A. PERSIAPAN
A.1 Instalasi Package R yang diperlukan
# Menentukan Lokasi Mirror, di Indonesia ada di BPPT
r <- getOption("repos")
r["CRAN"] <- "https://repo.bppt.go.id/cran/"
options(repos = r)
# Nama Package yang diperlukan
packages <- c('readxl', 'car','lme4','lsmeans')
# Fungsi Cek Apakah Package ada? Jika tidak ada, maka Install. Jika Sudah Di install maka Load!
for (p in packages){
if(!require(p, character.only = T)){
install.packages(p)
}
library(p,character.only = T)
}## Loading required package: readxl
## Loading required package: car
## Loading required package: carData
## Loading required package: lme4
## Loading required package: Matrix
## Registered S3 methods overwritten by 'lme4':
## method from
## cooks.distance.influence.merMod car
## influence.merMod car
## dfbeta.influence.merMod car
## dfbetas.influence.merMod car
## Loading required package: lsmeans
## Loading required package: emmeans
## The 'lsmeans' package is now basically a front end for 'emmeans'.
## Users are encouraged to switch the rest of the way.
## See help('transition') for more information, including how to
## convert old 'lsmeans' objects and scripts to work with 'emmeans'.
A.2 Data
Silahkan unduh data yang diperlukan KLIK SINI untuk DOWNLOAD Data Two Way Anova. Lalu tempatkan pada Folder yang sesuai. Kalau di Tutorial ini, diletakkan di Drive E dengan nama Folder R
B. TWO WAY ANOVA TANPA INTERAKSI
B.1 Akses R ke Data
Data yang akan digunakan berada pada Sheet TanpaInteraksi
B.2 Melihat Data
## # A tibble: 20 x 3
## Perlakuan Blok Waktu
## <chr> <chr> <dbl>
## 1 MT1 B1 12
## 2 MT1 B2 2
## 3 MT1 B3 8
## 4 MT1 B4 1
## 5 MT1 B5 7
## 6 MT2 B1 20
## 7 MT2 B2 14
## 8 MT2 B3 17
## 9 MT2 B4 12
## 10 MT2 B5 17
## 11 MT3 B1 13
## 12 MT3 B2 7
## 13 MT3 B3 13
## 14 MT3 B4 8
## 15 MT3 B5 14
## 16 MT4 B1 11
## 17 MT4 B2 5
## 18 MT4 B3 10
## 19 MT4 B4 3
## 20 MT4 B5 6
## tibble [20 x 3] (S3: tbl_df/tbl/data.frame)
## $ Perlakuan: chr [1:20] "MT1" "MT1" "MT1" "MT1" ...
## $ Blok : chr [1:20] "B1" "B2" "B3" "B4" ...
## $ Waktu : num [1:20] 12 2 8 1 7 20 14 17 12 17 ...
B.3 Eksplorasi Data
B.4 Two Way Anova Tanpa Interaksi
library(lme4)
TwoWayAnovaTI <- lm(Waktu ~ Perlakuan+Blok, data = TanpaInteraksi)
anova(TwoWayAnovaTI)## Analysis of Variance Table
##
## Response: Waktu
## Df Sum Sq Mean Sq F value Pr(>F)
## Perlakuan 3 310 103.33 51.667 3.911e-07 ***
## Blok 4 184 46.00 23.000 1.489e-05 ***
## Residuals 12 24 2.00
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
B.5 Uji Lanjut
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = TwoWayAnovaTI)
##
## $Perlakuan
## diff lwr upr p adj
## MT2-MT1 10 7.344534 12.655466 0.0000006
## MT3-MT1 5 2.344534 7.655466 0.0005896
## MT4-MT1 1 -1.655466 3.655466 0.6858866
## MT3-MT2 -5 -7.655466 -2.344534 0.0005896
## MT4-MT2 -9 -11.655466 -6.344534 0.0000018
## MT4-MT3 -4 -6.655466 -1.344534 0.0036697
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = TwoWayAnovaTI)
##
## $Blok
## diff lwr upr p adj
## B2-B1 -7 -10.1874323 -3.8125677 0.0001147
## B3-B1 -2 -5.1874323 1.1874323 0.3221545
## B4-B1 -8 -11.1874323 -4.8125677 0.0000305
## B5-B1 -3 -6.1874323 0.1874323 0.0686145
## B3-B2 5 1.8125677 8.1874323 0.0023287
## B4-B2 -1 -4.1874323 2.1874323 0.8504543
## B5-B2 4 0.8125677 7.1874323 0.0124195
## B4-B3 -6 -9.1874323 -2.8125677 0.0004858
## B5-B3 -1 -4.1874323 2.1874323 0.8504543
## B5-B4 5 1.8125677 8.1874323 0.0023287
C. TWO WAY ANOVA DENGAN INTERAKSI
C.1 Akses R ke Data
Data yang akan digunakan berada pada Sheet DenganInteraksi
C.2 Melihat Data
## # A tibble: 8 x 4
## Pupuk Jagung Ulangan Hasil
## <chr> <chr> <dbl> <dbl>
## 1 P1 J1 1 28
## 2 P1 J1 2 30
## 3 P1 J2 1 42
## 4 P1 J2 2 38
## 5 P2 J1 1 33
## 6 P2 J1 2 33
## 7 P2 J2 1 40
## 8 P2 J2 2 42
C.3 Eksplorasi Data
C.4 Two Way Anova Dengan Interaksi
library(lme4)
TwoWayAnovaDI <- lm(Hasil ~ Jagung+Pupuk+Pupuk*Jagung, data = DenganInteraksi)
anova(TwoWayAnovaDI)## Analysis of Variance Table
##
## Response: Hasil
## Df Sum Sq Mean Sq F value Pr(>F)
## Jagung 1 180.5 180.5 60.1667 0.001489 **
## Pupuk 1 12.5 12.5 4.1667 0.110787
## Jagung:Pupuk 1 4.5 4.5 1.5000 0.287864
## Residuals 4 12.0 3.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
C.5 Uji Lanjut
#library(lsmeans)
#marginal.interaksi = lsmeans(TwoWayAnovaDI,
# pairwise ~ Pupuk:Jagung,
# adjust="tukey")
#marginal.interaksi
#TukeyHSD(aov(TwoWayAnovaDI), "Pupuk")
TukeyHSD(aov(TwoWayAnovaDI), "Jagung")## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = TwoWayAnovaDI)
##
## $Jagung
## diff lwr upr p adj
## J2-J1 9.5 6.099548 12.90045 0.0014905