Essential Math for Geopositioning

Robert Batzinger
20 Nov 2020

Design principles

  • Identify the entities to be tracked
    • Speed, payload capacity, power source
  • Positioning technology
  • Recording the position info
  • Data transmissions

Assignment 1

For the service assigned to your group, do the following:

  • Visit the website.
  • Test the service
  • Find out all you can about the service.
  • Determine the answer to these 6 questions.
  • Submit your findings online and report your findings in the next class.
  1. What the entity being tracked? How is it identified? (4pts)
  2. How is the geo-position determined? (4pts)
  3. What are the attributes of the core classes for a normalized GIS database? (4pts)
  4. How is this data collected and verified? (4pts)
  5. How is the data illustrated? (2pts)
  6. Provide 3 quiz questions about this study. (2pts)

Assignment 1. Sample 1 (Team's Response)

  1. (0pts) ทำงานจากการระบุจากดาวเทียม

  2. (1pt) ถูกกำหนดจากจุดละติจูดลองติจูด

  3. (1pt) ไฟล์ทบิน,เวลาการบิน,จุดเส้นทาง,ระยะเวลาการอัปเดตจุตบิน

  4. (0pt) ตรวจสอบด้วยรัฐแต่ละประเทศ

  5. (1pt) แสดงเป็นจุดเเละเส้นแสดงผล

  6. (1pt) Questions

    • ประยุกต์ใช้ยังไง
    • การใช้ในชีวิตประจำวัน
    • การเก็บข้อมูลเก็บยังไง

Assignment 1. Sample 1 (Teacher's notes)

  • 1.Airplanes are tracked and identified by tail numbers

  • 2.Position determined by Onboard Satellite GPS, confirmed by ground radar

  • 3.Datasets:

    • Airports: Name, latitude, longitude, elevation, City, Airport Code
    • Airlines: Name, headquarters
    • Flights: Airport codes(destination, origin), Airline, Flight code, scheduled time (leaving, arrival), tail number, flight status
    • Trip log: flight code, tail number, time, elevation,lattitude, longitude, status, visibility

  • 4.Data is obtained by intercepting the data radio transmissions between the plane and the control center

  • 5.Displayed on an embedded map in their website with icons and breadcrumb trails. The icons are clickable links to related detail in other datasets

  • 6.What information is attached to every plane icon posted on the flight tracker map?

Assignment 1. Sample 1 (Student response)

1.เลขพัสดุ จากจุดหนึ่งไปจุดหนึ่ง

2.Latitude : 16.5912597 Longitude: 103.6525467

3.อำเภอ ตำบล

4.ไปรษณีย์จะตรวจสอบ QR code และยืนยันหลังจากเข้าศูนย์แต่ละจังหวัดหรือพื้นที่หลักแถวๆนั้น

5.วันเวลา เดือน ปี และเลข พัสดุ

6.

Assignment 1. Sample 1 (Teacher's notes)

Service Parcel tracking

  • 1.Parcels being processed and delivered. The parcel code is key

  • 2.The GPS location of the service provider is retrieved from a static GIS database

  • 3.Dataset:

    • Post offices: Code, lat, lng, service type
    • Parcels: Parcel id, weight, return address, recepient address, original post office
    • Parcel processing log: Parcel id, postal code of origin, parcel id, nature of service, office lat,lng of service provider
  • 4.QR code scan used to record the next entry into the database

  • 5.Date and time and location and nature of last service

  • 6.Since the postal systems does not use active GPS sensors, how do they track the position of packages?

1. Entity being tracked

  • Airplanes Tail numbers
  • International ship registration number
  • Wildlife tag number
  • Passport/Citizen registration id number

Determining the geo-position

  • Onboard Satellite GPS, confirmed by ground radar
  • Satellite tracking, confirmed by map
  • Satellite tracking, confirmed by sonar or radar

Core classes of GIS database

  • Flight tracker Dataset:
    • Airports: Name, latitude, longitude, elevation, City, Airport Code
    • Airlines: Name, headquarters
    • Flights: Airport codes(destination, origin), Airline, Flight code, scheduled time (leaving, arrival), tail number, flight status
    • Trip log: flight code, tail number, time, elevation,lattitude, longitude, status, visibility

Data collected and verification

  • Data is obtained by intercepting the data radio transmissions between the plane and the control center
  • Sensor database

GIS data visualization

  • Webmap with icons and breadcrumb trails. The icons are clickable link to related detail in other datasets
  • Diagram of process through stages / waypoints

Quiz questions

  1. Clear and concise
  2. Context free
  3. Illustrate a core principle
  4. Confirm understanding of the principles
  5. Doable with pen and paper
  6. Reproducible Grading

Measuring tools

tools

plot of chunk unnamed-chunk-1

Converting between radians and degrees

par(mar=c(3,3,3,3))
r = seq(0,2*pi,0.01)
plot(cos(r),sin(r))

plot of chunk unnamed-chunk-2

\[ 2 \pi\ \hbox{radians} = 360\ \hbox{degrees} \]

Right Triangle - Pythagoreus Theorem

Right Triangle

  • Equation:

    \[ c = \sqrt{a^2 + b^2} \]

  • Measured:

    \[ a=25; b=49; c=55 \]

  • Calculated

    \[ c = \sqrt{25^2 + 49^2} = 55.00909 \]

Trig functions

Right Triangle

  • \( \sin(A) = \frac{a}{c} = \cos(b) \)
  • \( \sin(B) = \frac{b}{c} = \cos(a) \)
  • \( \tan(A) = \frac{a}{b} \)

Determining the angles of a right triangle

Right Triangle

  • \( a=25 \)
  • \( b=49 \)
  • \( c=55 \)
  • \( C = 90 \)
  • \( A = asin(\frac{a}{c}) = asin(\frac{25}{55}) = asin(0.4545455) = 27.04 \)
  • \( A = acos(\frac{b}{c}) = acos(\frac{49}{55}) = acos(0.8909091) = 27.01 \)
  • \( A = atan(\frac{a}{b}) = atan(\frac{25}{49}) = atan(0.5102041) = 27.03 \)
  • \( B = asin(\frac{b}{c}) = asin(\frac{49}{55}) = asin(0.8909091) = 62.99 \)
  • \( B = acos(\frac{a}{c}) = acos(\frac{25}{55}) = acos(0.4545455) = 62.96 \)
  • \( B = atan(\frac{b}{c}) = atan(\frac{49}{25}) = atan(1.9600000) = 62.97 \)

Angles of a right triangle

Right Triangle

Given:

  • \( A + B + C = 180 \)

  • \( C = 90 \)

Calculated:

  • \( A = 27.03\pm 0.02 \)

  • \( B = 62.97\pm 0.02 \)

Other triangles - Law of Sines

other triangles

\[ \frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} \]

  • \( \frac{a}{\sin(A)} = \frac{40}{\sin(36)} = \frac{40}{0.5877853} = 68.052 \)
  • \( \frac{b}{\sin(B)} = \frac{68}{\sin(83)} = \frac{68}{0.9925462} = 68.511 \)
  • \( \frac{c}{\sin(C)} = \frac{53}{\sin(51)} = \frac{53}{0.7771460} = 68.198 \)

Other triangles - Law of Sines

other triangles

\[ \frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} \]

  • \( \frac{a}{\sin(A)} = \frac{450}{\sin(26)} = \frac{443}{0.4383711} = 1010.56 \)
  • \( \frac{b}{\sin(B)} = \frac{393}{\sin(23)} = \frac{393}{0.3907311} = 1005.81 \)
  • \( \frac{c}{\sin(C)} = \frac{766}{\sin(131)} = \frac{766}{0.7547096} = 1014.96 \)

Area

\[ {base\times hieght}{2} \]

Right triangle Acute triangle Obtuse Triangle
Right Triangle Acute Triangle Obtuse Triangle
\[ Area = \frac{ab}{2} \] \[ Area = \frac{bc\sin(A)}{2} \] \[ Area = \frac{bc\sin(A)}{2} \]

Great Circle Distances

Great Circle Arc

Central angle

Haversine Function

$$Dist = 2r\ asin\left(\sqrt{\sin2\left(\frac{\psi_2 - \psi_1}{2}\right) + \cos(\psi_1) \cos(\psi_2)\sin2\left(\frac{\lamda_2 - \lamda_1}{2}\right)}\right)

  • \( \psi_1,\ \psi_2 \) - lattitude of \( P \) and \( Q \), respectively

  • \( \lamda_1,\ \lamda_2 \) - longitude of \( P \) and \( Q \), respectively

  • \( r \) = Between 6,335.439 km (Poles) and 6,378.137 km (at equator)