# Carregar a base de dados

load("~/Base_de_dados-master/diamante.RData")

# VARIAVEL CORTE

prop.table(table(diamante$corte))
## 
##      Justo        Bom  Muito Bom    Premium      Ideal 
## 0.02984798 0.09095291 0.22398962 0.25567297 0.39953652
summary(diamante$corte)
##     Justo       Bom Muito Bom   Premium     Ideal 
##      1610      4906     12082     13791     21551
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
diamante %>%
  pull(quilate) %>%
  table() %>%
  prop.table()
## .
##          0.2         0.21         0.22         0.23         0.24         0.25 
## 2.224694e-04 1.668521e-04 9.269559e-05 5.431961e-03 4.708936e-03 3.930293e-03 
##         0.26         0.27         0.28         0.29          0.3         0.31 
## 4.690397e-03 4.319614e-03 3.670745e-03 2.410085e-03 4.827586e-02 4.169448e-02 
##         0.32         0.33         0.34         0.35         0.36         0.37 
## 3.411198e-02 2.204301e-02 1.687060e-02 1.236559e-02 1.060438e-02 7.304412e-03 
##         0.38         0.39          0.4         0.41         0.42         0.43 
## 1.242121e-02 7.378569e-03 2.408231e-02 2.562106e-02 1.308862e-02 9.047089e-03 
##         0.44         0.45         0.46         0.47         0.48         0.49 
## 3.930293e-03 2.039303e-03 3.299963e-03 1.835373e-03 1.167964e-03 8.342603e-04 
##          0.5         0.51         0.52         0.53         0.54         0.55 
## 2.332221e-02 2.089359e-02 1.514646e-02 1.314423e-02 1.158695e-02 9.195402e-03 
##         0.56         0.57         0.58         0.59          0.6         0.61 
## 9.121246e-03 7.971821e-03 5.747126e-03 5.228031e-03 4.226919e-03 3.781980e-03 
##         0.62         0.63         0.64         0.65         0.66         0.67 
## 2.502781e-03 1.890990e-03 1.483129e-03 1.205043e-03 8.898776e-04 8.898776e-04 
##         0.68         0.69          0.7         0.71         0.72         0.73 
## 4.634779e-04 4.820171e-04 3.672599e-02 2.398962e-02 1.416389e-02 9.121246e-03 
##         0.74         0.75         0.76         0.77         0.78         0.79 
## 5.969596e-03 4.616240e-03 4.653319e-03 4.653319e-03 3.466815e-03 2.873563e-03 
##          0.8         0.81         0.82         0.83         0.84         0.85 
## 5.265109e-03 3.707824e-03 2.595476e-03 2.428624e-03 1.186504e-03 1.149425e-03 
##         0.86         0.87         0.88         0.89          0.9         0.91 
## 6.303300e-04 5.747126e-04 4.263997e-04 3.893215e-04 2.753059e-02 1.056730e-02 
##         0.92         0.93         0.94         0.95         0.96         0.97 
## 4.189841e-03 2.632555e-03 1.093808e-03 1.205043e-03 1.909529e-03 1.093808e-03 
##         0.98         0.99            1         1.01         1.02         1.03 
## 5.747126e-04 4.263997e-04 2.888395e-02 4.156470e-02 1.637004e-02 9.695958e-03 
##         1.04         1.05         1.06         1.07         1.08         1.09 
## 8.806081e-03 6.692621e-03 6.915091e-03 6.340378e-03 4.560623e-03 5.320727e-03 
##          1.1         1.11         1.12         1.13         1.14         1.15 
## 5.153875e-03 5.710048e-03 4.653319e-03 4.560623e-03 3.837597e-03 2.762329e-03 
##         1.16         1.17         1.18         1.19          1.2         1.21 
## 3.188728e-03 2.039303e-03 2.280311e-03 2.335929e-03 1.195773e-02 8.769003e-03 
##         1.22         1.23         1.24         1.25         1.26         1.27 
## 5.561735e-03 5.172414e-03 4.375232e-03 3.466815e-03 2.706711e-03 2.484242e-03 
##         1.28         1.29          1.3         1.31         1.32         1.33 
## 1.965146e-03 1.872451e-03 2.261772e-03 2.465703e-03 1.649981e-03 1.612903e-03 
##         1.34         1.35         1.36         1.37         1.38         1.39 
## 1.260660e-03 1.427512e-03 9.269559e-04 8.527994e-04 4.820171e-04 6.674082e-04 
##          1.4         1.41         1.42         1.43         1.44         1.45 
## 9.269559e-04 7.415647e-04 4.634779e-04 3.522432e-04 3.337041e-04 2.780868e-04 
##         1.46         1.47         1.48         1.49          1.5         1.51 
## 3.337041e-04 3.893215e-04 1.297738e-04 2.039303e-04 1.470152e-02 1.496107e-02 
##         1.52         1.53         1.54         1.55         1.56         1.57 
## 7.063404e-03 4.078606e-03 3.225806e-03 2.298851e-03 2.020764e-03 1.965146e-03 
##         1.58         1.59          1.6         1.61         1.62         1.63 
## 1.649981e-03 1.649981e-03 1.761216e-03 1.186504e-03 1.130886e-03 9.269559e-04 
##         1.64         1.65         1.66         1.67         1.68         1.69 
## 7.971821e-04 5.932518e-04 5.561735e-04 4.634779e-04 3.522432e-04 4.449388e-04 
##          1.7         1.71         1.72         1.73         1.74         1.75 
## 3.985910e-03 2.206155e-03 1.056730e-03 9.640341e-04 7.415647e-04 9.269559e-04 
##         1.76         1.77         1.78         1.79          1.8         1.81 
## 5.190953e-04 3.151650e-04 2.224694e-04 2.780868e-04 3.893215e-04 1.668521e-04 
##         1.82         1.83         1.84         1.85         1.86         1.87 
## 2.410085e-04 3.337041e-04 7.415647e-05 5.561735e-05 1.668521e-04 1.297738e-04 
##         1.88         1.89          1.9         1.91         1.92         1.93 
## 7.415647e-05 7.415647e-05 1.297738e-04 2.224694e-04 3.707824e-05 1.112347e-04 
##         1.94         1.95         1.96         1.97         1.98         1.99 
## 5.561735e-05 5.561735e-05 7.415647e-05 7.415647e-05 9.269559e-05 5.561735e-05 
##            2         2.01         2.02         2.03         2.04         2.05 
## 4.912866e-03 8.157212e-03 3.281424e-03 2.261772e-03 1.594364e-03 1.242121e-03 
##         2.06         2.07         2.08         2.09          2.1         2.11 
## 1.112347e-03 9.269559e-04 7.601038e-04 8.342603e-04 9.640341e-04 7.971821e-04 
##         2.12         2.13         2.14         2.15         2.16         2.17 
## 4.634779e-04 3.893215e-04 8.898776e-04 4.078606e-04 4.634779e-04 3.337041e-04 
##         2.18         2.19          2.2         2.21         2.22         2.23 
## 5.747126e-04 4.078606e-04 5.932518e-04 4.263997e-04 5.005562e-04 2.410085e-04 
##         2.24         2.25         2.26         2.27         2.28         2.29 
## 2.966259e-04 3.337041e-04 2.780868e-04 2.224694e-04 3.707824e-04 3.151650e-04 
##          2.3         2.31         2.32         2.33         2.34         2.35 
## 3.893215e-04 2.410085e-04 2.966259e-04 1.668521e-04 9.269559e-05 1.297738e-04 
##         2.36         2.37         2.38         2.39          2.4         2.41 
## 1.483129e-04 1.112347e-04 1.483129e-04 1.297738e-04 2.410085e-04 9.269559e-05 
##         2.42         2.43         2.44         2.45         2.46         2.47 
## 1.483129e-04 1.112347e-04 7.415647e-05 7.415647e-05 5.561735e-05 5.561735e-05 
##         2.48         2.49          2.5         2.51         2.52         2.53 
## 1.668521e-04 5.561735e-05 3.151650e-04 3.151650e-04 1.668521e-04 1.483129e-04 
##         2.54         2.55         2.56         2.57         2.58         2.59 
## 1.668521e-04 5.561735e-05 5.561735e-05 5.561735e-05 5.561735e-05 1.853912e-05 
##          2.6         2.61         2.63         2.64         2.65         2.66 
## 5.561735e-05 5.561735e-05 5.561735e-05 1.853912e-05 1.853912e-05 5.561735e-05 
##         2.67         2.68          2.7         2.71         2.72         2.74 
## 1.853912e-05 3.707824e-05 1.853912e-05 1.853912e-05 5.561735e-05 5.561735e-05 
##         2.75         2.77          2.8            3         3.01         3.02 
## 3.707824e-05 1.853912e-05 3.707824e-05 1.483129e-04 2.595476e-04 1.853912e-05 
##         3.04         3.05         3.11         3.22         3.24          3.4 
## 3.707824e-05 1.853912e-05 1.853912e-05 1.853912e-05 1.853912e-05 1.853912e-05 
##          3.5         3.51         3.65         3.67            4         4.01 
## 1.853912e-05 1.853912e-05 1.853912e-05 1.853912e-05 1.853912e-05 3.707824e-05 
##         4.13          4.5         5.01 
## 1.853912e-05 1.853912e-05 1.853912e-05
# Média, mediana e desvio padrão da variável "PREÇO"

diamante %>%
  group_by(preco) %>%
  summarize(media=mean(preco),mediana=median(preco),desvio_padrao=sd(preco),tamanho=n())
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 11,602 x 5
##    preco media mediana desvio_padrao tamanho
##    <int> <dbl>   <dbl>         <dbl>   <int>
##  1   326   326     326             0       2
##  2   327   327     327            NA       1
##  3   334   334     334            NA       1
##  4   335   335     335            NA       1
##  5   336   336     336             0       2
##  6   337   337     337             0       2
##  7   338   338     338            NA       1
##  8   339   339     339            NA       1
##  9   340   340     340            NA       1
## 10   342   342     342            NA       1
## # ... with 11,592 more rows
# ESTATISTICA DAS DUAS VARIÁVEIS

tabela_diamante1<-diamante%>%
  group_by(corte)%>%
  summarize(media=mean (preco), mediana=median(preco), desvio_padrao=sd(preco))%>%
  arrange(desc(media))
## `summarise()` ungrouping output (override with `.groups` argument)
# BOXPLOT

par(cex=0.5)
boxplot(diamante$preco~diamante$corte,col="darkblue")

Conclusão A média de quilates do corte Justo é a maior entra as outras classificações, com o valor de “1,05” e o corte “justo” e “premium” possuem o mesmo desvio padrão de “0,52”. É possível observar através do gráfico que o tipo de corte “muito bom” é o mais simétrico. O tipo de corte “justo” possui o maior outlier e o tipo de corte “Premium” possui a maior quantidade de quilates.