1 Description

The data are from the Muscatine Coronary Risk Factor (MCRF) study, a longitudinal survey of school-age children in Muscatine, Iowa. The MCRF study had the goal of examining the development and persistence of risk factors for coronary disease in children. In the MCRF study, weight and height measurements of five cohorts of children, initially aged 5-7, 7-9, 9-11, 11-13, and 13-15 years, were obtained biennially from 1977 to 1981. Data were collected on 4856 boys and girls. On the basis of a comparison of their weight to age-gender specific norms, children were classified as obese or not obese. The goal of the analysis is to determine whether the risk of obesity increases with age and whether patterns of change in obesity are the same for boys and girls.

Column 1: ID
Column 2: Gender, 0 = Male, 1 = Female
Column 3: Baseline Age
Column 4: Current Age, Age denotes mid-point of age-cohort
Column 5: Occasions of measurements
Column 6: Obesity Status, 1 = Obese, 0 = Non-Obese, . = Missing

dta1 <- read.table("C:/Users/HANK/Desktop/HOMEWORK/muscatine-data.txt", h=F, na.strings = '.')
names(dta1) <- c("ID","Gender","Age0","Age","Occasion","Obese")
head(dta1)
##   ID Gender Age0 Age Occasion Obese
## 1  1      0    6   6        1     1
## 2  1      0    6   8        2     1
## 3  1      0    6  10        3     1
## 4  2      0    6   6        1     1
## 5  2      0    6   8        2     1
## 6  2      0    6  10        3     1
str(dta1)
## 'data.frame':    14568 obs. of  6 variables:
##  $ ID      : int  1 1 1 2 2 2 3 3 3 4 ...
##  $ Gender  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ Age0    : int  6 6 6 6 6 6 6 6 6 6 ...
##  $ Age     : int  6 8 10 6 8 10 6 8 10 6 ...
##  $ Occasion: int  1 2 3 1 2 3 1 2 3 1 ...
##  $ Obese   : int  1 1 1 1 1 1 1 1 1 1 ...

2 Descriptive info

dta1t <- dta1 %>% 
  mutate(Occasion = factor(Occasion, labels=c("1977", "1979", "1981"), ordered=T),
         Gender = factor(ifelse(Gender == 0, "M", "F")),
         Obese = factor(ifelse(Obese == 1, "Obese", "Non-Obese")))

ftable(dta1t, row.vars = c(2, 4), col.vars = c(5,6))
##            Occasion      1977            1979            1981      
##            Obese    Non-Obese Obese Non-Obese Obese Non-Obese Obese
## Gender Age                                                         
## F      6                  141    23         0     0         0     0
##        8                  294    58       265    55         0     0
##        10                 270    92       276    87       268    90
##        12                 291    91       279    99       278    92
##        14                 300    89       226    64       256    73
##        16                   0     0       250    87       226    56
##        18                   0     0         0     0       140    37
## M      6                  174    15         0     0         0     0
##        8                  289    67       296    54         0     0
##        10                 312    84       298    77       308    83
##        12                 281    90       299    88       290    90
##        14                 307    73       233    65       269    78
##        16                   0     0       251    67       224    54
##        18                   0     0         0     0       153    34
par(mfrow=c(1,2))
barplot(prop.table(with(subset(dta1, Gender=="0"), 
                           ftable(Obese, Age)), m=2), 
        xlab="Age \n (6, 8, 10, 12, 14, 16, 18 y/o)",
        ylab="Proportion", 
        ylim=c(0,1),
        main="Male", 
        beside=T)
legend('topleft', c("Non-Obese","Obese"), 
       col=c("black","gray"), 
       pch=15, bty='n', cex=.5)
barplot(prop.table(with(subset(dta1, Gender=="1"), 
                         ftable(Obese, Age)), m=2), 
        xlab="Age \n (6, 8, 10, 12, 14, 16, 18 y/o)",
        ylab="Proportion", 
        ylim=c(0,1),
        main="Female", 
        beside=T)

直方圖顯示:男性和女性的是否肥胖的模式非常相似。較難看出兩者之間是否有明顯差異。

3 Marginal models: GEE

3.1 mo

dta1_m <- dta1 %>% 
  mutate(Age = Age - 12,
         Age2 = Age^2)
    
summary(m0 <- geeglm(Obese ~ Gender + Age + Age2 + Gender:Age + Gender:Age2, data=dta1_m, id = ID, family = binomial, corstr = "ar1"))
## 
## Call:
## geeglm(formula = Obese ~ Gender + Age + Age2 + Gender:Age + Gender:Age2, 
##     family = binomial, data = dta1_m, id = ID, corstr = "ar1")
## 
##  Coefficients:
##              Estimate   Std.err    Wald Pr(>|W|)    
## (Intercept) -1.205697  0.050734 564.783  < 2e-16 ***
## Gender       0.105306  0.071357   2.178  0.14001    
## Age          0.042264  0.013433   9.899  0.00165 ** 
## Age2        -0.018092  0.003416  28.044 1.19e-07 ***
## Gender:Age   0.002900  0.018563   0.024  0.87585    
## Gender:Age2  0.003495  0.004715   0.549  0.45857    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation structure = ar1 
## Estimated Scale Parameters:
## 
##             Estimate Std.err
## (Intercept)   0.9943 0.02807
##   Link = identity 
## 
## Estimated Correlation Parameters:
##       Estimate Std.err
## alpha   0.6106 0.02036
## Number of clusters:   4856  Maximum cluster size: 3

3.2 m1

summary(m1 <- geeglm(Obese ~ Gender + Age + Age2, data=dta1_m, id = ID, family = binomial, corstr = "ar1"))
## 
## Call:
## geeglm(formula = Obese ~ Gender + Age + Age2, family = binomial, 
##     data = dta1_m, id = ID, corstr = "ar1")
## 
##  Coefficients:
##             Estimate  Std.err   Wald Pr(>|W|)    
## (Intercept) -1.21897  0.04788 648.17  < 2e-16 ***
## Gender       0.13145  0.06288   4.37    0.037 *  
## Age          0.04387  0.00926  22.43  2.2e-06 ***
## Age2        -0.01630  0.00235  48.05  4.2e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation structure = ar1 
## Estimated Scale Parameters:
## 
##             Estimate Std.err
## (Intercept)    0.994   0.028
##   Link = identity 
## 
## Estimated Correlation Parameters:
##       Estimate Std.err
## alpha     0.61  0.0203
## Number of clusters:   4856  Maximum cluster size: 3

3.3 Comparison

sjPlot::tab_model(m0, m1, show.obs=F, show.ngroups = F)
  Obese Obese
Predictors Odds Ratios CI p Odds Ratios CI p
(Intercept) 0.30 0.27 – 0.33 <0.001 0.30 0.27 – 0.32 <0.001
Gender 1.11 0.97 – 1.28 0.140 1.14 1.01 – 1.29 0.037
Age 1.04 1.02 – 1.07 0.002 1.04 1.03 – 1.06 <0.001
Age2 0.98 0.98 – 0.99 <0.001 0.98 0.98 – 0.99 <0.001
Gender * Age 1.00 0.97 – 1.04 0.876
Gender * Age2 1.00 0.99 – 1.01 0.459

4 Estimated Probability Plot

pacman::p_load(tidyr, ggplot2)

dta1_p <- dta1 %>% 
  mutate(Gender = factor(ifelse(Gender == 0, "Boys", "Girls")))

dta1p <- data.frame(dta1_p, id=row.names(dta1_p))

yhat_m0 <- data.frame(id=row.names(fitted(m0)), 
                      phat=fitted(m0))

dta1_m0 <- inner_join(dta1p, yhat_m0, by="id")

ggplot(dta1_m0, aes(Age, group = Gender)) +
  geom_line(data = dta1_m0, aes(y = phat, color = Gender)) + 
  labs(x="Age (years)", 
       y="Estimated Probability of Obesity") +
  scale_y_continuous(limits = c(0.1, 0.27)) +
  scale_x_continuous(limits = c(6, 18),
                        breaks = c(6, 8, 10, 12, 14, 16, 18),
                        minor_breaks = NULL) +
  theme_minimal()+
  theme(legend.position=c(.9, .2))

由估計圖可以看出,男型的肥胖比率會低於女性,比起直方圖更清楚一些!