\[ \int 4e^{-7x}dx \]
\[ \frac{4}{-7} e^{-7x} + C \]
$$
=-220 \ dN = (-220)dt \ N = dt-220dt \ N(1) = N_0 - - 220(1) \ N_0 = 6530 + 1050 + 220 \ N_0 = 7800 \ N = 7800 - - 220t
$$
func <- function(x) {
2*x-9
}
integrate(func, 4.5, 8.5)$value
## [1] 16
func1 <- function(x) {
x^2-2*x-2
}
func2 <- function(x) {
x+2
}
integrate(func2, -1, 4)$value - integrate(func1, -1, 4)$value
## [1] 20.83333
x == size of order n == number of orders
\[ n*x = 110 \]
If we designate a storage spot for each iron in an order, but no additional spots (in other words, we wait till we are out to reorder), we can model our costs as follows:
\[ 3.75*x + 8.25*n \] Substituting …
\[ 3.75*110 / n + 8.25*n \\ 412.5/n + 8.25*n \\ \]