## case treat occasion resp
## 1 1 1 0 1
## 2 1 1 1 1
## 3 2 1 0 1
## 4 2 1 1 1
## 5 3 1 0 1
## 6 3 1 1 1
library(repolr)
dta_repolr <- repolr(resp ~ treat + occasion + treat:occasion,
subjects="case", data=dta, times=c(1,2), categories=4,
corr.mod="independence")
# Show repolr modle results (1)
summary.repolr(dta_repolr)
##
## repolr: 2016-02-26 version 3.4
##
## Call:
## repolr(formula = resp ~ treat + occasion + treat:occasion, subjects = "case",
## data = dta, times = c(1, 2), categories = 4, corr.mod = "independence")
##
## Coefficients:
## coeff se.robust z.robust p.value
## cuts1|2 -2.2671 0.2091 -10.8422 0.0000
## cuts2|3 -0.9515 0.1769 -5.3787 0.0000
## cuts3|4 0.3517 0.1751 2.0086 0.0446
## treat 0.0336 0.2369 0.1418 0.8872
## occasion 1.0381 0.1564 6.6375 0.0000
## treat:occasion 0.7077 0.2458 2.8792 0.0040
##
## Correlation Structure: independence
## Fixed Correlation: 0
# Show repolr modle results (2)
library(MASS)
sjPlot::tab_model(m0 <- MASS::polr(ordered(resp) ~ treat + occasion + treat:occasion, data=dta), show.obs=F, show.r2=F, show.se=T, transform=NULL)
##
## Re-fitting to get Hessian
ordered(resp) | ||||
---|---|---|---|---|
Predictors | Log-Odds | std. Error | CI | p |
1|2 | -2.27 | 0.20 | -2.73 – -1.80 | <0.001 |
2|3 | -0.95 | 0.18 | -1.43 – -0.48 | <0.001 |
3|4 | 0.35 | 0.17 | -0.30 – 1.01 | 0.045 |
treat | -0.03 | 0.24 | -0.50 – 0.43 | 0.888 |
occasion | -1.04 | 0.24 | -1.51 – -0.57 | <0.001 |
treat * occasion | -0.71 | 0.33 | -1.36 – -0.05 | 0.035 |
Occasion effect = 1.04 for placebo, 1.04 + 0.71 = 1.75 for treatment.
Odds ratios: exp(1.04) = 2.8, exp(1.75) = 5.7
Treatment effect exp(0.03) = 1.03 initially, exp(0.03+0.71) = 2.1 at follow-up.
dta$treat <- factor(ifelse(dta$treat==1, "Active", "Placebo"))
dta$occasion <- factor(ifelse(dta$occasion==1, "Follow-up", "Initial"))
dta.tbl <- ftable(dta$treat, dta$occasion , dta$resp)
dta.tbl
## 1 2 3 4
##
## Active Follow-up 40 49 19 11
## Initial 12 20 40 47
## Placebo Follow-up 31 29 35 25
## Initial 14 20 35 51
#
plot(y[,1], y[,2], type="n",
xlab="Time to Sleep (min.)", ylab="Cumulative proportion")
#
lines(y[1:4, 1], y[1:4,2], lty=1, col="steelblue")
lines(y[5:8, 1], y[5:8,2], lty=5, col="steelblue")
lines(y[9:12, 1], y[9:12,2], lty=2, col="indianred")
lines(y[13:16,1], y[13:16,2], lty=4, col="indianred")
#
text(22, .12, "T,I")
text(22, .47, "T,F")
text(22, .20, "P,I")
text(22, .33, "P,F")
#
grid()
累積折線圖顯示,採用催眠藥物組和安慰劑組間起初皆以相似的時間入睡。但在兩週後,接受催眠藥物治療的人比起安慰劑組,能更迅速入眠。(TF>PF)