1. Use integration by substitution to solve the integral below. \[ \int{4e^{-7x}dx}\]
Solution
Note: \(\int{e^u du} = e^u\) \[ \int{4e^{-7x}dx}\] Lets v = -7x dv = dx substitute this below: \[ \int{4e^{-7x}dx} = 4\int{e^{v}dv} = {4}e^{v} + C = -\frac{4}{7}e^{-7x} + C \] 2. Biologists are treating a pond contaminated with bacteria. The level of contamination is changing at a rate of \(\frac{dN}{dt}= -\frac{3150}{t^4} - 220\) bacteria per cubic centimeter per day, where t is the number of days since treatment began. Find a function N( t ) to estimate the level of contamination if the level after 1 day was 6530 bacteria per cubic centimeter.
Solution
Given,
t = 1
N(1) = 6530
\[\frac{dN}{dt}= -\frac{3150}{t^4} - 220 = N(t) = -\int\frac{3150}{t^4} dt - 200 \int dt+ C\]
\[N(t) = -3150*t^{-4}- 200 \int dt+ C = -\frac{3150} {-3} t ^ {-3} - 200 (t) + C \] Substitue value of t and N(t) :
\[N(1) = \frac{1050}{(1)^3} -220(1) + C\] \[6530 = 1050 - 220 + C \]
\[C = 6530 - 1050 + 220\] \[C = 5700 \]
Substitute C value:
\[N(t) = 1050 t^{-3} - 200 t + 5700\]
3. Find the total area of the red rectangles in the figure below, where the equation of the line is f ( x ) = 2x - 9.
Figure 1
Solution
Above plot shows limit (lower = 4.5, upper = 8.5)
area_fun <- function(x)
{
return(2 * x - 9)
}
value <- integrate(area_fun, lower = 4.5, upper = 8.5)$value
print(value)## [1] 16
4. Find the area of the region bounded by the graphs of the given equations. \[y = x ^ 2 - 2x -2, y = x + 2\] Enter your answer below.
Solution
value of x
\[x ^ 2 - 2x -2 = x + 2\]
\[x ^ 2 - 3x -4 = 0\]
\[x ^ 2 - 4x + x -4 = 0\]
\[x(x - 4) + 1(x - 4) = 0\] \[(x - 4) * (x + 1) = 0\] x = (-1, 4)
Create 2 functions for 2 equations.
Plot graphs.
Area of intersection
func_intersect <- function(x)
{
return((x+2) - (x^2 - 2*x -2))
}
area <- integrate(func_intersect, lower = -1, upper = 4)$value
print(area)## [1] 20.83333
5. A beauty supply store expects to sell 110 flat irons during the next year. It costs $3.75 to store one flat iron for one year. There is a fixed cost of $8.25 for each order. Find the lot size and the number of orders per year that will minimize inventory costs.
Solution
Suppose half of inventory keeps stock, let x = size of iron
storage cost = 3.75 * x/2
order cost = 8.25 * 110/x
Total Cost = 1.875x + 907.5/x
First order derivate 1.875 - 907.5/\(x^2\) = 0
\[1.875 * x ^ 2 - 907.5 = 0\] \[1.875 * x ^ 2 = 907.5\] \[x ^ 2 = \frac {907.5}{1.875}\] \[x = \sqrt \frac {907.5}{1.875}\]
## [1] 22
## [1] 5
Each year iron can order 5 times size of 22.
6. Use integration by parts to solve the integral below. \[\int ln( 9x ) ยท x^6 dx\]
Solution
Integration by parts formula:
u = ln(9x)
du = \(\frac {1}{x} dx\)
v = x^6
dv = \(\frac{1}{7}x^7\)
\[\int (uv) dx = ln(9x) * \frac{1}{7}x^7 - \int \frac{1}{x} \frac{1}{7}x^7 dx \] \[\int (uv) dx = ln(9x) * \frac{1}{7}x^7 - \frac {1}{7} \int x^6 dx \] \[\int (uv) dx = ln(9x) * \frac{1}{7}x^7 - \frac {1}{49} x^7 + C \]
7. Determine whether f ( x ) is a probability density function on the interval [1, \(e^6\)] . If not, determine the value of the definite integral. \[f(x) = \frac {1}{6x}\]
Solution
\[f(x) = \frac {1}{6x}\]
\[\int_1 ^{e^6} \frac {1}{6x} dx = \frac{1}{6}*lnx|_1^{e^6} = \frac{1}{6}ln(e^6) - \frac{1}{6}ln(1) = \frac{1}{6}[6 - 0] = 1\]