Normal Distribution

Fig: R functions for normal distribution

pnorm

Probability of obtaining 0 or less in a standard normal distribution:

> pnorm(0) # by default, mean=0 and sd=1
[1] 0.5

Similarly, probability of having 10 or less in a normal distribution with mean 10 and sd 3 -

> pnorm(12, mean=10, sd=3)
[1] 0.7475075

In the following example, lower.tail = F provides the probability of having 1.96 or more:

> pnorm(1.96, lower.tail = F)
[1] 0.0249979

Similarly, probability of obtaining 0 or more in a standard normal distribution:

> pnorm(0, lower.tail=F)
[1] 0.5

68, 95, 99.7 rule -

> pnorm(1)-pnorm(-1)
[1] 0.6826895
> pnorm(2)-pnorm(-2)
[1] 0.9544997
> pnorm(3)-pnorm(-3)
[1] 0.9973002

qnorm

The random variable for which the probability is 0.5 or less in a standard normal distribution -

> qnorm(0.5)
[1] 0

The random variable for which the cumulative probability is 0.025 or less in a standard normal distribution -

> qnorm(0.025)
[1] -1.959964

Using lower.tail=F we can get the upper tail value for the variable for which the probability is 0.025 or less:

> qnorm(0.025, lower.tail=F)
[1] 1.959964

dnorm

dnorm() simply gives the density of a random variable:

> dnorm(0)
[1] 0.3989423

A simple illustration:

> x <- c(-10:10)
> plot(x, dnorm(x, mean=0, sd=3))

rnorm

To generate random numbers from a normal distribution:

> rnorm(10)  # generates 10 standard normal variables
 [1]  0.4543401  0.1647346  2.0118904 -1.0688548 -0.9778855  0.6702705
 [7]  0.3840356 -0.7613346  2.7346792 -0.7315600

Generating variables from a normal distribution with specified mean and sd:

> rnorm(10, mean=150, sd=15)
 [1] 167.5613 136.6430 127.4718 147.3143 127.3961 152.5034 148.5015 134.0661
 [9] 135.6686 143.5774

Check out https://www.homeworkhelponline.net for R Studio Programming assignment help.


Uniform Distribution

Fig: Uniform distribution density function

Fig: Uniform Distribution Cumulative Function

punif

Cumulative distribution function:

> punif(0.5,min=0,max=1)
[1] 0.5

Another example:

> punif(3,min=0, max=20)
[1] 0.15

lower.tail argument can be used to obtain the upper tail’s probability:

> punif(3,min=0, max=20, lower.tail = F)
[1] 0.85

runif

A broadly used function for generating random numbers from a uniform distribution where probability of obtaining any of the numbers is same:

> runif(n=5, min=1, max=10)
[1] 5.540486 1.326721 6.967847 7.076371 1.574161

This generates 5 uniform random numbers between 1 and 10.

Others

R has other functions for uniform distribution which are dunif() and qunif(). Run help() command for details.


Binomial Distribution

Fig: Binomial Probabiliy Mass Function

pbinom

Cumulative function of a binomial distribution:

> pbinom(5, size = 10, p = 0.4)
[1] 0.8337614

It shows the probability of obtaining 5 or less from a binomial distribution of size 10 and probability of success 0.4.

> x <- 1:10
> plot(x, pbinom(x, 10, 0.4))
> lines(x, pbinom(x, 10, 0.4), col = "blue")

qbinom

It takes the cumulative probability and returns the random variable:

> x <- c(0, 0.3, 0.5, 0.9)
> qbinom(x, 10, 0.4)
[1] 0 3 4 6

rbinom

The following code generates 10 random numbers from binomial distribution with parameters size=10 and probability of success = 0.65:

> rbinom(10, size=10, p=0.65)
 [1] 8 8 6 6 9 7 8 6 7 6

dbinom

This simply shows the density of a value:

> x<- 1:10
> y <- dbinom(x, 10, 0.4)
> plot(x,y)
> lines(x,y)

Logistic distribution

Fig: Logistic distribution

dlogis

dlogis() simply gives the density of a random variable:

> dlogis(x = 0, location = 0, scale = 1)
[1] 0.25
> dlogis(5, 5, 1)
[1] 0.25
> dlogis(0, 0, 3)
[1] 0.08333333

plogis

Cumulative function of a logistic distribution:

> plogis(q = 2, location = 0, scale = 2)
[1] 0.7310586

qlogis

It takes the cumulative probability and returns the random variable:

> prob <- c(0.4, 0.5, 0.75, 0.9)
> qlogis(prob, 0, 3)
[1] -1.216395  0.000000  3.295837  6.591674
> plot(x = qlogis(prob, 0, 3), y = prob,
+      type="h", xlab="Random Variable X",
+      ylab="Probability P(X=k)",
+      font = 2, font.lab = 2)

F distribution

Fig: F distribution

pf

Cumulative distribution:

> pf(2.5, df1=20, df2=20)
[1] 0.9767081

This shows that cumulative probability of F statistic being 2.5 with df 20, 20 is 97.6%

To calculate the upper tail probability:

> pf(2.5, df1=20, df2=20, lower.tail=F)
[1] 0.0232919

qf

> qf(0.05, df1=3, df2=8, lower.tail=F)
[1] 4.066181

This shows, in a F distribution with df 3, 8, the probability will be 0.05 or lower for the values that is greater than 4.06.

Others

R has other functions for F distribution which are df() and rf(). Run help() command for details.

LS0tDQp0aXRsZTogIlByb2JhYmlsaXR5IERpc3RyaWJ1dGlvbnMiDQphdXRob3I6ICJNRCBBSFNBTlVMIElTTEFNIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IHRydWUNCiAgICB0b2NfZmxvYXQ6IHRydWUNCiAgICB0b2NfZGVwdGg6IDQNCiAgICB0aGVtZTogY2VydWxlYW4NCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQogICAgDQotLS0NCg0KYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9DQprbml0cjo6b3B0c19jaHVuayRzZXQoDQogIGNvbW1lbnQgPSAiIiwgcHJvbXB0ID0gVFJVRSwgbWVzc2FnZT1GLCB3YXJuaW5nID0gRg0KKQ0KYGBgDQoNCi0tLQ0KDQojIyBOb3JtYWwgRGlzdHJpYnV0aW9uDQoNCg0KYGBge3IsIGVjaG89RkFMU0V9DQp1cmwgPC0gImh0dHBzOi8vcXBoLmZzLnF1b3JhY2RuLm5ldC9tYWluLXFpbWctNGUxZjg4YjU0NzA0NjA2NDU4YjUzYjJhMGU4MGY1YjYiDQpgYGANCiFbRmlnOiBSIGZ1bmN0aW9ucyBmb3Igbm9ybWFsIGRpc3RyaWJ1dGlvbl0oYHIgdXJsYCkNCg0KIyMjIHBub3JtDQoNClByb2JhYmlsaXR5IG9mIG9idGFpbmluZyAwIG9yIGxlc3MgaW4gYSBzdGFuZGFyZCBub3JtYWwgZGlzdHJpYnV0aW9uOg0KYGBge3J9DQpwbm9ybSgwKSAjIGJ5IGRlZmF1bHQsIG1lYW49MCBhbmQgc2Q9MQ0KYGBgDQpTaW1pbGFybHksIHByb2JhYmlsaXR5IG9mIGhhdmluZyAxMCBvciBsZXNzIGluIGEgbm9ybWFsIGRpc3RyaWJ1dGlvbiB3aXRoIG1lYW4gMTAgYW5kIHNkIDMgLQ0KYGBge3J9DQpwbm9ybSgxMiwgbWVhbj0xMCwgc2Q9MykNCmBgYA0KDQpJbiB0aGUgZm9sbG93aW5nIGV4YW1wbGUsIGBsb3dlci50YWlsID0gRmAgcHJvdmlkZXMgdGhlIHByb2JhYmlsaXR5IG9mIGhhdmluZyAxLjk2IG9yIG1vcmU6DQpgYGB7cn0NCnBub3JtKDEuOTYsIGxvd2VyLnRhaWwgPSBGKQ0KYGBgDQoNClNpbWlsYXJseSwgcHJvYmFiaWxpdHkgb2Ygb2J0YWluaW5nIDAgb3IgbW9yZSBpbiBhIHN0YW5kYXJkIG5vcm1hbCBkaXN0cmlidXRpb246DQpgYGB7cn0NCnBub3JtKDAsIGxvd2VyLnRhaWw9RikNCmBgYA0KDQo2OCwgOTUsIDk5LjcgcnVsZSAtDQpgYGB7cn0NCnBub3JtKDEpLXBub3JtKC0xKQ0KcG5vcm0oMiktcG5vcm0oLTIpDQpwbm9ybSgzKS1wbm9ybSgtMykNCmBgYA0KDQojIyMgcW5vcm0NCg0KVGhlIHJhbmRvbSB2YXJpYWJsZSBmb3Igd2hpY2ggdGhlIHByb2JhYmlsaXR5IGlzIDAuNSBvciBsZXNzIGluIGEgc3RhbmRhcmQgbm9ybWFsIGRpc3RyaWJ1dGlvbiAtDQpgYGB7cn0NCnFub3JtKDAuNSkNCmBgYA0KDQpUaGUgcmFuZG9tIHZhcmlhYmxlIGZvciB3aGljaCB0aGUgY3VtdWxhdGl2ZSBwcm9iYWJpbGl0eSBpcyAwLjAyNSBvciBsZXNzIGluIGEgc3RhbmRhcmQgbm9ybWFsIGRpc3RyaWJ1dGlvbiAtDQpgYGB7cn0NCnFub3JtKDAuMDI1KQ0KYGBgDQoNClVzaW5nIGBsb3dlci50YWlsPUZgIHdlIGNhbiBnZXQgdGhlIHVwcGVyIHRhaWwgdmFsdWUgZm9yIHRoZSB2YXJpYWJsZSBmb3Igd2hpY2ggdGhlIHByb2JhYmlsaXR5IGlzIDAuMDI1IG9yIGxlc3M6DQpgYGB7cn0NCnFub3JtKDAuMDI1LCBsb3dlci50YWlsPUYpDQpgYGANCg0KIyMjIGRub3JtDQoNCmBkbm9ybSgpYCBzaW1wbHkgZ2l2ZXMgdGhlIGRlbnNpdHkgb2YgYSByYW5kb20gdmFyaWFibGU6DQpgYGB7cn0NCmRub3JtKDApDQpgYGANCg0KQSBzaW1wbGUgaWxsdXN0cmF0aW9uOg0KYGBge3J9DQp4IDwtIGMoLTEwOjEwKQ0KcGxvdCh4LCBkbm9ybSh4LCBtZWFuPTAsIHNkPTMpKQ0KYGBgDQoNCiMjIyBybm9ybQ0KDQpUbyBnZW5lcmF0ZSByYW5kb20gbnVtYmVycyBmcm9tIGEgbm9ybWFsIGRpc3RyaWJ1dGlvbjoNCmBgYHtyfQ0Kcm5vcm0oMTApICAjIGdlbmVyYXRlcyAxMCBzdGFuZGFyZCBub3JtYWwgdmFyaWFibGVzDQpgYGANCg0KR2VuZXJhdGluZyB2YXJpYWJsZXMgZnJvbSBhIG5vcm1hbCBkaXN0cmlidXRpb24gd2l0aCBzcGVjaWZpZWQgbWVhbiBhbmQgc2Q6DQpgYGB7cn0NCnJub3JtKDEwLCBtZWFuPTE1MCwgc2Q9MTUpDQpgYGANCg0KQ2hlY2sgb3V0IFtodHRwczovL3d3dy5ob21ld29ya2hlbHBvbmxpbmUubmV0XShodHRwczovL3d3dy5ob21ld29ya2hlbHBvbmxpbmUubmV0L3Byb2dyYW1taW5nL3ItcHJvZ3JhbW1pbmcgIlIgaGVscCIpIGZvciBSIFN0dWRpbyBQcm9ncmFtbWluZyBhc3NpZ25tZW50IGhlbHAuDQoNCi0tLQ0KDQojIyBVbmlmb3JtIERpc3RyaWJ1dGlvbg0KDQpgYGB7ciwgZWNobz1GQUxTRX0NCnVybCA8LSAiRmlndXJlcy9Vbmlmb3JtIERpc3RyaWJ1dGlvbi5naWYiDQpgYGANCiFbRmlnOiBVbmlmb3JtIGRpc3RyaWJ1dGlvbiBkZW5zaXR5IGZ1bmN0aW9uXShgciB1cmxgKQ0KDQpgYGB7ciwgZWNobz1GQUxTRX0NCnVybCA8LSAiRmlndXJlcy9Vbmlmb3JtIERpc3RyaWJ1dGlvbiBDdW11bGF0aXZlIEZ1bmN0aW9uLnBuZyINCmBgYA0KIVtGaWc6IFVuaWZvcm0gRGlzdHJpYnV0aW9uIEN1bXVsYXRpdmUgRnVuY3Rpb25dKGByIHVybGApDQoNCiMjIyBwdW5pZg0KDQpDdW11bGF0aXZlIGRpc3RyaWJ1dGlvbiBmdW5jdGlvbjoNCmBgYHtyfQ0KcHVuaWYoMC41LG1pbj0wLG1heD0xKQ0KYGBgDQoNCkFub3RoZXIgZXhhbXBsZToNCmBgYHtyfQ0KcHVuaWYoMyxtaW49MCwgbWF4PTIwKQ0KYGBgDQoNCmBsb3dlci50YWlsYCBhcmd1bWVudCBjYW4gYmUgdXNlZCB0byBvYnRhaW4gdGhlIHVwcGVyIHRhaWwncyBwcm9iYWJpbGl0eToNCmBgYHtyfQ0KcHVuaWYoMyxtaW49MCwgbWF4PTIwLCBsb3dlci50YWlsID0gRikNCmBgYA0KDQojIyMgcnVuaWYNCg0KQSBicm9hZGx5IHVzZWQgZnVuY3Rpb24gZm9yIGdlbmVyYXRpbmcgcmFuZG9tIG51bWJlcnMgZnJvbSBhIHVuaWZvcm0gZGlzdHJpYnV0aW9uIHdoZXJlIHByb2JhYmlsaXR5IG9mIG9idGFpbmluZyBhbnkgb2YgdGhlIG51bWJlcnMgaXMgc2FtZToNCmBgYHtyfQ0KcnVuaWYobj01LCBtaW49MSwgbWF4PTEwKQ0KYGBgDQpUaGlzIGdlbmVyYXRlcyA1IHVuaWZvcm0gcmFuZG9tIG51bWJlcnMgYmV0d2VlbiAxIGFuZCAxMC4NCg0KIyMjIE90aGVycw0KDQpSIGhhcyBvdGhlciBmdW5jdGlvbnMgZm9yIHVuaWZvcm0gZGlzdHJpYnV0aW9uIHdoaWNoIGFyZSBgZHVuaWYoKWAgYW5kIGBxdW5pZigpYC4NClJ1biBgaGVscCgpYCBjb21tYW5kIGZvciBkZXRhaWxzLg0KDQotLS0NCg0KIyMgQmlub21pYWwgRGlzdHJpYnV0aW9uDQoNCmBgYHtyLCBlY2hvPUZBTFNFfQ0KdXJsIDwtICJGaWd1cmVzL0Jpbm9taWFsIERpc3RyaWJ1dGlvbi5wbmciDQpgYGANCiFbRmlnOiBCaW5vbWlhbCBQcm9iYWJpbGl5IE1hc3MgRnVuY3Rpb25dKGByIHVybGApDQoNCiMjIyBwYmlub20NCg0KQ3VtdWxhdGl2ZSBmdW5jdGlvbiBvZiBhIGJpbm9taWFsIGRpc3RyaWJ1dGlvbjoNCmBgYHtyfQ0KcGJpbm9tKDUsIHNpemUgPSAxMCwgcCA9IDAuNCkNCmBgYA0KSXQgc2hvd3MgdGhlIHByb2JhYmlsaXR5IG9mIG9idGFpbmluZyA1IG9yIGxlc3MgZnJvbSBhIGJpbm9taWFsIGRpc3RyaWJ1dGlvbiBvZiBzaXplIDEwIGFuZCBwcm9iYWJpbGl0eSBvZiBzdWNjZXNzIDAuNC4NCg0KYGBge3J9DQp4IDwtIDE6MTANCnBsb3QoeCwgcGJpbm9tKHgsIDEwLCAwLjQpKQ0KbGluZXMoeCwgcGJpbm9tKHgsIDEwLCAwLjQpLCBjb2wgPSAiYmx1ZSIpDQpgYGANCg0KDQojIyMgcWJpbm9tDQoNCkl0IHRha2VzIHRoZSBjdW11bGF0aXZlIHByb2JhYmlsaXR5IGFuZCByZXR1cm5zIHRoZSByYW5kb20gdmFyaWFibGU6DQpgYGB7cn0NCnggPC0gYygwLCAwLjMsIDAuNSwgMC45KQ0KcWJpbm9tKHgsIDEwLCAwLjQpDQpgYGANCg0KIyMjIHJiaW5vbQ0KDQpUaGUgZm9sbG93aW5nIGNvZGUgZ2VuZXJhdGVzIDEwIHJhbmRvbSBudW1iZXJzIGZyb20gYmlub21pYWwgZGlzdHJpYnV0aW9uIHdpdGggcGFyYW1ldGVycyBzaXplPTEwIGFuZCBwcm9iYWJpbGl0eSBvZiBzdWNjZXNzID0gMC42NToNCmBgYHtyfQ0KcmJpbm9tKDEwLCBzaXplPTEwLCBwPTAuNjUpDQpgYGANCg0KIyMjIGRiaW5vbQ0KDQpUaGlzIHNpbXBseSBzaG93cyB0aGUgZGVuc2l0eSBvZiBhIHZhbHVlOg0KYGBge3J9DQp4PC0gMToxMA0KeSA8LSBkYmlub20oeCwgMTAsIDAuNCkNCnBsb3QoeCx5KQ0KbGluZXMoeCx5KQ0KYGBgDQoNCiMjIExvZ2lzdGljIGRpc3RyaWJ1dGlvbg0KIVtGaWc6IExvZ2lzdGljIGRpc3RyaWJ1dGlvbl0oRmlndXJlcy9Mb2dpc3RpYyBkaXN0cmlidXRpb24ucG5nKQ0KDQojIyMgZGxvZ2lzIA0KYGRsb2dpcygpYCBzaW1wbHkgZ2l2ZXMgdGhlIGRlbnNpdHkgb2YgYSByYW5kb20gdmFyaWFibGU6DQpgYGB7cn0NCmRsb2dpcyh4ID0gMCwgbG9jYXRpb24gPSAwLCBzY2FsZSA9IDEpDQpkbG9naXMoNSwgNSwgMSkNCmRsb2dpcygwLCAwLCAzKQ0KYGBgDQoNCg0KIyMjIHBsb2dpcw0KQ3VtdWxhdGl2ZSBmdW5jdGlvbiBvZiBhIGxvZ2lzdGljIGRpc3RyaWJ1dGlvbjoNCmBgYHtyfQ0KcGxvZ2lzKHEgPSAyLCBsb2NhdGlvbiA9IDAsIHNjYWxlID0gMikNCmBgYA0KDQojIyMgcWxvZ2lzDQpJdCB0YWtlcyB0aGUgY3VtdWxhdGl2ZSBwcm9iYWJpbGl0eSBhbmQgcmV0dXJucyB0aGUgcmFuZG9tIHZhcmlhYmxlOg0KYGBge3J9DQpwcm9iIDwtIGMoMC40LCAwLjUsIDAuNzUsIDAuOSkNCnFsb2dpcyhwcm9iLCAwLCAzKQ0KcGxvdCh4ID0gcWxvZ2lzKHByb2IsIDAsIDMpLCB5ID0gcHJvYiwNCiAgICAgdHlwZT0iaCIsIHhsYWI9IlJhbmRvbSBWYXJpYWJsZSBYIiwNCiAgICAgeWxhYj0iUHJvYmFiaWxpdHkgUChYPWspIiwNCiAgICAgZm9udCA9IDIsIGZvbnQubGFiID0gMikNCmBgYA0KDQoNCiMjIEYgZGlzdHJpYnV0aW9uDQoNCiFbRmlnOiBGIGRpc3RyaWJ1dGlvbl0oRmlndXJlcy9GIGRpc3RyaWJ1dGlvbi5wbmcpDQoNCiMjIyBwZg0KDQpDdW11bGF0aXZlIGRpc3RyaWJ1dGlvbjoNCmBgYHtyfQ0KcGYoMi41LCBkZjE9MjAsIGRmMj0yMCkNCmBgYA0KVGhpcyBzaG93cyB0aGF0IGN1bXVsYXRpdmUgcHJvYmFiaWxpdHkgb2YgRiBzdGF0aXN0aWMgYmVpbmcgMi41IHdpdGggZGYgMjAsIDIwIGlzIDk3LjYlDQoNClRvIGNhbGN1bGF0ZSB0aGUgdXBwZXIgdGFpbCBwcm9iYWJpbGl0eToNCmBgYHtyfQ0KcGYoMi41LCBkZjE9MjAsIGRmMj0yMCwgbG93ZXIudGFpbD1GKQ0KYGBgDQoNCiMjIyBxZg0KDQpgYGB7cn0NCnFmKDAuMDUsIGRmMT0zLCBkZjI9OCwgbG93ZXIudGFpbD1GKQ0KYGBgDQpUaGlzIHNob3dzLCBpbiBhIEYgZGlzdHJpYnV0aW9uIHdpdGggZGYgMywgOCwgdGhlIHByb2JhYmlsaXR5IHdpbGwgYmUgMC4wNSBvciBsb3dlciBmb3IgdGhlIHZhbHVlcyB0aGF0IGlzIGdyZWF0ZXIgdGhhbiA0LjA2Lg0KDQojIyMgT3RoZXJzDQoNClIgaGFzIG90aGVyIGZ1bmN0aW9ucyBmb3IgRiBkaXN0cmlidXRpb24gd2hpY2ggYXJlIGBkZigpYCBhbmQgYHJmKClgLg0KUnVuIGBoZWxwKClgIGNvbW1hbmQgZm9yIGRldGFpbHMuDQo=