | 6003 | 4617 | 34.4 | 4831 | 6015 | 4609 | -0.3 | 8 | 2 | 2 | 4822 | 6018 | 4606 | 0.0 | 19.8 | 9.6 | 70.6 | 152 | 60 | 2.6 | 497 | 0.020 | 1.1 | 3 | 7.2 | 0.0 | 0.00 | 11.7 | 0.7 | 1.9 | 2.3 |
39.77 | 5.30 | 46.87 | 57.56 | 9.93 | 18.07 | 40.60 | 100.00 | 16.34 | 12.12 | 2.43 | 135.81 | 18.57 | 13.1 | 21.3 | 1.55 | 936 | 983.6 | 207.5 | 178 | 178 | 45.30 | 10.4 | 9.8 | 0 | 33.7 | 4772 | 5962 | 4606 | 34.4 | 4812 | 5995 | 4621 | 0.7 | 9 | 3 | 3 | 4806 | 6000 | 4612 | 0.0 | 19.7 | 9.9 | 70.4 | 151 | 59 | 2.6 | 509 | 0.021 | 1.3 | 3 | 7.3 | 0.0 | 0.00 | 11.8 | 0.4 | 1.8 | 2.4 |
38.66 | 5.83 | 50.17 | 63.11 | 10.32 | 17.24 | 44.31 | 100.00 | 16.86 | 12.88 | 2.38 | 143.75 | 19.59 | 10.2 | 21.2 | 1.54 | 934 | 989.8 | 206.8 | 177 | 178 | 46.53 | 8.6 | 9.3 | 0 | 34.9 | 4883 | 6042 | 4623 | 33.9 | 4826 | 5997 | 4590 | -1.0 | 10 | 4 | 4 | 4840 | 6001 | 4588 | 0.0 | 19.6 | 9.2 | 71.3 | 152 | 60 | 2.5 | 494 | 0.020 | 1.0 | 3 | 7.2 | 0.1 | 0.10 | 11.7 | 0.5 | 1.8 | 2.3 |
40.31 | 6.25 | 54.57 | 67.56 | 12.10 | 17.66 | 47.80 | 100.00 | 17.32 | 12.89 | 2.73 | 145.57 | 19.76 | 12.4 | 21.2 | 1.55 | 935 | 1008.1 | 206.6 | 178 | 178 | 46.12 | 8.7 | 9.5 | 0 | 34.4 | 4877 | 6059 | 4604 | 33.4 | 4821 | 6008 | 4568 | -1.0 | 11 | 5 | 5 | 4829 | 6026 | 4572 | 0.0 | 19.8 | 9.4 | 70.7 | 156 | 61 | 2.5 | 497 | 0.020 | 1.0 | 3 | 7.2 | 0.0 | 0.00 | 11.7 | 0.6 | 1.8 | 2.3 |
40.54 | 6.25 | 54.57 | 67.56 | 12.10 | 17.66 | 47.80 | 100.00 | 17.32 | 12.89 | 2.73 | 145.57 | 19.76 | 12.4 | 21.4 | 1.54 | 934 | 1000.6 | 207.3 | 177 | 178 | 46.39 | 8.9 | 9.6 | 0 | 34.3 | 4864 | 6044 | 4589 | 33.4 | 4820 | 6008 | 4550 | -0.9 | 12 | 6 | 6 | 4823 | 6022 | 4558 | 0.0 | 19.7 | 9.5 | 70.8 | 156 | 61 | 2.5 | 509 | 0.020 | 1.0 | 3 | 7.2 | 0.0 | 0.00 | 11.7 | 0.5 | 1.8 | 2.3 |
40.64 | 6.25 | 54.57 | 67.56 | 12.10 | 17.66 | 47.80 | 100.00 | 17.32 | 12.89 | 2.73 | 145.57 | 19.76 | 12.4 | 21.4 | 1.55 | 939 | 1011.6 | 206.8 | 178 | 178 | 46.50 | 9.0 | 10.0 | 0 | 33.9 | 4858 | 6035 | 4577 | 33.1 | 4790 | 5980 | 4531 | -0.8 | 1 | 1 | 7 | 4802 | 5993 | 4533 | 0.0 | 19.5 | 9.8 | 70.7 | 156 | 64 | 2.4 | 493 | 0.020 | 1.1 | 2 | 7.3 | 0.0 | 0.00 | 11.8 | 0.5 | 1.9 | 2.3 |
38.60 | 6.00 | 53.29 | 65.50 | 11.71 | 18.80 | 46.34 | 100.00 | 17.32 | 12.75 | 2.63 | 145.37 | 19.75 | 12.7 | 21.4 | 1.55 | 937 | 1005.1 | 208.9 | 177 | 178 | 44.78 | 9.3 | 9.7 | 0 | 34.2 | 4846 | 6027 | 4608 | 33.7 | 4612 | 5999 | 4581 | -0.5 | 2 | 2 | 8 | 4851 | 6049 | 4596 | 0.0 | 20.0 | 9.3 | 70.7 | 153 | 62 | 2.5 | 485 | 0.020 | 1.8 | 2 | 7.3 | 0.1 | 0.10 | 11.5 | 0.5 | 1.9 | 2.2 |
38.13 | 6.00 | 53.29 | 65.50 | 11.71 | 18.80 | 46.34 | 100.00 | 17.32 | 12.75 | 2.63 | 145.37 | 19.75 | 12.7 | 21.6 | 1.54 | 938 | 1014.4 | 206.4 | 178 | 178 | 44.52 | 9.3 | 9.4 | 0 | 34.2 | 4847 | 6029 | 4610 | 33.7 | 4831 | 6012 | 4605 | -0.5 | 3 | 3 | 9 | 4844 | 6035 | 4588 | 0.0 | 19.9 | 9.4 | 70.7 | 152 | 63 | 2.4 | 517 | 0.021 | 1.0 | 3 | 7.3 | 0.0 | 0.00 | 11.8 | 0.5 | 1.9 | 1.8 |
40.10 | 6.00 | 53.29 | 65.50 | 11.71 | 18.80 | 46.34 | 100.00 | 17.32 | 12.75 | 2.63 | 145.37 | 19.75 | 12.7 | 21.6 | 1.55 | 941 | 1012.5 | 206.6 | 177 | 177 | 46.46 | 9.1 | 9.6 | 0 | 34.4 | 4858 | 6046 | 4619 | 33.5 | 4813 | 6004 | 4590 | -0.9 | 4 | 1 | 10 | 4827 | 6011 | 4581 | 0.0 | 19.7 | 9.6 | 70.7 | 153 | 61 | 2.5 | 472 | 0.019 | 2.0 | 2 | 7.1 | 0.0 | 0.00 | 11.7 | 0.5 | 1.8 | 1.9 |
39.14 | 5.49 | 48.03 | 58.99 | 10.24 | 18.30 | 41.50 | 100.00 | 16.61 | 12.34 | 2.55 | 137.49 | 18.77 | 13.0 | 21.4 | 1.54 | 939 | 998.5 | 209.8 | 177 | 178 | 45.23 | 9.9 | 10.1 | 0 | 34.2 | 4802 | 5990 | 4620 | 34.0 | 4786 | 5983 | 4614 | -0.2 | 6 | 3 | 12 | 4783 | 5983 | 4597 | 0.0 | 19.5 | 10.2 | 70.3 | 149 | 59 | 2.5 | 490 | 0.021 | 0.7 | 2 | 7.2 | 0.0 | 0.00 | 11.9 | 0.6 | 1.8 | 2.1 |
38.63 | 5.30 | 46.87 | 57.56 | 9.93 | 18.07 | 40.60 | 100.00 | 16.34 | 12.12 | 2.43 | 135.81 | 18.57 | 13.3 | 21.4 | 1.54 | 940 | 1012.2 | 209.4 | 178 | 178 | 46.74 | 9.4 | 10.6 | 0 | 34.0 | 4858 | 6067 | 4677 | 32.8 | 4768 | 5964 | 4596 | -1.2 | 7 | 4 | 13 | 4776 | 5995 | 4607 | 0.0 | 19.7 | 10.5 | 69.8 | 143 | 56 | 2.5 | 496 | 0.022 | 1.0 | 3 | 7.1 | 0.1 | 0.10 | 11.9 | 0.4 | 1.7 | 1.8 |
41.43 | 5.54 | 52.48 | 64.98 | 10.30 | 18.24 | 45.86 | 100.00 | 17.07 | 12.90 | 2.18 | 145.88 | 20.08 | 13.4 | 21.4 | 1.54 | 939 | 1007.6 | 208.9 | 177 | 177 | 45.54 | 9.0 | 9.4 | 0 | 34.4 | 4862 | 6036 | 4601 | 33.5 | 4832 | 6003 | 4578 | -0.9 | 8 | 5 | 14 | 4841 | 6023 | 4581 | 0.0 | 19.8 | 9.3 | 70.9 | 151 | 60 | 2.5 | 470 | 0.019 | 1.3 | 2 | 7.2 | 0.0 | 0.00 | 12.0 | 0.5 | 1.8 | 1.9 |
40.96 | 5.54 | 52.29 | 64.61 | 10.32 | 18.52 | 45.76 | 100.00 | 17.05 | 12.82 | 2.19 | 145.59 | 20.02 | 13.3 | 21.1 | 1.54 | 936 | 1022.3 | 206.4 | 178 | 178 | 46.26 | 9.3 | 10.1 | 0 | 34.2 | 4843 | 6021 | 4597 | 33.2 | 4780 | 5971 | 4553 | -1.0 | 9 | 6 | 15 | 4781 | 5983 | 4551 | 0.0 | 19.5 | 10.1 | 70.4 | 148 | 59 | 2.5 | 507 | 0.021 | 0.6 | 3 | 7.2 | 0.0 | 0.00 | 11.7 | 0.6 | 1.7 | 2.3 |
37.89 | 6.25 | 52.68 | 65.12 | 11.64 | 18.11 | 45.42 | 100.00 | 17.51 | 13.01 | 2.88 | 145.07 | 19.56 | 12.7 | 21.5 | 1.60 | 946 | 1005.0 | 210.5 | 178 | 178 | 45.76 | 8.3 | 9.8 | 0 | 34.6 | 4920 | 6093 | 4648 | 33.3 | 4797 | 5977 | 4570 | -1.3 | 1 | 1 | 16 | 4812 | 6008 | 4567 | 0.0 | 19.7 | 9.7 | 70.6 | 154 | 63 | 2.5 | 500 | 0.020 | 0.8 | 3 | 7.4 | 0.0 | 0.00 | 11.6 | 0.7 | 1.9 | 1.9 |
37.42 | 6.25 | 52.68 | 65.12 | 11.64 | 18.11 | 45.42 | 100.00 | 17.51 | 13.01 | 2.88 | 145.07 | 19.56 | 12.7 | 21.7 | 1.59 | 939 | 998.0 | 205.5 | 177 | 177 | 44.90 | 9.5 | 9.5 | 0 | 34.3 | 4831 | 6017 | 4591 | 34.2 | 4821 | 6009 | 4586 | -0.1 | 2 | 2 | 17 | 4864 | 6056 | 4600 | 0.0 | 20.0 | 9.0 | 71.0 | 155 | 63 | 2.4 | 493 | 0.020 | 1.8 | 2 | 7.3 | 0.0 | 0.00 | 11.3 | 0.5 | 1.9 | 2.1 |
37.51 | 6.25 | 52.68 | 65.12 | 11.64 | 18.11 | 45.42 | 100.00 | 17.51 | 13.01 | 2.88 | 145.07 | 19.56 | 12.7 | 21.3 | 1.60 | 934 | 997.1 | 206.2 | 178 | 178 | 45.30 | 9.5 | 9.4 | 0 | 34.4 | 4824 | 6003 | 4586 | 34.3 | 4832 | 6012 | 4589 | -0.1 | 3 | 3 | 18 | 4839 | 6019 | 4585 | 0.0 | 19.7 | 9.3 | 70.9 | 154 | 61 | 2.5 | 501 | 0.020 | 0.7 | 3 | 7.3 | 0.1 | 0.10 | 10.7 | 0.7 | 1.8 | 2.1 |
37.92 | 6.22 | 52.76 | 65.13 | 11.50 | 18.55 | 45.48 | 100.00 | 17.57 | 13.08 | 2.88 | 145.10 | 19.64 | 12.7 | 21.2 | 1.60 | 936 | 1006.1 | 207.3 | 177 | 177 | 45.28 | 8.7 | 9.5 | 0 | 34.7 | 4887 | 6076 | 4637 | 33.9 | 4829 | 6012 | 4599 | -0.8 | 4 | 4 | 19 | 4844 | 6025 | 4594 | 0.0 | 19.8 | 9.3 | 70.9 | 152 | 61 | 2.5 | 470 | 0.019 | 1.7 | 2 | 7.3 | 0.0 | 0.00 | 11.3 | 0.5 | 1.8 | 1.8 |
36.77 | 5.90 | 51.37 | 63.65 | 10.76 | 19.90 | 45.07 | 100.00 | 17.06 | 12.78 | 2.46 | 144.98 | 19.73 | 12.4 | 21.3 | 1.54 | 935 | 990.5 | 205.7 | 177 | 177 | 44.38 | 9.1 | 9.1 | 0 | 35.0 | 4850 | 6015 | 4611 | 34.9 | 4856 | 6027 | 4618 | -0.1 | 7 | 3 | 3 | 4852 | 6031 | 4606 | 0.0 | 19.8 | 9.1 | 71.0 | 152 | 65 | 2.3 | 505 | 0.021 | 1.5 | 3 | 7.3 | 0.0 | 0.00 | 11.0 | 0.4 | 1.9 | 2.3 |
37.14 | 5.90 | 51.37 | 63.65 | 10.76 | 19.90 | 45.07 | 100.00 | 17.06 | 12.78 | 2.46 | 144.98 | 19.73 | 12.4 | 21.0 | 1.55 | 934 | 1002.4 | 206.2 | 178 | 178 | 44.25 | 9.1 | 9.3 | 0 | 34.9 | 4854 | 6014 | 4617 | 34.6 | 4834 | 6009 | 4601 | -0.3 | 8 | 4 | 4 | 4839 | 6015 | 4594 | 0.0 | 19.7 | 9.3 | 71.0 | 154 | 64 | 2.4 | 517 | 0.021 | 0.4 | 3 | 7.3 | 0.1 | 0.20 | 10.9 | 0.5 | 1.9 | 2.3 |
37.73 | 5.90 | 51.37 | 63.65 | 10.76 | 19.90 | 45.07 | 100.00 | 17.06 | 12.78 | 2.46 | 144.98 | 19.73 | 12.4 | 21.2 | 1.55 | 940 | 984.3 | 204.3 | 177 | 177 | 44.38 | 9.0 | 9.7 | 0 | 35.3 | 4861 | 6025 | 4611 | 34.8 | 4805 | 5975 | 4570 | -0.5 | 9 | 5 | 5 | 4862 | 6060 | 4609 | 0.0 | 20.1 | 9.1 | 70.8 | 156 | 63 | 2.5 | 502 | 0.020 | 1.7 | 3 | 7.3 | 0.0 | 0.00 | 12.0 | 0.5 | 1.8 | 2.3 |
38.03 | 5.70 | 52.77 | 66.25 | 10.50 | 15.18 | 47.07 | 100.00 | 16.67 | 12.84 | 2.17 | 144.39 | 19.93 | 12.1 | 21.4 | 1.55 | 938 | 1005.3 | 207.1 | 178 | 178 | 44.86 | 8.5 | 8.8 | 0 | 34.8 | 4868 | 6012 | 4561 | 34.5 | 4844 | 5982 | 4542 | -0.3 | 10 | 1 | 6 | 4852 | 6009 | 4556 | 0.0 | 19.4 | 8.8 | 71.8 | 156 | 64 | 2.5 | 502 | 0.020 | 0.9 | 3 | 7.3 | 0.0 | 0.00 | 12.1 | 0.3 | 1.8 | 2.3 |
37.86 | 5.70 | 52.77 | 66.25 | 10.50 | 15.18 | 47.07 | 100.00 | 16.67 | 12.84 | 2.17 | 144.39 | 19.93 | 12.1 | 21.3 | 1.55 | 936 | 1003.8 | 206.2 | 177 | 177 | 44.09 | 7.7 | 8.1 | 0 | 35.3 | 4924 | 6050 | 4597 | 34.8 | 4897 | 6022 | 4586 | -0.5 | 11 | 2 | 7 | 4906 | 6040 | 4586 | 0.0 | 19.7 | 8.0 | 72.3 | 158 | 65 | 2.4 | 481 | 0.019 | 1.3 | 2 | 7.2 | 0.0 | 0.00 | 12.1 | 0.7 | 1.8 | 2.1 |
38.31 | 5.70 | 52.77 | 66.25 | 10.50 | 15.18 | 47.07 | 100.00 | 16.67 | 12.84 | 2.17 | 144.39 | 19.93 | 12.1 | 21.5 | 1.54 | 934 | 1009.5 | 205.7 | 178 | 178 | 44.62 | 7.8 | 8.6 | 0 | 35.2 | 4925 | 6058 | 4601 | 34.6 | 4863 | 6016 | 4594 | -0.6 | 12 | 3 | 8 | 4906 | 6047 | 4585 | 0.0 | 19.7 | 8.1 | 72.2 | 158 | 63 | 2.5 | 506 | 0.020 | 0.9 | 3 | 7.3 | 0.0 | 0.00 | 12.0 | 0.3 | 1.8 | 2.3 |
38.66 | 5.97 | 53.13 | 66.58 | 11.00 | 16.55 | 46.77 | 100.00 | 16.97 | 13.00 | 2.40 | 145.03 | 19.88 | 12.1 | 21.1 | 1.54 | 938 | 1015.1 | 207.5 | 178 | 178 | 45.51 | 8.8 | 9.2 | 0 | 34.5 | 4856 | 6022 | 4579 | 34.1 | 4820 | 5989 | 4544 | -0.4 | 2 | 1 | 10 | 4846 | 6015 | 4541 | 0.0 | 19.6 | 9.0 | 71.4 | 158 | 64 | 2.5 | 520 | 0.021 | 0.5 | 3 | 7.4 | 0.0 | 0.00 | 11.7 | 0.3 | 1.9 | 1.8 |
38.65 | 6.39 | 53.72 | 67.13 | 11.75 | 18.61 | 46.32 | 100.00 | 17.44 | 13.25 | 2.75 | 145.96 | 19.80 | 12.4 | 21.0 | 1.55 | 936 | 1020.8 | 206.6 | 177 | 177 | 46.22 | 8.8 | 9.2 | 0 | 34.7 | 4866 | 6040 | 4571 | 34.0 | 4844 | 6028 | 4553 | -0.7 | 9 | 5 | 17 | 4855 | 6055 | 4581 | 0.0 | 19.9 | 9.1 | 71.0 | 158 | 65 | 2.4 | 482 | 0.019 | 1.6 | 3 | 7.3 | 0.0 | 0.00 | 11.5 | 0.6 | 1.8 | 2.2 |
38.67 | 5.36 | 53.39 | 65.30 | 12.05 | 18.57 | 46.91 | 100.00 | 16.42 | 12.32 | 2.31 | 144.29 | 19.71 | 11.5 | 21.2 | 1.55 | 939 | 1014.5 | 206.6 | 177 | 177 | 45.87 | 9.3 | 9.9 | 0 | 34.4 | 4833 | 6020 | 4569 | 34.1 | 4789 | 5973 | 4532 | -0.3 | 1 | 1 | 19 | 4809 | 5990 | 4536 | 0.0 | 19.5 | 9.6 | 70.9 | 155 | 61 | 2.5 | 488 | 0.020 | 1.0 | 3 | 7.3 | 0.1 | 0.10 | 11.8 | 0.4 | 1.8 | 2.4 |
38.42 | 5.27 | 52.45 | 64.09 | 10.84 | 18.10 | 46.02 | 100.00 | 16.35 | 12.22 | 1.77 | 143.59 | 19.66 | 11.4 | 21.2 | 1.55 | 933 | 1029.0 | 205.9 | 178 | 177 | 47.70 | 10.5 | 10.3 | 0 | 33.5 | 4750 | 5952 | 4516 | 33.5 | 4765 | 5956 | 4520 | 0.0 | 2 | 2 | 20 | 4790 | 5993 | 4541 | 0.0 | 19.5 | 10.1 | 70.4 | 149 | 59 | 2.5 | 512 | 0.021 | 1.8 | 3 | 7.3 | 0.0 | 0.00 | 11.6 | 0.4 | 1.8 | 2.3 |
39.15 | 4.58 | 49.56 | 61.08 | 9.84 | 18.68 | 43.53 | 100.00 | 16.16 | 12.14 | 1.99 | 139.64 | 18.80 | 11.6 | 21.2 | 1.55 | 933 | 1008.0 | 205.5 | 177 | 178 | 45.51 | 9.3 | 10.1 | 0 | 34.4 | 4795 | 5982 | 4600 | 34.4 | 4785 | 5984 | 4587 | 0.0 | 3 | 3 | 21 | 4815 | 5991 | 4597 | 0.0 | 19.6 | 9.7 | 70.7 | 151 | 61 | 2.5 | 511 | 0.021 | 1.1 | 3 | 7.2 | 0.0 | 0.00 | 11.4 | 0.8 | 1.7 | 2.2 |
38.82 | 4.58 | 49.56 | 61.08 | 9.84 | 18.68 | 43.53 | 100.00 | 16.16 | 12.14 | 1.99 | 139.64 | 18.80 | 11.6 | 21.2 | 1.55 | 934 | 999.9 | 208.2 | 178 | 178 | 45.13 | 9.4 | 9.6 | 0 | 34.8 | 4832 | 6024 | 4625 | 34.7 | 4816 | 6001 | 4601 | -0.1 | 4 | 4 | 22 | 4837 | 6024 | 4608 | 0.0 | 19.8 | 9.4 | 70.8 | 151 | 60 | 2.5 | 507 | 0.021 | 1.9 | 3 | 7.3 | 0.0 | 0.00 | 11.4 | 0.7 | 1.8 | 2.4 |
39.08 | 4.58 | 49.56 | 61.08 | 9.84 | 18.68 | 43.53 | 100.00 | 16.16 | 12.14 | 1.99 | 139.64 | 18.80 | 11.6 | 20.0 | 1.55 | 928 | 1003.2 | 206.6 | 177 | 177 | 45.73 | 9.7 | 10.0 | 0 | 34.4 | 4815 | 6010 | 4618 | 34.4 | 4786 | 5986 | 4590 | 0.0 | 5 | 5 | 23 | 4815 | 6011 | 4594 | 0.0 | 19.7 | 9.7 | 70.5 | 150 | 60 | 2.5 | 518 | 0.022 | 1.6 | 3 | 7.3 | 0.0 | 0.00 | 11.3 | 0.5 | 1.7 | 2.1 |
38.90 | 7.70 | 62.92 | 75.91 | 13.49 | 16.10 | 55.29 | 100.00 | 18.28 | 13.83 | 3.20 | 149.91 | 21.23 | 11.3 | 20.8 | 1.55 | 934 | 1014.6 | 208.7 | 177 | 177 | 46.04 | 8.2 | 8.2 | 0 | 34.8 | 4882 | 6022 | 4606 | 34.8 | 4884 | 6026 | 4613 | 0.0 | 7 | 1 | 1 | 4903 | 6034 | 4606 | 0.0 | 19.5 | 8.0 | 72.5 | 158 | 66 | 2.4 | 475 | 0.019 | 1.6 | 3 | 0.0 | 0.0 | 0.00 | 11.8 | 0.2 | 1.8 | 2.2 |
39.62 | 6.39 | 59.10 | 71.04 | 11.52 | 21.82 | 53.53 | 100.00 | 17.93 | 12.92 | 2.38 | 155.77 | 20.76 | 12.5 | 19.9 | 1.55 | 933 | 1005.1 | 205.2 | 178 | 177 | 45.31 | 8.8 | 9.1 | 0 | 34.9 | 4878 | 6058 | 4641 | 34.6 | 4853 | 6047 | 4630 | -0.3 | 8 | 2 | 2 | 4872 | 6058 | 4629 | 0.0 | 20.1 | 8.9 | 71.0 | 160 | 66 | 2.4 | 496 | 0.019 | 1.4 | 3 | 0.0 | 0.0 | 0.00 | 11.6 | 0.3 | 1.8 | 2.5 |
39.77 | 6.63 | 59.81 | 71.94 | 11.89 | 20.76 | 53.86 | 100.00 | 17.99 | 13.09 | 2.53 | 154.68 | 20.85 | 14.1 | 20.0 | 1.54 | 936 | 1029.7 | 206.8 | 177 | 178 | 44.77 | 9.0 | 9.4 | 0 | 34.7 | 4860 | 6041 | 4617 | 34.0 | 4822 | 6000 | 4588 | -0.7 | 9 | 3 | 3 | 4832 | 6013 | 4585 | 0.0 | 19.7 | 9.4 | 71.0 | 160 | 63 | 2.5 | 496 | 0.019 | 0.6 | 3 | 0.0 | 0.0 | 0.00 | 11.7 | 0.5 | 1.8 | 2.2 |
39.66 | 6.71 | 56.32 | 66.19 | 12.35 | 20.02 | 50.26 | 100.00 | 17.54 | 12.50 | 2.82 | 143.45 | 20.32 | 12.8 | 21.5 | 1.54 | 935 | 1027.0 | 206.2 | 178 | 177 | 46.78 | 9.6 | 9.6 | 0 | 33.9 | 4829 | 6026 | 4621 | 33.5 | 4815 | 6011 | 4612 | -0.4 | 2 | 2 | 8 | NA | NA | NA | NA | NA | NA | NA | 156 | NA | NA | NA | NA | 2.3 | 0 | 0.0 | 0.0 | 0.00 | 0.0 | 0.6 | 0.0 | 0.0 |
39.68 | 6.87 | 56.74 | 66.61 | 12.55 | 20.18 | 50.80 | 100.00 | 17.48 | 12.41 | 2.82 | 143.10 | 20.24 | 12.8 | 21.5 | 1.56 | 933 | 1032.0 | 206.6 | 177 | 178 | 46.51 | 9.5 | 9.9 | 0 | 34.0 | 4833 | 6029 | 4608 | 33.5 | 4807 | 6001 | 4584 | -0.5 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 158 | NA | NA | NA | NA | 1.0 | 0 | 0.0 | 0.0 | 0.00 | 0.0 | 0.6 | 0.0 | 0.0 |
42.23 | 7.50 | 58.41 | 68.30 | 13.33 | 20.81 | 52.96 | 100.00 | 17.23 | 12.04 | 2.83 | 141.72 | 19.92 | 13.0 | 20.4 | 1.55 | 930 | 1040.0 | 208.7 | 178 | 177 | 48.05 | 10.1 | 10.4 | 0 | 33.1 | 4795 | 6000 | 4557 | 32.8 | 4764 | 5977 | 4538 | -0.3 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 167 | NA | NA | NA | NA | 1.3 | 0 | 0.0 | 0.0 | 0.00 | 0.0 | 0.6 | 0.0 | 0.0 |
38.48 | 7.53 | 58.36 | 69.25 | 14.35 | 20.57 | 51.31 | 100.00 | 17.87 | 12.77 | 3.55 | 145.56 | 20.04 | 14.1 | 21.6 | 1.55 | 935 | 1044.8 | 208.0 | 177 | 177 | 48.11 | 10.2 | 10.3 | 0 | 32.9 | 4793 | 6029 | 4600 | 32.4 | 4787 | 6030 | 4592 | -0.5 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 156 | NA | NA | NA | NA | 2.3 | 0 | 0.0 | 0.0 | 0.00 | 0.0 | 0.5 | 0.0 | 0.0 |
39.49 | 7.53 | 58.36 | 69.25 | 14.35 | 20.57 | 51.31 | 100.00 | 17.87 | 12.77 | 3.55 | 145.56 | 20.04 | 14.1 | 20.8 | 1.55 | 932 | 1053.8 | 207.5 | 178 | 178 | 48.13 | 9.9 | 10.3 | 0 | 32.9 | 4824 | 6068 | 4630 | 32.0 | 4795 | 6050 | 4607 | -0.9 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 160 | NA | NA | NA | NA | 0.9 | 0 | 0.0 | 0.0 | 0.00 | 0.0 | 0.6 | 0.0 | 0.0 |
I have adopted the KNN approach for imputation for the current data set using the knnImputation() fruntion from DMwR package. I am using k=10 as a tuning parameter.
trainingRows <- createDataPartition(ChemicalManProcessTransformed$Yield, times = 1, p = 0.8, list = FALSE)
train_df <- ChemicalManProcessTransformed[trainingRows,]
test_df <- ChemicalManProcessTransformed[-trainingRows,]
df.train.x = train_df[,-1]
df.train.y = train_df[,1]
df.test.x = test_df[,-1]
df.test.y = test_df[,1]
model.eval = function(modelmethod, gridSearch = NULL)
{
Model = train(x = df.train.x, y = df.train.y, method = modelmethod, tuneGrid = gridSearch, preProcess = c('center', 'scale'), trControl = trainControl(method='cv'))
Pred = predict(Model, newdata = df.test.x)
modelperf = postResample(Pred, df.test.y)
print(modelperf)
}
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
## There were missing values in resampled performance measures.
## RMSE Rsquared MAE
## 1.4611357 0.3141973 1.1443696
## RMSE Rsquared MAE
## 1.0303527 0.6667363 0.8019678
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.2714 nan 0.1000 0.2600
## 2 3.0391 nan 0.1000 0.2007
## 3 2.9046 nan 0.1000 0.1124
## 4 2.7613 nan 0.1000 0.1284
## 5 2.6061 nan 0.1000 0.0777
## 6 2.4674 nan 0.1000 0.1171
## 7 2.3621 nan 0.1000 0.0829
## 8 2.2858 nan 0.1000 0.0210
## 9 2.1736 nan 0.1000 0.0807
## 10 2.0996 nan 0.1000 0.0298
## 20 1.5350 nan 0.1000 0.0059
## 40 1.1179 nan 0.1000 0.0026
## 60 0.9187 nan 0.1000 -0.0111
## 80 0.7833 nan 0.1000 -0.0050
## 100 0.6887 nan 0.1000 -0.0086
## 120 0.6056 nan 0.1000 -0.0016
## 140 0.5442 nan 0.1000 -0.0023
## 150 0.5182 nan 0.1000 -0.0058
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.2640 nan 0.1000 0.2494
## 2 2.9500 nan 0.1000 0.2016
## 3 2.6766 nan 0.1000 0.1983
## 4 2.4948 nan 0.1000 0.2129
## 5 2.3253 nan 0.1000 0.1349
## 6 2.1842 nan 0.1000 0.1190
## 7 2.0557 nan 0.1000 0.1022
## 8 1.9285 nan 0.1000 0.0668
## 9 1.8511 nan 0.1000 0.0772
## 10 1.7502 nan 0.1000 0.0720
## 20 1.1695 nan 0.1000 0.0257
## 40 0.7497 nan 0.1000 0.0020
## 60 0.5447 nan 0.1000 0.0016
## 80 0.4151 nan 0.1000 -0.0047
## 100 0.3378 nan 0.1000 -0.0121
## 120 0.2704 nan 0.1000 -0.0043
## 140 0.2175 nan 0.1000 -0.0006
## 150 0.1974 nan 0.1000 -0.0043
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.1776 nan 0.1000 0.3223
## 2 2.9046 nan 0.1000 0.1899
## 3 2.6280 nan 0.1000 0.2469
## 4 2.3972 nan 0.1000 0.1868
## 5 2.2171 nan 0.1000 0.0900
## 6 2.0046 nan 0.1000 0.1277
## 7 1.8569 nan 0.1000 0.0838
## 8 1.7174 nan 0.1000 0.0833
## 9 1.5958 nan 0.1000 0.0531
## 10 1.5075 nan 0.1000 0.0322
## 20 1.0559 nan 0.1000 -0.0010
## 40 0.6456 nan 0.1000 -0.0102
## 60 0.4161 nan 0.1000 -0.0056
## 80 0.2893 nan 0.1000 -0.0055
## 100 0.2170 nan 0.1000 -0.0073
## 120 0.1646 nan 0.1000 -0.0027
## 140 0.1191 nan 0.1000 -0.0012
## 150 0.1048 nan 0.1000 -0.0020
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.2436 nan 0.1000 0.2347
## 2 3.0185 nan 0.1000 0.2274
## 3 2.8717 nan 0.1000 0.1212
## 4 2.7003 nan 0.1000 0.1601
## 5 2.5346 nan 0.1000 0.0857
## 6 2.4247 nan 0.1000 0.0851
## 7 2.3319 nan 0.1000 0.0671
## 8 2.2307 nan 0.1000 0.0531
## 9 2.1355 nan 0.1000 0.0418
## 10 2.0626 nan 0.1000 0.0397
## 20 1.5493 nan 0.1000 0.0118
## 40 1.1377 nan 0.1000 -0.0030
## 60 0.9194 nan 0.1000 -0.0194
## 80 0.7952 nan 0.1000 -0.0026
## 100 0.6842 nan 0.1000 -0.0096
## 120 0.6054 nan 0.1000 -0.0073
## 140 0.5418 nan 0.1000 -0.0104
## 150 0.5191 nan 0.1000 -0.0107
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.2088 nan 0.1000 0.2772
## 2 2.8605 nan 0.1000 0.2361
## 3 2.6061 nan 0.1000 0.1814
## 4 2.4034 nan 0.1000 0.1942
## 5 2.2347 nan 0.1000 0.1048
## 6 2.0781 nan 0.1000 0.0895
## 7 1.9508 nan 0.1000 0.0618
## 8 1.8374 nan 0.1000 0.0906
## 9 1.7334 nan 0.1000 0.0386
## 10 1.6392 nan 0.1000 0.0615
## 20 1.1852 nan 0.1000 0.0092
## 40 0.8107 nan 0.1000 0.0013
## 60 0.5920 nan 0.1000 -0.0119
## 80 0.4799 nan 0.1000 -0.0135
## 100 0.3815 nan 0.1000 -0.0075
## 120 0.3018 nan 0.1000 -0.0039
## 140 0.2563 nan 0.1000 -0.0048
## 150 0.2309 nan 0.1000 -0.0049
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.0966 nan 0.1000 0.3499
## 2 2.7860 nan 0.1000 0.1427
## 3 2.4805 nan 0.1000 0.2125
## 4 2.2444 nan 0.1000 0.1296
## 5 2.0859 nan 0.1000 0.1118
## 6 1.9324 nan 0.1000 0.1068
## 7 1.8099 nan 0.1000 0.0673
## 8 1.6856 nan 0.1000 0.0687
## 9 1.5974 nan 0.1000 0.0598
## 10 1.5288 nan 0.1000 -0.0051
## 20 0.9981 nan 0.1000 -0.0001
## 40 0.6249 nan 0.1000 -0.0044
## 60 0.4078 nan 0.1000 0.0042
## 80 0.2918 nan 0.1000 -0.0068
## 100 0.2099 nan 0.1000 -0.0065
## 120 0.1539 nan 0.1000 -0.0030
## 140 0.1080 nan 0.1000 -0.0018
## 150 0.0938 nan 0.1000 -0.0029
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.3939 nan 0.1000 0.1253
## 2 3.1700 nan 0.1000 0.1702
## 3 2.9609 nan 0.1000 0.2072
## 4 2.7783 nan 0.1000 0.1673
## 5 2.6833 nan 0.1000 0.0924
## 6 2.5641 nan 0.1000 0.1083
## 7 2.4545 nan 0.1000 0.0873
## 8 2.3670 nan 0.1000 0.0796
## 9 2.2802 nan 0.1000 0.0691
## 10 2.1913 nan 0.1000 0.0493
## 20 1.5990 nan 0.1000 0.0013
## 40 1.2301 nan 0.1000 -0.0084
## 60 1.0449 nan 0.1000 -0.0151
## 80 0.9090 nan 0.1000 -0.0153
## 100 0.8147 nan 0.1000 -0.0085
## 120 0.7360 nan 0.1000 -0.0101
## 140 0.6605 nan 0.1000 -0.0045
## 150 0.6270 nan 0.1000 -0.0092
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.3055 nan 0.1000 0.1804
## 2 3.0742 nan 0.1000 0.2153
## 3 2.8397 nan 0.1000 0.0533
## 4 2.6511 nan 0.1000 0.1294
## 5 2.4771 nan 0.1000 0.1577
## 6 2.2919 nan 0.1000 0.1091
## 7 2.1797 nan 0.1000 0.0461
## 8 2.0580 nan 0.1000 0.1385
## 9 1.9522 nan 0.1000 0.0847
## 10 1.8418 nan 0.1000 0.0648
## 20 1.3026 nan 0.1000 -0.0236
## 40 0.8602 nan 0.1000 -0.0040
## 60 0.6338 nan 0.1000 -0.0084
## 80 0.4922 nan 0.1000 -0.0099
## 100 0.3893 nan 0.1000 -0.0139
## 120 0.3174 nan 0.1000 -0.0068
## 140 0.2582 nan 0.1000 -0.0023
## 150 0.2381 nan 0.1000 -0.0043
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.2404 nan 0.1000 0.2683
## 2 2.9219 nan 0.1000 0.1437
## 3 2.7397 nan 0.1000 0.1090
## 4 2.5248 nan 0.1000 0.0975
## 5 2.3412 nan 0.1000 0.1149
## 6 2.1574 nan 0.1000 0.1590
## 7 1.9707 nan 0.1000 0.1109
## 8 1.8578 nan 0.1000 0.0540
## 9 1.7613 nan 0.1000 0.0611
## 10 1.6455 nan 0.1000 0.0827
## 20 1.0948 nan 0.1000 -0.0012
## 40 0.6347 nan 0.1000 0.0029
## 60 0.4237 nan 0.1000 -0.0113
## 80 0.3050 nan 0.1000 -0.0087
## 100 0.2139 nan 0.1000 -0.0018
## 120 0.1605 nan 0.1000 0.0010
## 140 0.1197 nan 0.1000 -0.0017
## 150 0.1059 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.0878 nan 0.1000 0.2573
## 2 2.8732 nan 0.1000 0.1887
## 3 2.6707 nan 0.1000 0.1638
## 4 2.5851 nan 0.1000 0.0182
## 5 2.4274 nan 0.1000 0.0895
## 6 2.3548 nan 0.1000 0.0072
## 7 2.2481 nan 0.1000 0.0206
## 8 2.1504 nan 0.1000 0.0623
## 9 2.0593 nan 0.1000 0.0770
## 10 1.9650 nan 0.1000 0.0811
## 20 1.4702 nan 0.1000 0.0245
## 40 1.0871 nan 0.1000 0.0009
## 60 0.9340 nan 0.1000 -0.0021
## 80 0.8167 nan 0.1000 -0.0108
## 100 0.7337 nan 0.1000 -0.0063
## 120 0.6623 nan 0.1000 -0.0036
## 140 0.5936 nan 0.1000 -0.0101
## 150 0.5762 nan 0.1000 -0.0049
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.0509 nan 0.1000 0.3234
## 2 2.7874 nan 0.1000 0.2373
## 3 2.5478 nan 0.1000 0.2182
## 4 2.3455 nan 0.1000 0.1373
## 5 2.1748 nan 0.1000 0.1387
## 6 2.0200 nan 0.1000 0.1172
## 7 1.9169 nan 0.1000 0.0230
## 8 1.8101 nan 0.1000 0.0518
## 9 1.7317 nan 0.1000 0.0480
## 10 1.6428 nan 0.1000 0.0599
## 20 1.0881 nan 0.1000 -0.0003
## 40 0.7484 nan 0.1000 -0.0047
## 60 0.5815 nan 0.1000 -0.0059
## 80 0.4420 nan 0.1000 -0.0058
## 100 0.3625 nan 0.1000 -0.0054
## 120 0.2957 nan 0.1000 -0.0071
## 140 0.2397 nan 0.1000 -0.0049
## 150 0.2083 nan 0.1000 -0.0029
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.0408 nan 0.1000 0.3250
## 2 2.7687 nan 0.1000 0.1833
## 3 2.5371 nan 0.1000 0.1882
## 4 2.3214 nan 0.1000 0.1997
## 5 2.1220 nan 0.1000 0.1081
## 6 1.9700 nan 0.1000 0.1268
## 7 1.8344 nan 0.1000 0.0943
## 8 1.7308 nan 0.1000 0.0583
## 9 1.6363 nan 0.1000 0.0296
## 10 1.5397 nan 0.1000 0.0426
## 20 1.0378 nan 0.1000 0.0011
## 40 0.6833 nan 0.1000 -0.0176
## 60 0.4891 nan 0.1000 -0.0019
## 80 0.3641 nan 0.1000 -0.0123
## 100 0.2592 nan 0.1000 -0.0027
## 120 0.1951 nan 0.1000 -0.0022
## 140 0.1461 nan 0.1000 -0.0008
## 150 0.1263 nan 0.1000 -0.0069
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.1940 nan 0.1000 0.2493
## 2 2.9186 nan 0.1000 0.2428
## 3 2.6753 nan 0.1000 0.1906
## 4 2.5524 nan 0.1000 0.0765
## 5 2.3872 nan 0.1000 0.1115
## 6 2.2623 nan 0.1000 0.0404
## 7 2.1911 nan 0.1000 0.0270
## 8 2.1130 nan 0.1000 0.0319
## 9 2.0353 nan 0.1000 0.0468
## 10 1.9564 nan 0.1000 0.0438
## 20 1.4756 nan 0.1000 0.0129
## 40 1.1048 nan 0.1000 -0.0105
## 60 0.9318 nan 0.1000 -0.0189
## 80 0.8351 nan 0.1000 -0.0100
## 100 0.7439 nan 0.1000 -0.0077
## 120 0.6668 nan 0.1000 -0.0147
## 140 0.6061 nan 0.1000 -0.0032
## 150 0.5705 nan 0.1000 -0.0020
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.1343 nan 0.1000 0.2460
## 2 2.8287 nan 0.1000 0.2535
## 3 2.5680 nan 0.1000 0.2153
## 4 2.3215 nan 0.1000 0.1847
## 5 2.1597 nan 0.1000 0.1349
## 6 2.0174 nan 0.1000 0.1207
## 7 1.8698 nan 0.1000 0.0996
## 8 1.7463 nan 0.1000 0.0513
## 9 1.7009 nan 0.1000 0.0007
## 10 1.6271 nan 0.1000 0.0404
## 20 1.1406 nan 0.1000 0.0133
## 40 0.7702 nan 0.1000 -0.0187
## 60 0.5810 nan 0.1000 -0.0032
## 80 0.4458 nan 0.1000 -0.0082
## 100 0.3633 nan 0.1000 -0.0115
## 120 0.3089 nan 0.1000 -0.0096
## 140 0.2535 nan 0.1000 -0.0070
## 150 0.2315 nan 0.1000 -0.0024
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.0384 nan 0.1000 0.3325
## 2 2.7061 nan 0.1000 0.3006
## 3 2.5044 nan 0.1000 0.1658
## 4 2.3244 nan 0.1000 0.1285
## 5 2.1416 nan 0.1000 0.1195
## 6 2.0024 nan 0.1000 0.1598
## 7 1.8339 nan 0.1000 0.0876
## 8 1.7053 nan 0.1000 0.1105
## 9 1.6103 nan 0.1000 0.0471
## 10 1.5287 nan 0.1000 -0.0268
## 20 1.0404 nan 0.1000 -0.0426
## 40 0.6340 nan 0.1000 -0.0189
## 60 0.4512 nan 0.1000 -0.0044
## 80 0.3332 nan 0.1000 -0.0063
## 100 0.2487 nan 0.1000 -0.0049
## 120 0.1838 nan 0.1000 -0.0030
## 140 0.1432 nan 0.1000 -0.0031
## 150 0.1233 nan 0.1000 -0.0025
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.2509 nan 0.1000 0.2621
## 2 3.0081 nan 0.1000 0.2323
## 3 2.8358 nan 0.1000 0.1686
## 4 2.7520 nan 0.1000 0.0120
## 5 2.6282 nan 0.1000 0.0378
## 6 2.4659 nan 0.1000 0.1057
## 7 2.3609 nan 0.1000 0.0824
## 8 2.2852 nan 0.1000 0.0529
## 9 2.2123 nan 0.1000 0.0529
## 10 2.0995 nan 0.1000 0.0532
## 20 1.4897 nan 0.1000 -0.0083
## 40 1.1020 nan 0.1000 -0.0057
## 60 0.9000 nan 0.1000 -0.0151
## 80 0.7804 nan 0.1000 -0.0124
## 100 0.6858 nan 0.1000 0.0011
## 120 0.6122 nan 0.1000 -0.0105
## 140 0.5377 nan 0.1000 -0.0057
## 150 0.5098 nan 0.1000 -0.0054
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.1498 nan 0.1000 0.2776
## 2 2.9272 nan 0.1000 0.2039
## 3 2.7146 nan 0.1000 0.1732
## 4 2.5123 nan 0.1000 0.1535
## 5 2.3178 nan 0.1000 0.1668
## 6 2.1497 nan 0.1000 0.1512
## 7 2.0019 nan 0.1000 0.1227
## 8 1.8758 nan 0.1000 0.0542
## 9 1.7723 nan 0.1000 0.0387
## 10 1.6979 nan 0.1000 0.0267
## 20 1.1932 nan 0.1000 0.0044
## 40 0.7772 nan 0.1000 -0.0021
## 60 0.5695 nan 0.1000 -0.0139
## 80 0.4288 nan 0.1000 -0.0098
## 100 0.3375 nan 0.1000 -0.0060
## 120 0.2713 nan 0.1000 -0.0036
## 140 0.2155 nan 0.1000 -0.0031
## 150 0.1909 nan 0.1000 -0.0028
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.1129 nan 0.1000 0.2846
## 2 2.7973 nan 0.1000 0.2776
## 3 2.5571 nan 0.1000 0.1890
## 4 2.3641 nan 0.1000 0.1193
## 5 2.1826 nan 0.1000 0.0451
## 6 2.0042 nan 0.1000 0.0960
## 7 1.8366 nan 0.1000 0.1239
## 8 1.7113 nan 0.1000 0.1130
## 9 1.6044 nan 0.1000 0.0239
## 10 1.5520 nan 0.1000 0.0059
## 20 0.9965 nan 0.1000 -0.0029
## 40 0.5662 nan 0.1000 0.0046
## 60 0.3995 nan 0.1000 -0.0120
## 80 0.2722 nan 0.1000 -0.0105
## 100 0.2056 nan 0.1000 -0.0050
## 120 0.1600 nan 0.1000 -0.0015
## 140 0.1208 nan 0.1000 -0.0035
## 150 0.1039 nan 0.1000 -0.0018
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.9349 nan 0.1000 0.2654
## 2 2.7114 nan 0.1000 0.2007
## 3 2.5311 nan 0.1000 0.1110
## 4 2.4018 nan 0.1000 0.1103
## 5 2.2902 nan 0.1000 0.0765
## 6 2.2135 nan 0.1000 0.0576
## 7 2.1151 nan 0.1000 0.0615
## 8 2.0315 nan 0.1000 0.0663
## 9 1.9599 nan 0.1000 0.0289
## 10 1.8692 nan 0.1000 0.0799
## 20 1.4100 nan 0.1000 0.0112
## 40 1.0863 nan 0.1000 -0.0253
## 60 0.9263 nan 0.1000 -0.0087
## 80 0.8131 nan 0.1000 -0.0089
## 100 0.7059 nan 0.1000 0.0013
## 120 0.6283 nan 0.1000 -0.0084
## 140 0.5577 nan 0.1000 -0.0067
## 150 0.5337 nan 0.1000 -0.0069
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.9651 nan 0.1000 0.2741
## 2 2.6933 nan 0.1000 0.1926
## 3 2.5144 nan 0.1000 0.2230
## 4 2.3121 nan 0.1000 0.1249
## 5 2.1473 nan 0.1000 0.1205
## 6 2.0274 nan 0.1000 0.0380
## 7 1.8837 nan 0.1000 0.0590
## 8 1.7931 nan 0.1000 0.0366
## 9 1.6961 nan 0.1000 0.0720
## 10 1.6016 nan 0.1000 0.0485
## 20 1.1258 nan 0.1000 0.0118
## 40 0.7073 nan 0.1000 -0.0063
## 60 0.5350 nan 0.1000 -0.0018
## 80 0.4347 nan 0.1000 -0.0091
## 100 0.3449 nan 0.1000 -0.0095
## 120 0.2744 nan 0.1000 -0.0051
## 140 0.2285 nan 0.1000 -0.0058
## 150 0.2102 nan 0.1000 -0.0051
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.8870 nan 0.1000 0.2025
## 2 2.6241 nan 0.1000 0.1567
## 3 2.4157 nan 0.1000 0.1677
## 4 2.2322 nan 0.1000 0.1014
## 5 2.0756 nan 0.1000 0.1004
## 6 1.9119 nan 0.1000 0.1376
## 7 1.7844 nan 0.1000 0.0646
## 8 1.6503 nan 0.1000 0.0704
## 9 1.5507 nan 0.1000 0.0498
## 10 1.4522 nan 0.1000 0.0313
## 20 0.9818 nan 0.1000 0.0096
## 40 0.5884 nan 0.1000 -0.0083
## 60 0.3878 nan 0.1000 -0.0063
## 80 0.2858 nan 0.1000 -0.0030
## 100 0.2000 nan 0.1000 -0.0026
## 120 0.1545 nan 0.1000 -0.0024
## 140 0.1104 nan 0.1000 -0.0015
## 150 0.0943 nan 0.1000 -0.0007
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.2447 nan 0.1000 0.2693
## 2 3.0896 nan 0.1000 0.1353
## 3 2.9467 nan 0.1000 0.0891
## 4 2.7734 nan 0.1000 0.1539
## 5 2.6131 nan 0.1000 0.1575
## 6 2.4830 nan 0.1000 0.0810
## 7 2.3808 nan 0.1000 0.0524
## 8 2.3316 nan 0.1000 0.0059
## 9 2.2333 nan 0.1000 0.1110
## 10 2.1429 nan 0.1000 0.0660
## 20 1.5656 nan 0.1000 0.0209
## 40 1.1464 nan 0.1000 -0.0059
## 60 0.9589 nan 0.1000 -0.0228
## 80 0.8472 nan 0.1000 -0.0126
## 100 0.7505 nan 0.1000 -0.0035
## 120 0.6791 nan 0.1000 -0.0069
## 140 0.6167 nan 0.1000 -0.0109
## 150 0.5915 nan 0.1000 -0.0054
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.1674 nan 0.1000 0.2835
## 2 2.8732 nan 0.1000 0.1982
## 3 2.6685 nan 0.1000 0.1648
## 4 2.4178 nan 0.1000 0.1718
## 5 2.2805 nan 0.1000 0.0806
## 6 2.1559 nan 0.1000 0.0910
## 7 2.0031 nan 0.1000 0.1108
## 8 1.8876 nan 0.1000 0.0831
## 9 1.8174 nan 0.1000 -0.0027
## 10 1.7221 nan 0.1000 0.0572
## 20 1.2224 nan 0.1000 -0.0100
## 40 0.8313 nan 0.1000 -0.0037
## 60 0.6181 nan 0.1000 0.0013
## 80 0.4924 nan 0.1000 -0.0061
## 100 0.3885 nan 0.1000 -0.0030
## 120 0.3240 nan 0.1000 -0.0092
## 140 0.2669 nan 0.1000 -0.0042
## 150 0.2419 nan 0.1000 -0.0044
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.2040 nan 0.1000 0.2740
## 2 2.8997 nan 0.1000 0.2468
## 3 2.6462 nan 0.1000 0.2165
## 4 2.4054 nan 0.1000 0.1487
## 5 2.1901 nan 0.1000 0.1789
## 6 2.0096 nan 0.1000 0.1390
## 7 1.8845 nan 0.1000 0.0759
## 8 1.7531 nan 0.1000 0.1094
## 9 1.6439 nan 0.1000 0.0835
## 10 1.5480 nan 0.1000 0.0488
## 20 1.0463 nan 0.1000 -0.0019
## 40 0.6299 nan 0.1000 -0.0092
## 60 0.3979 nan 0.1000 -0.0008
## 80 0.2961 nan 0.1000 -0.0097
## 100 0.2170 nan 0.1000 -0.0028
## 120 0.1567 nan 0.1000 -0.0050
## 140 0.1195 nan 0.1000 -0.0019
## 150 0.1081 nan 0.1000 -0.0032
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.1800 nan 0.1000 0.2817
## 2 3.0148 nan 0.1000 0.1268
## 3 2.8448 nan 0.1000 0.1341
## 4 2.6652 nan 0.1000 0.1909
## 5 2.5227 nan 0.1000 0.1022
## 6 2.3643 nan 0.1000 0.1306
## 7 2.2510 nan 0.1000 0.1224
## 8 2.1567 nan 0.1000 0.0429
## 9 2.0536 nan 0.1000 0.0814
## 10 1.9860 nan 0.1000 0.0357
## 20 1.4183 nan 0.1000 0.0134
## 40 1.0527 nan 0.1000 0.0089
## 60 0.8853 nan 0.1000 -0.0161
## 80 0.7728 nan 0.1000 -0.0087
## 100 0.6697 nan 0.1000 -0.0111
## 120 0.5958 nan 0.1000 -0.0066
## 140 0.5440 nan 0.1000 -0.0062
## 150 0.5170 nan 0.1000 -0.0056
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.1045 nan 0.1000 0.2444
## 2 2.8269 nan 0.1000 0.2132
## 3 2.5780 nan 0.1000 0.1664
## 4 2.4056 nan 0.1000 0.0273
## 5 2.2273 nan 0.1000 0.1188
## 6 2.0658 nan 0.1000 0.0947
## 7 1.9495 nan 0.1000 0.0904
## 8 1.8439 nan 0.1000 0.0802
## 9 1.7479 nan 0.1000 0.0687
## 10 1.6379 nan 0.1000 0.0587
## 20 1.0993 nan 0.1000 0.0155
## 40 0.7115 nan 0.1000 -0.0056
## 60 0.5494 nan 0.1000 -0.0143
## 80 0.4368 nan 0.1000 -0.0117
## 100 0.3350 nan 0.1000 -0.0038
## 120 0.2683 nan 0.1000 -0.0025
## 140 0.2254 nan 0.1000 -0.0009
## 150 0.2023 nan 0.1000 -0.0051
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.0565 nan 0.1000 0.3420
## 2 2.7114 nan 0.1000 0.2450
## 3 2.4318 nan 0.1000 0.2062
## 4 2.2297 nan 0.1000 0.1658
## 5 2.0361 nan 0.1000 0.1673
## 6 1.9278 nan 0.1000 0.0584
## 7 1.7648 nan 0.1000 0.1215
## 8 1.6363 nan 0.1000 0.0607
## 9 1.5150 nan 0.1000 0.0898
## 10 1.4333 nan 0.1000 0.0574
## 20 0.9514 nan 0.1000 0.0088
## 40 0.5548 nan 0.1000 -0.0167
## 60 0.3744 nan 0.1000 -0.0093
## 80 0.2667 nan 0.1000 -0.0115
## 100 0.1987 nan 0.1000 -0.0040
## 120 0.1491 nan 0.1000 -0.0023
## 140 0.1107 nan 0.1000 -0.0031
## 150 0.0972 nan 0.1000 -0.0031
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.2166 nan 0.1000 0.2625
## 2 2.9871 nan 0.1000 0.1549
## 3 2.7959 nan 0.1000 0.1272
## 4 2.6109 nan 0.1000 0.1674
## 5 2.5064 nan 0.1000 0.0788
## 6 2.4084 nan 0.1000 0.0818
## 7 2.2956 nan 0.1000 0.0750
## 8 2.1618 nan 0.1000 0.1037
## 9 2.0785 nan 0.1000 0.0804
## 10 1.9688 nan 0.1000 0.0821
## 20 1.4437 nan 0.1000 0.0228
## 40 1.0444 nan 0.1000 -0.0037
## 60 0.8923 nan 0.1000 -0.0199
## 80 0.7807 nan 0.1000 -0.0062
## 100 0.6992 nan 0.1000 0.0019
## 120 0.6130 nan 0.1000 -0.0011
## 140 0.5585 nan 0.1000 -0.0146
## 150 0.5301 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.1066 nan 0.1000 0.2341
## 2 2.8322 nan 0.1000 0.2454
## 3 2.5606 nan 0.1000 0.2245
## 4 2.3528 nan 0.1000 0.1627
## 5 2.1912 nan 0.1000 0.0882
## 6 2.0415 nan 0.1000 0.1350
## 7 1.9718 nan 0.1000 0.0374
## 8 1.8066 nan 0.1000 0.1105
## 9 1.7127 nan 0.1000 0.0868
## 10 1.6170 nan 0.1000 0.0371
## 20 1.1150 nan 0.1000 0.0022
## 40 0.7238 nan 0.1000 0.0007
## 60 0.5171 nan 0.1000 -0.0100
## 80 0.4118 nan 0.1000 -0.0090
## 100 0.3230 nan 0.1000 -0.0060
## 120 0.2488 nan 0.1000 -0.0039
## 140 0.2099 nan 0.1000 -0.0008
## 150 0.1938 nan 0.1000 -0.0076
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.0903 nan 0.1000 0.2570
## 2 2.8094 nan 0.1000 0.2924
## 3 2.5365 nan 0.1000 0.2088
## 4 2.3377 nan 0.1000 0.1149
## 5 2.1046 nan 0.1000 0.1703
## 6 1.9142 nan 0.1000 0.1420
## 7 1.7854 nan 0.1000 0.0839
## 8 1.6567 nan 0.1000 0.1005
## 9 1.5801 nan 0.1000 0.0258
## 10 1.4885 nan 0.1000 -0.0104
## 20 0.9573 nan 0.1000 -0.0067
## 40 0.5561 nan 0.1000 0.0030
## 60 0.3432 nan 0.1000 -0.0059
## 80 0.2371 nan 0.1000 -0.0041
## 100 0.1644 nan 0.1000 -0.0039
## 120 0.1146 nan 0.1000 -0.0014
## 140 0.0849 nan 0.1000 -0.0017
## 150 0.0756 nan 0.1000 -0.0013
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 3.1993 nan 0.1000 0.2778
## 2 3.0676 nan 0.1000 0.1079
## 3 2.9039 nan 0.1000 0.1722
## 4 2.7169 nan 0.1000 0.1749
## 5 2.5880 nan 0.1000 0.0803
## 6 2.4285 nan 0.1000 0.1218
## 7 2.3383 nan 0.1000 0.0040
## 8 2.2431 nan 0.1000 0.0464
## 9 2.1907 nan 0.1000 0.0251
## 10 2.0846 nan 0.1000 0.0957
## 20 1.5282 nan 0.1000 0.0084
## 40 1.1333 nan 0.1000 -0.0255
## 60 0.9443 nan 0.1000 -0.0020
## 80 0.8049 nan 0.1000 -0.0098
## 100 0.7214 nan 0.1000 -0.0085
##
## RMSE Rsquared MAE
## 1.1121949 0.6028262 0.8663108
## RMSE Rsquared MAE
## 0.8847581 0.7565752 0.6794279
df.perf = rbind(data.frame(Name = 'SimpleRegressionTree', RMSE = round(perftree[1],4)),
data.frame(Name= 'RandomForest', RMSE = round(perfrf[1],4)),
data.frame(Name = 'BoostingTree', RMSE = round(perfgbm[1],4)),
data.frame(Name = 'Cubist', RMSE = round(perfcubist[1],4)))
ggplot(data = df.perf, aes(x = Name, y = RMSE, fill=Name)) +
geom_bar(stat="identity", position=position_dodge()) +
geom_text(aes(label=RMSE), vjust=1, color="white",
position = position_dodge(0.9), size=3.5)
From the above model performance chart, we can see the Cubist model gives the lowest RMSE on test set. Cubist is the most optimal model for this dataset.
cModel <- train(x = df.train.x,
y = df.train.y,
method = 'cubist')
vip(cModel, color = 'red', fill='dodgerblue4')
## Warning in vip.default(cModel, color = "red", fill = "dodgerblue4"): Arguments
## `width`, `alpha`, `color`, `fill`, `size`, and `shape` have all been deprecated
## in favor of the new `mapping` and `aesthetics` arguments. They will be removed
## in version 0.3.0.
We can see that manufacturing process variables dominate the list of important variables which is in parity with optimal list of variables from linear and non-linear models.
From the above tree plot, we can clearly see that high values of manufacturing process vairaibles contributes to higher Yield.