Objetivo

Encontrar probabilidades de acuerdo a la distribución binomial

Descripción

Identificar dos casos de la literatura de distribuciones de probabilidad binomial y realizar cálculos de probabilidades utilizando la fórmula y las funciones dbinom() y pbinom(), identificar el valor medio, la varianza y la desviación.

1.- Cargar Librerias

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
#source("../funciones/funciones.distribuciones.r")

# o

source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")

#Ejercicios

Ejercicio 1

De acuerdo con la experiencia, el gerente de la tienda estima que la probabilidad de que un cliente realice una compra es 0.30.

  1. Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad cumulada
x <- c(0,1,2,3)
n <- 3
exito <- 0.30
tabla1 <- data.frame(x=x, f.prob.x = f.prob.binom(x,n,exito), f.acum.x = cumsum(f.prob.binom(x,n,exito)))
tabla1
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000
tabla2 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = cumsum(dbinom(x = x, size = n, prob = exito)))
tabla2
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000
  1. Encontrar la probabilidad de que compren dos clientes Identificar la probabildiad cuando P(x=2) de la tabla Se puede usar tabla1 o tabla2 es la misma
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 2    0.189    0.973
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  2  es igual a :  0.189"
  1. Encontrar la probabilidad de que compren los tres próximos clientes. Identificar la probabildiad cuando P(x=3) de la tabla Se puede usar tabla1 o tabla2 es la misma
valor.x <- 3
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 3    0.027        1
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  3  es igual a :  0.027"
  1. Encontrar la probabilidad de que sean menor o igual que dos. Ahora usar la función acumulada por la pregunta P(x=0)+P(x=1)+P(x=2)
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 2    0.189    0.973
paste("La probabilidad de que sea menor o igual a ", valor.x, " es igual a : ", la.probabilidad$f.acum.x )
## [1] "La probabilidad de que sea menor o igual a  2  es igual a :  0.973"
  1. Determinar el valor esperado y su significado El valor esperado de la distribución binomial μ=n⋅p
  • Siendo p el éxito de la probabilidad * y n el número de experimentos
VE <- n * exito
paste ("El valor esperado es: ", VE)
## [1] "El valor esperado es:  0.9"
  1. Determinar la varianza y la desviación estándar y si significado La varianza en la distribución binomial σ2=n⋅p⋅(1−p)
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  0.63"
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  0.79"
Ejercicio 2

Un jugador encesta con probabilidad 0.55. (La Distribución Binomial O de Bernoulli, n.d.):

a.Determinar las probabilidad de los tiros del 1 al 6 con la tabla de probabilidad b.Determinr la probabilidad de encestar cuatro tiros P(x=4) c.Determinar la probabilidad de encestar todos tiros o sea seis P(x=6) d.Determinar la probabilidad de encestar al menor tres P.acum(x=3) e.Determinar el valor esperado VE f.Determinar la varianza y su desviación estándard g.Interpretar el ejercicio

x <- c(1,2,3,4,5,6)
n <- 6
exito <- 0.55
tabla1 <- data.frame(x=x, f.prob.x = f.prob.binom(x,n,exito), f.acum.x = cumsum(f.prob.binom(x,n,exito)))
tabla1
##   x   f.prob.x   f.acum.x
## 1 1 0.06089428 0.06089428
## 2 2 0.18606586 0.24696014
## 3 3 0.30321844 0.55017858
## 4 4 0.27795023 0.82812881
## 5 5 0.13588678 0.96401559
## 6 6 0.02768064 0.99169623
tabla2 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = cumsum(dbinom(x = x, size = n, prob = exito)))
tabla2
##   x   f.prob.x   f.acum.x
## 1 1 0.06089428 0.06089428
## 2 2 0.18606586 0.24696014
## 3 3 0.30321844 0.55017858
## 4 4 0.27795023 0.82812881
## 5 5 0.13588678 0.96401559
## 6 6 0.02768064 0.99169623
valor.x <- 4
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x  f.prob.x  f.acum.x
## 1 4 0.2779502 0.8281288
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  4  es igual a :  0.277950234375"
valor.x <- 6
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x   f.prob.x  f.acum.x
## 1 6 0.02768064 0.9916962
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  6  es igual a :  0.027680640625"
valor.x <- 3
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x  f.prob.x  f.acum.x
## 1 3 0.3032184 0.5501786
paste("La probabilidad de que sea menor o igual a ", valor.x, " es igual a : ", la.probabilidad$f.acum.x )
## [1] "La probabilidad de que sea menor o igual a  3  es igual a :  0.550178578125"
VE <- n * exito
paste ("El valor esperado es: ", VE)
## [1] "El valor esperado es:  3.3"
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  1.48"
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  1.22"

Interpretacion del caso

3.1

Ejer 1 = “0,1,2,3” Ejer 2 = “1,2,3,4,5,6”

3.2

Ejer 1 = “0.343, 0.441, 0.189, 0.027” Ejer 2 = “0.06089428, 0.18606586 …”

3.3

Ejer 1 = “0.343, 0.441, 0.189, 0.027” Ejer 2 = “0.06089428, 0.18606586 …”

3.4

Ejer 1 = “3” Ejer 2 = “6”

3.5

Ejer 1 = “3” Ejer 2 = “6”

3.6

Ejer 1 = “0.441” Ejer 2 = “0.30321844”