dta2 <- read.table("cantabrian.txt", h=T)
names(dta2) <- c("ID","Health","Gender","Type")
head(dta2)
## ID Health Gender Type
## 1 1 0 M GP
## 2 1 0 M GHQ
## 3 2 0 M GP
## 4 2 0 M GHQ
## 5 3 0 M GP
## 6 3 0 M GHQ
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
dta2t <- dta2 %>%
mutate(Health = factor(Health,
levels=0:1,
labels=c("Illness","Otherwise")),
Gender = factor(Gender, levels = c("M", "F")),
Type = factor(Type,
levels=c("GP","GHQ")))
str(dta2t)
## 'data.frame': 1646 obs. of 4 variables:
## $ ID : int 1 1 2 2 3 3 4 4 5 5 ...
## $ Health: Factor w/ 2 levels "Illness","Otherwise": 1 1 1 1 1 1 1 1 1 1 ...
## $ Gender: Factor w/ 2 levels "M","F": 1 1 1 1 1 1 1 1 1 1 ...
## $ Type : Factor w/ 2 levels "GP","GHQ": 1 2 1 2 1 2 1 2 1 2 ...
## 'data.frame': 1646 obs. of 4 variables:
## $ ID : int 1 1 2 2 3 3 4 4 5 5 ...
## $ Health: int 0 0 0 0 0 0 0 0 0 0 ...
## $ Gender: chr "M" "M" "M" "M" ...
## $ Type : chr "GP" "GHQ" "GP" "GHQ" ...
## Type GP GHQ
## Gender Health
## M Illness 287 244
## Otherwise 37 80
## F Illness 420 306
## Otherwise 79 193
## Type GP GHQ
## Gender Health
## M Illness 0.34872418 0.29647631
## Otherwise 0.04495747 0.09720535
## F Illness 0.51032807 0.37181045
## Otherwise 0.09599028 0.23450790
女性精神病的盛行率高於男性
library(geepack)
summary(m0 <- geeglm(Health ~ Gender + Type + Gender*Type, data=dta2, id = ID, corstr="exchangeable", family = binomial))
##
## Call:
## geeglm(formula = Health ~ Gender + Type + Gender * Type, family = binomial,
## data = dta2, id = ID, corstr = "exchangeable")
##
## Coefficients:
## Estimate Std.err Wald Pr(>|W|)
## (Intercept) -0.46089 0.09192 25.141 5.33e-07 ***
## GenderM -0.65425 0.15826 17.089 3.57e-05 ***
## TypeGP -1.20991 0.12651 91.462 < 2e-16 ***
## GenderM:TypeGP 0.27649 0.22828 1.467 0.226
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation structure = exchangeable
## Estimated Scale Parameters:
##
## Estimate Std.err
## (Intercept) 1 0.07865
## Link = identity
##
## Estimated Correlation Parameters:
## Estimate Std.err
## alpha 0.2975 0.04744
## Number of clusters: 823 Maximum cluster size: 2
Health | |||
---|---|---|---|
Predictors | Odds Ratios | CI | p |
(Intercept) | 0.63 | 0.53 – 0.76 | <0.001 |
Gender [M] | 0.52 | 0.38 – 0.71 | <0.001 |
Type [GP] | 0.30 | 0.23 – 0.38 | <0.001 |
Gender [M] * Type [GP] | 1.32 | 0.84 – 2.06 | 0.226 |
女性患病率是男性的0.52倍
GHQ的測出具精神病是GP的0.3倍
性別與檢測方式(GP or GHQ)沒有交互作用