Persiapan awal
Mengatur Working Directory
## [1] "C:/Users/vferd/Documents/Sherly/Campus/Semester 3/Analisis Regresi/w11"
Membaca Data
## ï..id num.responses cost
## 1 1 16 77
## 2 2 14 70
## 3 3 22 85
## 4 4 10 50
## 5 5 14 62
## 6 6 17 70
## 7 7 10 55
## 8 8 13 63
## 9 9 19 88
## 10 10 12 57
## 11 11 18 81
## 12 12 11 51
Uji Heterokedastisitas
Scatter plot

Mencocokkan model cost~num.responses
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.472689 5.5161841 3.530101 5.445888e-03
## num.responses 3.268908 0.3650515 8.954649 4.330241e-06
## [1] "R2: 0.889"
Membuat plot dari model regresi

Metode WLS
Mencari model regresi baru
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.300637 4.827736 3.583592 4.981868e-03
## num.responses 3.421106 0.370310 9.238492 3.268919e-06
## [1] "R2: 0.895"
scatterplot

Perbandingan plot OLS dan WLS
ggplot(data = MS, aes(y = cost, x = num.responses)) +
geom_point() +
geom_smooth(method = lm, se = FALSE,
color = "black",
size = 0.5,
linetype = "dashed") +
geom_smooth(method = lm, se = FALSE,
aes(weight = MS.weights),
color = "red",
size = 0.5,
linetype = "dashed") +
labs(title = "Scatterplot of cost ~ num.reponses")
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'

LS0tDQp0aXRsZTogIlNvYWwgVUFTIDIgQW5hbGlzaXMgUmVncmVzaSINCmF1dGhvcjogIlNoZXJseSBUYXVyaW4gU2lyaWRpb24gLSAyMDE5NDkyMDAxMSINCmRhdGU6ICIxMS8yMC8yMDIwIg0Kb3V0cHV0OiAgDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgaGlnaGxpZ2h0OiBweWdtZW50cw0KICAgIHRoZW1lOiBzcGFjZWxhYg0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6IHllcw0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIGNvZGVfZm9sZGluZzogc2hvdyANCi0tLQ0KDQojIFBlcnNpYXBhbiBhd2FsDQojIyBMaWJyYXJ5DQoNCmBgYHtyIGxpYnJhcnksIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KHJlYWR4bCkNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkoZHBseXIpDQpgYGANCg0KIyMgTWVuZ2F0dXIgV29ya2luZyBEaXJlY3RvcnkNCmBgYHtyIHdkLCBtZXNzYWdlPUZBTFNFfQ0Kc2V0d2QoIkM6L1VzZXJzL3ZmZXJkL0RvY3VtZW50cy9TaGVybHkvQ2FtcHVzL1NlbWVzdGVyIDMvQW5hbGlzaXMgUmVncmVzaS93MTEiKQ0KZ2V0d2QoKQ0KYGBgDQoNCiMjIE1lbWJhY2EgRGF0YQ0KDQpgYGB7ciByZWFkIGRhdGF9DQpNUyA8LSByZWFkLmNzdigiYmVsYWphciBrb21wdXRlci5jc3YiLCBzZXAgPSAiOyIpDQpNUw0KYGBgDQoNCiMgVWppIEhldGVyb2tlZGFzdGlzaXRhcw0KDQojIyBTY2F0dGVyIHBsb3QNCg0KYGBge3IsIG1lc3NhZ2U9RkFMU0V9DQpnZ3Bsb3QoTVMsIGFlcyh5ID0gY29zdCwgeCA9IG51bS5yZXNwb25zZXMpKSArDQogIGdlb21fcG9pbnQoKSArDQogIGdlb21fc21vb3RoKG1ldGhvZCA9IGxtLCBzZSA9IEZBTFNFLA0KICAgICAgICAgICAgICBjb2xvciA9ICJibGFjayIsIA0KICAgICAgICAgICAgICBzaXplID0gMC41LCANCiAgICAgICAgICAgICAgbGluZXR5cGUgPSAiZGFzaGVkIikgKw0KICBsYWJzKHRpdGxlID0gIlNjYXR0ZXJwbG90IG9mIGNvc3QgfiBudW0ucmVwb25zZXMiKQ0KDQpgYGANCg0KIyMgTWVuY29jb2trYW4gbW9kZWwgYGNvc3R+bnVtLnJlc3BvbnNlc2ANCg0KYGBge3J9DQpNUy5sbSA8LSBsbShjb3N0IH4gbnVtLnJlc3BvbnNlcywgZGF0YSA9IE1TKQ0Kc3VtbWFyeS5sbShNUy5sbSkkY29lZmZpY2llbnRzDQoNCnBhc3RlKCJSMjogIiwgcm91bmQoc3VtbWFyeS5sbShNUy5sbSkkci5zcXVhcmVkLCAzKSkNCmBgYA0KDQojIyBNZW1idWF0IHBsb3QgZGFyaSBtb2RlbCByZWdyZXNpDQoNCmBgYHtyfQ0KZGF0YS5mcmFtZSh5ID0gcnN0YW5kYXJkKE1TLmxtKSwNCiAgICAgICAgICAgeCA9IE1TLmxtJGZpdHRlZC52YWx1ZXMpICU+JQ0KICBnZ3Bsb3QoYWVzKHggPSB4LCB5ID0geSkpICsgDQogIGdlb21fcG9pbnQoKSArDQogIGdlb21faGxpbmUoeWludGVyY2VwdCA9IDAsIGxpbmV0eXBlID0gImRvdHRlZCIpICsNCiAgbGFicyh0aXRsZSA9ICJTdGFuZGFyZGl6ZWQgUmVzaWR1YWxzIHZzIEZpdHRlZCBWYWx1ZXMgUGxvdCIpDQpgYGANCg0KIyBNZXRvZGUgV0xTDQoNCiMjIE1lbmNhcmkgbW9kZWwgcmVncmVzaSBiYXJ1DQoNCmBgYHtyfQ0KTVMud2VpZ2h0cyA8LSAxIC8gbG0oYWJzKE1TLmxtJHJlc2lkdWFscykgfiBNUy5sbSRmaXR0ZWQudmFsdWVzKSRmaXR0ZWQudmFsdWVzXjINCk1TLmxtdyA8LSBsbShjb3N0IH4gbnVtLnJlc3BvbnNlcywgDQogICAgICAgICAgICAgIGRhdGEgPSBNUywgDQogICAgICAgICAgICAgIHdlaWdodHMgPSBNUy53ZWlnaHRzKQ0Kc3VtbWFyeS5sbShNUy5sbXcpJGNvZWZmaWNpZW50cw0KcGFzdGUoIlIyOiAiLCByb3VuZChzdW1tYXJ5LmxtKE1TLmxtdykkci5zcXVhcmVkLCAzKSkNCmBgYA0KDQojIyBzY2F0dGVycGxvdA0KDQpgYGB7cn0NCmRhdGEuZnJhbWUoeSA9IHJzdGFuZGFyZChNUy5sbXcpLA0KICAgICAgICAgICB4ID0gTVMubG0kZml0dGVkLnZhbHVlcykgJT4lDQogIGdncGxvdChhZXMoeCA9IHgsIHkgPSB5KSkgKyANCiAgZ2VvbV9wb2ludCgpICsNCiAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gMCwgbGluZXR5cGUgPSAiZG90dGVkIikgKw0KICBsYWJzKHRpdGxlID0gIlN0YW5kYXJkaXplZCBSZXNpZHVhbHMgdnMgRml0dGVkIFZhbHVlcyBQbG90IikNCmBgYA0KDQojIFBlcmJhbmRpbmdhbiBwbG90IE9MUyBkYW4gV0xTDQoNCmBgYHtyLCBtZXNzYWdlcyA9IEZBTFNFfQ0KZ2dwbG90KGRhdGEgPSBNUywgYWVzKHkgPSBjb3N0LCB4ID0gbnVtLnJlc3BvbnNlcykpICsNCiAgZ2VvbV9wb2ludCgpICsNCiAgZ2VvbV9zbW9vdGgobWV0aG9kID0gbG0sIHNlID0gRkFMU0UsDQogICAgICAgICAgICAgIGNvbG9yID0gImJsYWNrIiwgDQogICAgICAgICAgICAgIHNpemUgPSAwLjUsIA0KICAgICAgICAgICAgICBsaW5ldHlwZSA9ICJkYXNoZWQiKSArDQogIGdlb21fc21vb3RoKG1ldGhvZCA9IGxtLCBzZSA9IEZBTFNFLCANCiAgICAgICAgICAgICAgYWVzKHdlaWdodCA9IE1TLndlaWdodHMpLA0KICAgICAgICAgICAgICBjb2xvciA9ICJyZWQiLCANCiAgICAgICAgICAgICAgc2l6ZSA9IDAuNSwNCiAgICAgICAgICAgICAgbGluZXR5cGUgPSAiZGFzaGVkIikgKw0KICBsYWJzKHRpdGxlID0gIlNjYXR0ZXJwbG90IG9mIGNvc3QgfiBudW0ucmVwb25zZXMiKQ0KYGBgDQoNCg==