The Data

download.file("http://www.openintro.org/stat/data/mlb11.RData", destfile = "mlb11.RData")
load("mlb11.RData")

Exercise 1

What type of plot would you use to display the relationship between runs and one of the other numerical variables? Plot this relationship using the variable at_bats as the predictor. Does the relationship look linear? If you knew a team’s at_bats, would you be comfortable using a linear model to predict the number of runs?

A scaterplot would look good.

plot(mlb11$at_bats, mlb11$runs)

The relationsship does look linear.

cor(mlb11$runs, mlb11$at_bats)
## [1] 0.610627

Exercise 2

Looking at your plot from the previous exercise, describe the relationship between these two variables. Make sure to discuss the form, direction, and strength of the relationship as well as any unusual observations.

There is not a strong relationship between the two variables, based on both the plot and the corelation coefficient. The relationship appears linear and is positive. There is a high outlier between 5500 and 5550 on the graph that seems to be unusual.

plot_ss(x = mlb11$at_bats, y = mlb11$runs)

## Click two points to make a line.
                                
## Call:
## lm(formula = y ~ x, data = pts)
## 
## Coefficients:
## (Intercept)            x  
##  -2789.2429       0.6305  
## 
## Sum of Squares:  123721.9
plot_ss(x = mlb11$at_bats, y = mlb11$runs, showSquares = TRUE)

## Click two points to make a line.
                                
## Call:
## lm(formula = y ~ x, data = pts)
## 
## Coefficients:
## (Intercept)            x  
##  -2789.2429       0.6305  
## 
## Sum of Squares:  123721.9

Exercise 3

Using plot_ss, choose a line that does a good job of minimizing the sum of squares. Run the function several times. What was the smallest sum of squares that you got? How does it compare to your neighbors?

plot_ss(x = mlb11$at_bats, y = mlb11$runs, showSquares = TRUE)

## Click two points to make a line.
                                
## Call:
## lm(formula = y ~ x, data = pts)
## 
## Coefficients:
## (Intercept)            x  
##  -2789.2429       0.6305  
## 
## Sum of Squares:  123721.9

123721.9

The Linear Model

m1 <- lm(runs ~ at_bats, data = mlb11)
summary(m1)
## 
## Call:
## lm(formula = runs ~ at_bats, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -125.58  -47.05  -16.59   54.40  176.87 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2789.2429   853.6957  -3.267 0.002871 ** 
## at_bats         0.6305     0.1545   4.080 0.000339 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 66.47 on 28 degrees of freedom
## Multiple R-squared:  0.3729, Adjusted R-squared:  0.3505 
## F-statistic: 16.65 on 1 and 28 DF,  p-value: 0.0003388

Exercise 4

Fit a new model that uses homeruns to predict runs. Using the estimates from the R output, write the equation of the regression line. What does the slope tell us in the context of the relationship between success of a team and its home runs?

m2 <- lm(runs ~ homeruns, data = mlb11)
summary(m2)
## 
## Call:
## lm(formula = runs ~ homeruns, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -91.615 -33.410   3.231  24.292 104.631 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 415.2389    41.6779   9.963 1.04e-10 ***
## homeruns      1.8345     0.2677   6.854 1.90e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 51.29 on 28 degrees of freedom
## Multiple R-squared:  0.6266, Adjusted R-squared:  0.6132 
## F-statistic: 46.98 on 1 and 28 DF,  p-value: 1.9e-07

The slope tells us that there is a positive relationship between the runs and homeruns. For every 1 increase in homeruns there is a 1.835 increase in runs

Prediction and Prediction Errors

plot(mlb11$runs ~ mlb11$at_bats)
abline(m1)

Exercise 5

If a team manager saw the least squares regression line and not the actual data, how many runs would he or she predict for a team with 5,578 at-bats? Is this an overestimate or an underestimate, and by how much? In other words, what is the residual for this prediction?

y^=−2789.2429+0.6305∗atbats

predicted= (.6305*5578- 2789.2429)

727.686

They would predict that the number of runs would be 727.686. This is an overestimate. There does not seem to be a value at 5578 to use to calculate the residual but based on the points in the area this appears to be an overestimate.

Model Diagnostics

plot(m1$residuals ~ mlb11$at_bats)
abline(h = 0, lty = 3)  # adds a horizontal dashed line at y = 0

Exercise 6

Is there any apparent pattern in the residuals plot? What does this indicate about the linearity of the relationship between runs and at-bats?

There does not seem to be a pattern, the points appear random. There seem to be mostly equal amounts of points above and below the line though.

hist(m1$residuals)

Mostly normal.

qqnorm(m1$residuals)
qqline(m1$residuals)  # adds diagonal line to the normal prob plot

These mostly all along the qqline.

Exercise 7

Based on the histogram and the normal probability plot, does the nearly normal residuals condition appear to be met?

Yes, the histogram is mostly normal and most of the points on the qqplot are along the qqline.

Exercise 8

Based on the plot in (1), does the constant variability condition appear to be met?

Yes

On Your Own

1

Choose another traditional variable from mlb11 that you think might be a good predictor of runs. Produce a scatterplot of the two variables and fit a linear model. At a glance, does there seem to be a linear relationship

plot(mlb11$bat_avg, mlb11$runs)

m3 <- lm(runs ~ bat_avg, data = mlb11)
plot(mlb11$runs ~ mlb11$bat_avg)
abline(m3)

Yes there seems to be a linear relationship between runs and batting average.

2

How does this relationship compare to the relationship between runs and at_bats? Use the R2 values from the two model summaries to compare. Does your variable seem to predict runs better than at_bats? How can you tell?

summary(m3)
## 
## Call:
## lm(formula = runs ~ bat_avg, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -94.676 -26.303  -5.496  28.482 131.113 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -642.8      183.1  -3.511  0.00153 ** 
## bat_avg       5242.2      717.3   7.308 5.88e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 49.23 on 28 degrees of freedom
## Multiple R-squared:  0.6561, Adjusted R-squared:  0.6438 
## F-statistic: 53.41 on 1 and 28 DF,  p-value: 5.877e-08
summary(m1)
## 
## Call:
## lm(formula = runs ~ at_bats, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -125.58  -47.05  -16.59   54.40  176.87 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2789.2429   853.6957  -3.267 0.002871 ** 
## at_bats         0.6305     0.1545   4.080 0.000339 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 66.47 on 28 degrees of freedom
## Multiple R-squared:  0.3729, Adjusted R-squared:  0.3505 
## F-statistic: 16.65 on 1 and 28 DF,  p-value: 0.0003388

R^2 is .3729 for atbats vs runs R^2 is .6561 for bat_avg vs runs

Batting average seems to have a slightly stronger relationship. This is shown by the higher R^2 value. I think batting average would predict runs better based on this value.

3

Now that you can summarize the linear relationship between two variables, investigate the relationships between runs and each of the other five traditional variables. Which variable best predicts runs? Support your conclusion using the graphical and numerical methods we’ve discussed (for the sake of conciseness, only include output for the best variable, not all five).

m4 <- lm(runs ~ hits, data = mlb11)
plot(mlb11$runs ~ mlb11$hits)
abline(m4)

summary(m4)
## 
## Call:
## lm(formula = runs ~ hits, data = mlb11)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -103.718  -27.179   -5.233   19.322  140.693 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -375.5600   151.1806  -2.484   0.0192 *  
## hits           0.7589     0.1071   7.085 1.04e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.23 on 28 degrees of freedom
## Multiple R-squared:  0.6419, Adjusted R-squared:  0.6292 
## F-statistic:  50.2 on 1 and 28 DF,  p-value: 1.043e-07
m5 <- lm(runs ~ strikeouts, data = mlb11)
plot(mlb11$runs ~ mlb11$strikeouts)
abline(m5)

summary(m5)
## 
## Call:
## lm(formula = runs ~ strikeouts, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -132.27  -46.95  -11.92   55.14  169.76 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1054.7342   151.7890   6.949 1.49e-07 ***
## strikeouts    -0.3141     0.1315  -2.389   0.0239 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 76.5 on 28 degrees of freedom
## Multiple R-squared:  0.1694, Adjusted R-squared:  0.1397 
## F-statistic: 5.709 on 1 and 28 DF,  p-value: 0.02386
m6 <- lm(runs ~ stolen_bases, data = mlb11)
plot(mlb11$runs ~ mlb11$stolen_bases)
abline(m6)

summary(m6)
## 
## Call:
## lm(formula = runs ~ stolen_bases, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -139.94  -62.87   10.01   38.54  182.49 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  677.3074    58.9751  11.485 4.17e-12 ***
## stolen_bases   0.1491     0.5211   0.286    0.777    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 83.82 on 28 degrees of freedom
## Multiple R-squared:  0.002914,   Adjusted R-squared:  -0.0327 
## F-statistic: 0.08183 on 1 and 28 DF,  p-value: 0.7769
m7 <- lm(runs ~ wins, data = mlb11)
plot(mlb11$runs ~ mlb11$wins)
abline(m7)

summary(m7)
## 
## Call:
## lm(formula = runs ~ wins, data = mlb11)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -145.450  -47.506   -7.482   47.346  142.186 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  342.121     89.223   3.834 0.000654 ***
## wins           4.341      1.092   3.977 0.000447 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 67.1 on 28 degrees of freedom
## Multiple R-squared:  0.361,  Adjusted R-squared:  0.3381 
## F-statistic: 15.82 on 1 and 28 DF,  p-value: 0.0004469

Batting average seems to be the best predictor of runs

4

Now examine the three newer variables. These are the statistics used by the author of Moneyball to predict a teams success. In general, are they more or less effective at predicting runs that the old variables? Explain using appropriate graphical and numerical evidence. Of all ten variables we’ve analyzed, which seems to be the best predictor of runs? Using the limited (or not so limited) information you know about these baseball statistics, does your result make sense?

m8 <- lm(runs ~ new_onbase, data = mlb11)
plot(mlb11$runs ~ mlb11$new_onbase)
abline(m8)

summary(m8)
## 
## Call:
## lm(formula = runs ~ new_onbase, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -58.270 -18.335   3.249  19.520  69.002 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -1118.4      144.5  -7.741 1.97e-08 ***
## new_onbase    5654.3      450.5  12.552 5.12e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32.61 on 28 degrees of freedom
## Multiple R-squared:  0.8491, Adjusted R-squared:  0.8437 
## F-statistic: 157.6 on 1 and 28 DF,  p-value: 5.116e-13
m9 <- lm(runs ~ new_slug, data = mlb11)
plot(mlb11$runs ~ mlb11$new_slug)
abline(m9)

summary(m9)
## 
## Call:
## lm(formula = runs ~ new_slug, data = mlb11)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -45.41 -18.66  -0.91  16.29  52.29 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -375.80      68.71   -5.47 7.70e-06 ***
## new_slug     2681.33     171.83   15.61 2.42e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 26.96 on 28 degrees of freedom
## Multiple R-squared:  0.8969, Adjusted R-squared:  0.8932 
## F-statistic: 243.5 on 1 and 28 DF,  p-value: 2.42e-15
m10 <- lm(runs ~ new_obs, data = mlb11)
plot(mlb11$runs ~ mlb11$new_obs)
abline(m10)

summary(m10)
## 
## Call:
## lm(formula = runs ~ new_obs, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -43.456 -13.690   1.165  13.935  41.156 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -686.61      68.93  -9.962 1.05e-10 ***
## new_obs      1919.36      95.70  20.057  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21.41 on 28 degrees of freedom
## Multiple R-squared:  0.9349, Adjusted R-squared:  0.9326 
## F-statistic: 402.3 on 1 and 28 DF,  p-value: < 2.2e-16

The new variables are much better at predicting the runs. The new_obs seems like the best way to predict. We can tell this by comparing the R-squared values and seeing which is the highest.

5

Check the model diagnostics for the regression model with the variable you decided was the best predictor for runs.

plot(m10$residuals ~ mlb11$new_obs)
abline(h = 0, lty = 3)  # adds a horizontal dashed line at y = 0

Yes to linearity. Appears to meet constant variability.

hist(m10$residuals)

Mostly normal.

qqnorm(m10$residuals)
qqline(m10$residuals)

qqplot confirms that this is mostly normal.