
Generate Data frame
Suppose you are a data scientist, and you get a project at a start-up company, for instance Kopi Kenangan. Let’s say, you are asking to generate the collection of any possible data set from their daily sales. If I asking you: what kind of data set that you can generate?. Here, I assume you want to provide them the following data set:
- Id : there are 5000 transactions.
- Date: daily 5000 transactions, start from 2018/01/01.
- Name: create 20 random cashier names (you can use names of your classmate including your self) to cover all 5000 transactions at
Kopi Kenangan.
- City: allocate this 5000 transactions to the biggest cities in Indonesia (with the same proportion). Here I assume,
- Jakarta
- Bogor
- Depok
- Tangerang
- Bekasi
- Outlet: allocate this 5000 transactions in five outlets. Here I assume,
- Outlet 1
- Outlet 2
- Outlet 3
- Outlet 4
- Outlet 5
- Menu: generate random sales of 5000 menu items at
Kopi Kenangan every day. Here, I assume,
- Cappucino
- Es Kopi Susu
- Hot Caramel Latte
- Hot Chocolate
- Hot Red Velvet Latte
- Ice Americano
- Ice Berry Coffe
- Ice Cafe Latte
- Ice Caramel Latte
- Ice Coffee Avocado
- Ice Coffee Lite
- Ice Matcha Espresso
- Ice Matcha Latte
- Ice Red Velvet Latte
- Price: generate random prices (min=18000, and max=45000)
- Discount: generate random discounts (min=0.05, and max=0.12)
Renames Data Frame
Please rename all variables of your data frame (data frame that you have done above) in your language.
Case Study
According to your data frame, please provide me the following tasks:
Find out the frequency of sales of which menu items are best-selling at Kopi Kenangan Company!
Find out which city got the most sales at Kopi Kenangan Company!
Find out which city has the most discounted sales at Kopi Kenangan Company!
Which year were the most sales at Kopi Kenangan Company?
LS0tDQp0aXRsZTogIkxhYjQ6IFIgQmFzaWNzIg0KYXV0aG9yOiAiQmFrdGkgU2lyZWdhciwgUy5TaS4sIE0uU2MiDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclQiAlZCwgJVknKWAiDQpvdXRwdXQ6ICANCiAgaHRtbF9kb2N1bWVudDogDQogICAgaGlnaGxpZ2h0OiBtb25vY2hyb21lDQogICAgdGhlbWU6IHNwYWNlbGFiDQogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDogeWVzDQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQotLS0NCg0KYGBge3IgTG9nbywgZWNobz1GQUxTRSxmaWcuYWxpZ249J2NlbnRlcicsIG91dC53aWR0aCA9ICc0MCUnfQ0Ka25pdHI6OmluY2x1ZGVfZ3JhcGhpY3MoImh0dHBzOi8vZ2l0aHViLmNvbS9CYWt0aS1TaXJlZ2FyL2ltYWdlcy9ibG9iL21hc3Rlci9sb2dvLnBuZz9yYXc9dHJ1ZSIpDQpgYGANCg0KIyBHZW5lcmF0ZSBEYXRhIGZyYW1lDQoNClN1cHBvc2UgeW91IGFyZSBhIGRhdGEgc2NpZW50aXN0LCBhbmQgeW91IGdldCBhIHByb2plY3QgYXQgYSBzdGFydC11cCBjb21wYW55LCAgZm9yIGluc3RhbmNlIGBLb3BpIEtlbmFuZ2FuYC4gTGV0J3Mgc2F5LCB5b3UgYXJlIGFza2luZyB0byBnZW5lcmF0ZSB0aGUgY29sbGVjdGlvbiBvZiBhbnkgcG9zc2libGUgZGF0YSBzZXQgZnJvbSB0aGVpciBkYWlseSBzYWxlcy4gSWYgSSBhc2tpbmcgeW91OiB3aGF0IGtpbmQgb2YgZGF0YSBzZXQgdGhhdCB5b3UgY2FuIGdlbmVyYXRlPy4gSGVyZSwgSSBhc3N1bWUgeW91IHdhbnQgdG8gcHJvdmlkZSB0aGVtIHRoZSBmb2xsb3dpbmcgZGF0YSBzZXQ6DQoNCiogSWQgOiB0aGVyZSBhcmUgNTAwMCB0cmFuc2FjdGlvbnMuDQoqIERhdGU6IGRhaWx5IDUwMDAgdHJhbnNhY3Rpb25zLCBzdGFydCBmcm9tIDIwMTgvMDEvMDEuIA0KKiBOYW1lOiBjcmVhdGUgMjAgcmFuZG9tIGNhc2hpZXIgbmFtZXMgKHlvdSBjYW4gdXNlIG5hbWVzIG9mIHlvdXIgY2xhc3NtYXRlIGluY2x1ZGluZyB5b3VyIHNlbGYpIHRvIGNvdmVyIGFsbCA1MDAwIHRyYW5zYWN0aW9ucyBhdCBgS29waSBLZW5hbmdhbmAuICAgDQoqIENpdHk6IGFsbG9jYXRlIHRoaXMgNTAwMCB0cmFuc2FjdGlvbnMgdG8gdGhlIGJpZ2dlc3QgY2l0aWVzIGluIEluZG9uZXNpYSAod2l0aCB0aGUgc2FtZSBwcm9wb3J0aW9uKS4gSGVyZSBJIGFzc3VtZSwNCiAgLSBKYWthcnRhDQogIC0gQm9nb3INCiAgLSBEZXBvaw0KICAtIFRhbmdlcmFuZw0KICAtIEJla2FzaQ0KKiBPdXRsZXQ6IGFsbG9jYXRlIHRoaXMgNTAwMCB0cmFuc2FjdGlvbnMgaW4gZml2ZSBvdXRsZXRzLiBIZXJlIEkgYXNzdW1lLA0KICAtIE91dGxldCAxDQogIC0gT3V0bGV0IDINCiAgLSBPdXRsZXQgMw0KICAtIE91dGxldCA0DQogIC0gT3V0bGV0IDUNCiogTWVudTogZ2VuZXJhdGUgcmFuZG9tIHNhbGVzIG9mIDUwMDAgbWVudSBpdGVtcyBhdCBgS29waSBLZW5hbmdhbmAgZXZlcnkgZGF5LiBIZXJlLCBJIGFzc3VtZSwNCiAgLSBDYXBwdWNpbm8NCiAgLSBFcyBLb3BpIFN1c3UNCiAgLSBIb3QgQ2FyYW1lbCBMYXR0ZQ0KICAtIEhvdCBDaG9jb2xhdGUNCiAgLSBIb3QgUmVkIFZlbHZldCBMYXR0ZQ0KICAtIEljZSBBbWVyaWNhbm8NCiAgLSBJY2UgQmVycnkgQ29mZmUNCiAgLSBJY2UgQ2FmZSBMYXR0ZQ0KICAtIEljZSBDYXJhbWVsIExhdHRlDQogIC0gSWNlIENvZmZlZSBBdm9jYWRvDQogIC0gSWNlIENvZmZlZSBMaXRlDQogIC0gSWNlIE1hdGNoYSBFc3ByZXNzbw0KICAtIEljZSBNYXRjaGEgTGF0dGUNCiAgLSBJY2UgUmVkIFZlbHZldCBMYXR0ZQ0KKiBQcmljZTogZ2VuZXJhdGUgcmFuZG9tIHByaWNlcyAobWluPTE4MDAwLCBhbmQgbWF4PTQ1MDAwKQ0KKiBEaXNjb3VudDogZ2VuZXJhdGUgcmFuZG9tIGRpc2NvdW50cyAobWluPTAuMDUsIGFuZCBtYXg9MC4xMikNCg0KYGBge3J9DQoNCmBgYA0KDQoNCiMgRXh0cmFjdGlvbg0KDQpJbiB0aGlzIHNlY3Rpb24sIHlvdSBhcmUgZXhwZWN0ZWQgYmUgYWJsZSB0byBhcHBseSBhIHZlcnkgYmFzaWMgZGF0YSBmcmFtZSBtYW5pcHVsYXRpb24gY2FsbGVkIEV4dHJhY3Rpb24uIFBsZWFzZSBjb3ZlciB0aGUgZm9sbG93aW5nIHRhc2tzOg0KDQoqIEV4dHJhY3QgYWxsIGRhdGEgc2V0IG9yIHRyYW5zYWN0aW9ucyBhdCBgS29waSBLZW5hbmdhbmAsIGluIHRoZSBzcGVjaWZpYyBjaXR5IGZvciBpbnN0YW5jZSBgSmFrYXJ0YWAuIA0KYGBge3J9DQoNCmBgYA0KDQoqIEV4dHJhY3QgYWxsIGRhdGEgc2V0IG9yIHRyYW5zYWN0aW9ucyBhdCBgS29waSBLZW5hbmdhbmAsIGluIHRoZSBzcGVjaWZpYyBtZW51IGZvciBpbnN0YW5jZSBgSG90IENob2NvbGF0ZWAuIA0KYGBge3J9DQoNCmBgYA0KDQoqIEV4dHJhY3QgYWxsIGRhdGEgc2V0IG9yIHRyYW5zYWN0aW9ucyBhdCBgS29waSBLZW5hbmdhbmAsIGluIHRoZSBzcGVjaWZpYyBjYXNoaWVyIG5hbWVzIGZvciBpbnN0YW5jZSBgQmFrdGkgU2lyZWdhcmAuDQpgYGB7cn0NCg0KYGBgDQoNCiogRXh0cmFjdCBhbGwgZGF0YSBzZXQgb3IgdHJhbnNhY3Rpb25zIGF0IGBLb3BpIEtlbmFuZ2FuYCwgaW4gdGhlIHNwZWNpZmljIHByaWNlIGZvciBpbnN0YW5jZSBgPj00MDAwMGAuDQpgYGB7cn0NCg0KYGBgDQoNCiogQWRkIGEgbmV3IHZhcmlhYmxlLCBjYWxsIGBUb3RhbF9QcmljZWAgdG8geW91ciBkYXRhIGZyYW1lICgqKmRhdGEgZnJhbWUgdGhhdCB5b3UgaGF2ZSBkb25lIGFib3ZlKiopDQpgYGB7cn0NCg0KYGBgDQoNCiogQWRkIGEgbmV3IHZhcmlhYmxlLCBjYWxsIGBDYXRlZ29yeV9QcmljZWAgdG8geW91ciBkYXRhIGZyYW1lICgqKmRhdGEgZnJhbWUgdGhhdCB5b3UgaGF2ZSBkb25lIGFib3ZlKiopLCBIZXJlLCBJIGFzc3VtZTogImV4cGVuc2l2ZSIsICJzby1zbyIsIGFuZCAiY2hlYXAiLiANCmBgYHtyfQ0KDQpgYGANCg0KIyBSZW5hbWVzIERhdGEgRnJhbWUNCg0KUGxlYXNlIHJlbmFtZSBhbGwgdmFyaWFibGVzIG9mIHlvdXIgZGF0YSBmcmFtZSAoKipkYXRhIGZyYW1lIHRoYXQgeW91IGhhdmUgZG9uZSBhYm92ZSoqKSBpbiB5b3VyIGxhbmd1YWdlLg0KDQpgYGB7cn0NCg0KYGBgDQoNCg0KIyBDYXNlIFN0dWR5DQoNCkFjY29yZGluZyB0byB5b3VyIGRhdGEgZnJhbWUsIHBsZWFzZSBwcm92aWRlIG1lIHRoZSBmb2xsb3dpbmcgdGFza3M6DQoNCiogRmluZCBvdXQgdGhlIGZyZXF1ZW5jeSBvZiBzYWxlcyBvZiB3aGljaCBtZW51IGl0ZW1zIGFyZSBiZXN0LXNlbGxpbmcgYXQgYEtvcGkgS2VuYW5nYW5gIENvbXBhbnkhDQpgYGB7cn0NCg0KYGBgDQoNCiogRmluZCBvdXQgd2hpY2ggY2l0eSBnb3QgdGhlIG1vc3Qgc2FsZXMgYXQgYEtvcGkgS2VuYW5nYW5gIENvbXBhbnkhDQpgYGB7cn0NCg0KYGBgDQoNCiogRmluZCBvdXQgd2hpY2ggY2l0eSBoYXMgdGhlIG1vc3QgZGlzY291bnRlZCBzYWxlcyBhdCBgS29waSBLZW5hbmdhbmAgQ29tcGFueSENCmBgYHtyfQ0KDQpgYGANCg0KKiBXaGljaCB5ZWFyIHdlcmUgdGhlIG1vc3Qgc2FsZXMgYXQgYEtvcGkgS2VuYW5nYW5gIENvbXBhbnk/DQoNCmBgYHtyfQ0KDQpgYGANCg0KDQoNCg0KDQoNCg0KDQoNCg0K