다음 데이터를 Ch 9 까지에서 배운 모든 것을 활용하여 분석하여 언어학적으로 의미 있는 결론을 도출해 주기 바랍니다. 구체적으로는 첨부한 그래프 중에서 처음 6개를 재현하는데, line graph 로 해도 되고, 책에서 배운것처럼 dodge 이용해서 막대그래프로 그려도 됩니다. 마지막 네번째 페이지의 그래프는 optional 입니다.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(readxl)
all_data <- read.table("all_data.txt", header=TRUE)
data_copy <- all_data
head(data_copy)
## filename phoneme duration item height voice position speed subj
## 1 tack_f T 45.338 tack low -voice final fast F1
## 2 tack_f AE1 150.627 tack low -voice final fast F1
## 3 tack_f K 88.059 tack low -voice final fast F1
## 4 tack_f1 T 47.490 tack low -voice final fast F1
## 5 tack_f1 AE1 148.429 tack low -voice final fast F1
## 6 tack_f1 K 110.553 tack low -voice final fast F1
dim(data_copy)
## [1] 4542 9
Vowel and coda duration as a function of speaking rate
Vowel duration as a function of speaking rate
library(dplyr)
library(ggplot2)
vowel <- data_copy %>%
filter(phoneme == "AE1" | phoneme =="EH1" | phoneme =="IH1") %>%
group_by(speed, voice) %>%
summarise(vowel_duration = mean(duration))
## `summarise()` regrouping output by 'speed' (override with `.groups` argument)
ggplot(data = vowel, aes(x = speed, y = vowel_duration, fill = voice)) +
geom_col(position = "dodge") +
scale_x_discrete(limits = c("fast", "habitual", "slow"))

Coda duration as a function of speaking rate
library(dplyr)
library(ggplot2)
coda <- data_copy %>% filter(phoneme == "K" | phoneme =="G") %>%
group_by(speed,voice) %>%
summarise(coda_duration = mean(duration))
## `summarise()` regrouping output by 'speed' (override with `.groups` argument)
ggplot(data = coda, aes(x = speed, y = coda_duration, fill=voice)) +
geom_col(position="dodge") +
scale_x_discrete(limits = c("fast", "habitual", "slow"))

Vowel and coda duration as a function of sentence position
Vowel duration as a function of sentence position
vowel_position <- data_copy %>%
filter(phoneme == "AE1" | phoneme =="EH1" | phoneme =="IH1") %>%
group_by(position, voice) %>%
summarise(vowel_duration = mean(duration))
## `summarise()` regrouping output by 'position' (override with `.groups` argument)
ggplot(data = vowel_position, aes(x = position, y = vowel_duration, fill = voice)) +
geom_col(position = "dodge") +
scale_x_discrete(limits = c("initial", "mid", "final"))

Coda duration as a function of sentence position
coda <- data_copy %>%
filter(phoneme == "K" | phoneme =="G") %>%
group_by(speed,voice) %>%
summarise(coda_duration = mean(duration))
## `summarise()` regrouping output by 'speed' (override with `.groups` argument)
ggplot(data = coda, aes(x = speed, y = coda_duration, fill = voice)) +
geom_col(position = "dodge") +
scale_x_discrete(limits = c("fast", "habitual","slow"))

Vowel and coda duration as a function of vowel height
Vowel duration as a function of vowel height
library(dplyr)
library(ggplot2)
data_copy <- dplyr::rename(data_copy, vowel_height = height)
vowel_height <- data_copy %>%
filter(phoneme == "AE1" | phoneme =="EH1" | phoneme =="IH1") %>%
group_by(vowel_height, voice) %>%
summarise(vowel_duraiton = mean(duration))
## `summarise()` regrouping output by 'vowel_height' (override with `.groups` argument)
ggplot(data = vowel_height, aes(x = vowel_height, y = vowel_duraiton, fill=voice)) +
geom_col(position = "dodge") +
scale_x_discrete(limits = c ("high", "low", "mid"))

Coda duration as a function of vowel height
library(dplyr)
library(ggplot2)
coda_height <- data_copy %>%
filter(phoneme == "K" | phoneme =="G") %>%
group_by(vowel_height, voice) %>%
summarise(coda_duration = mean(duration))
## `summarise()` regrouping output by 'vowel_height' (override with `.groups` argument)
ggplot(data = coda_height, aes(x = vowel_height, y = coda_duration, fill = voice)) +
geom_col(position = "dodge") +
scale_x_discrete(limits = c("high", "low", "mid"))
