PROYECTO VIDA SILVESTRE – PVS

El Proyecto Vida Silvestre (PVS) es una iniciativa liderada por Ecopetrol S.A., Wildlife Conservation Society (WCS) Colombia y Fundación Mario Santo Domingo, cuya primera fase fue ejecutada junto con diez organizaciones nacionales entre el 2014 y el 2017. El objetivo principal del proyecto es implementar programas de conservación para especies paisaje, como estrategia para mantener los niveles de biodiversidad. Para la primera fase se seleccionaron 10 especies y dos regiones de Colombia, de gran importancia biológica y cultural, pero que enfrentan crecientes presiones que amenazan los recursos naturales. Estas regiones corresponden a la cuenca media del Rio Magdalena y a la región de la Orinoquía. Se desarrolló un modelo de intervención novedoso y participativo, para contrarrestar las presiones o amenazas y mantener la biodiversidad en estos dos paisajes de Colombia.

PROYECTO VIDA SILVESTRE – PVS EN LOS LLANOS ORIENTALES

En la región de los Llanos Orientales, la primera fase de implementación del PVS tuvo un alcance superior a 88.000 hectáreas, y logró establecer áreas de protección por medio de Acuerdos Comunitarios de Conservación y declarando Reservas Naturales de la Sociedad Civil (RNSC). En Arauca, específicamente en Cravo Norte, cuatro reservas de ese tipo hoy abarcan 3.322 hectáreas, y la cuenca medio del río Bita se consolidó como área de interés para conservar un corredor natural que proteja a la Danta.

De igual modo, las implementaciones en los Llanos Orientales corresponden a procesos de restauración, establecimiento de viveros, monitoreo y seguimiento de especies, y actividades con las comunidades locales. Actualmente cerca de 500 hectáreas se encuentran en procesos de restauración, mediante restauración activa (siembras) y aislamiento para regeneración natural. Bajo restauración activa se encuentran 44 hectáreas de siembra de palmas de Moriche, Congrio y otras especies nativas, y 28 hectáreas de bosques con enriquecimiento. También, se construyeron cinco viveros comunitarios para propagar semillas de Congrio, Moriche y otras especies que contribuyen a la restauración del hábitat de la Danta. Gracias a ello fue posible sembrar 6.000 y 15.000 plántulas de Moriche y Congrio, respectivamente. La presencia y participación constante del PVS en el territorio, permitió incrementar la confianza y fortalecer el tejido social, promoviendo y generando espacios de encuentro para establecer vínculos comunitarios más fuertes donde primen la solidaridad, cooperatividad y confianza. Estad implementaciones se desarrollaron de la mano de cinco organizaciones: Fundación Orinoquia Biodiversa, F. Yoluka ONG, Corporación Ambiental La Pedregoza, F. Omacha y f. Palmarito.

DISEÑO DE MONITOREO CON CÁMARAS TRAMPA

  • Características importantes para el diseño.

Temporalidad: el monitoreo se realizó cada año entre 2015-2017, durante la época seca para facilitar el trabajo en campo. Cada cámara se dejó, al menos, 45 días en el paisaje de estudio. Número y ubicación: fueron seleccionadas entre 45 y 68 cuadrículas de 1Km2, área correspondiente al ámbito de hogar de la mayoría de las especies de interés. En cada cuadricula se instaló una cámara trampa. La ubicación de las cuadrículas se definió a partir de los siguientes criterios:

Fuentes de agua, saladeros y letrinas. Presencia de al menos 20% de bosque. Diferentes distancias de centros poblados y vías. Permisos concertados con los propietarios.

carga paquetes y datos

library(rgdal) # basic maps and coords
library(maptools) # tools to convert
# library(unmarked)
library (sf) # spatial maps
library (mapview) # nice html maps
library (spatstat) # distance maps
library (raster) # raster 
library (readxl) # read excel data
library (tidyverse) # Data handling
library (dplyr) # Data frames handling
library (ggmap) # maps in ggplot
library (knitr) # make documents
library (xtable) # tables
library (kableExtra) #Table html
library (stargazer) # tables
library (tmap) #nice plain maps
library (tmaptools) # mas mapas 
library (osmdata) # read osm
library (OpenStreetMap) # osm maps 
library (grid) # mix maps
library (GADMTools) # subset GADM

library (stars) # for data cubes and rasterize sf
library (fasterize) # raster sf
library (plainview)
library (leaflet)
library (leafpop)
library (camtrapR)
#####################
## extra functions ##
#####################

home <- "E:/R/"

##### extra functions
source(paste(home, "Biodiv_Caqueta/R/TEAM_code.R", sep=""))
source(paste(home, "Biodiv_Caqueta/R/calendar.R", sep=""))
source(paste(home, "Biodiv_Caqueta/R/MultiSpeciesSiteOcc_Stan.R", sep=""))


#####################
## read data sets  ##
#####################

##### rad SHP ####
rio.magna <- st_read("E:/R/WCS/shp/rio_epsg3116_magna_bog.shp")
## Reading layer `rio_epsg3116_magna_bog' from data source `E:\R\WCS\shp\rio_epsg3116_magna_bog.shp' using driver `ESRI Shapefile'
## Simple feature collection with 22 features and 17 fields
## geometry type:  POLYGON
## dimension:      XY
## bbox:           xmin: 1618438 ymin: 1127838 xmax: 1718072 ymax: 1182112
## projected CRS:  MAGNA_SIRGAS_Colombia_Bogota_zone
celdas.magna <- st_read("E:/R/WCS/shp/CeldasLlanos.shp")
## Reading layer `CeldasLlanos' from data source `E:\R\WCS\shp\CeldasLlanos.shp' using driver `ESRI Shapefile'
## Simple feature collection with 1183 features and 4 fields
## geometry type:  POLYGON
## dimension:      XY
## bbox:           xmin: 951520.1 ymin: 1112190 xmax: 1045190 ymax: 1177459
## projected CRS:  MAGNA-SIRGAS / Colombia East zone
rio <- st_transform(rio.magna, "+proj=longlat +ellps=GRS80 +no_defs")
celdas <- st_transform(celdas.magna, "+proj=longlat +ellps=GRS80 +no_defs")

##### Read datos.raw
datos.raw1 <- CT_Llanos_AH <- read_excel("E:/R/WCS/data/CT_Llanos-AH_2015fix.xlsx", 
    sheet = "Record_Llanos_CT-PVS")


#### elimina dos camaras sin coordenadas
ind <- which(is.na(datos.raw1$Lat))
datos.raw <- datos.raw1[-ind,]

#### make sf object
datos.raw_sf <- st_as_sf(datos.raw, coords = c("Long", "Lat"), 
                        crs = "+proj=longlat +ellps=GRS80 +no_defs")

Problemas corregidos

Datos del 2015 tienen mal la coordenada x (Lon), pareciera ser por 6 grados de error a la “izquierda”. Se resto 6 grados a la longitud asumiendo que este es el error.

En los datos del 2015 hay dos camaras (station 209, 137) que no tienen coordenadas. Estas se eliminaron desde el excel.

Analisis preliminar camaras 2017

# datos.raw 

camaras <-  st_transform (datos.raw_sf, "+proj=longlat +ellps=GRS80 +no_defs") 
camaras_17 <- camaras %>% filter (Year =="2017" ) # & Year <="2017")
# camaras_16 <- camaras %>% filter (Year =="2016" ) # & Year <="2017")
# camaras_17 <- camaras %>% filter (Year =="2017" ) # & Year <="2017")

# Add column to get activity graph using activityDensity from camtrapR
# Add column to get activity graph using activityDensity from camtrapR
camaras$DateTimeOriginal <- as.character(camaras$DateRecord)
camaras_17$DateTimeOriginal <- as.character(camaras_17$DateRecord)


# mapview (celdas, aplha = 0.1 ) + mapview (camaras_17, 
#                  zcol = c("Predio" ),
#                  map.types = c("OpenStreetMap",  "Esri.WorldImagery" ),
#                  leafletHeight = 8, 
#                  # burst = TRUE, 
#                  hide = TRUE
#                  ) + mapview (rio, col.regions = "blue")

# Centroides EPSG:3116 Colombia Magna
centroide <- st_transform(camaras_17, 3116) %>% 
  sf::st_geometry()  %>%
  #sf::st_polygonize() %>% 
  sf::st_centroid() %>% 
  # this is the crs from d, which has no EPSG code:
  sf::st_transform(., '+proj=longlat +ellps=GRS80 +no_defs')   #%>%
  # since you want the centroids in a second geometry col:
  # st_geometry() 


# get raster elevation as template
elevation<-raster::getData("SRTM",lon=centroide[[1]][1], lat=centroide[[1]][2])
e<-extent (celdas) # make the extent
elevation.crop<-crop(elevation, e) # cut elevation to small window

elevation.crop.utm <- projectRaster(elevation.crop,
                  crs = " +proj=utm +zone=18 +ellps=intl +towgs84=307,304,-318,0,0,0,0 +units=m +no_defs ")
rio.utm <- st_transform(rio, crs(elevation.crop.utm))
########################### 
# convert rio to distance #
########################### 
rio.raster <- fasterize (rio.utm, elevation.crop.utm)
dist_rio_owin <- distmap(as.owin(as.im(rio.raster)))
dist_rio_m <- raster(dist_rio_owin, crs=crs(elevation.crop.utm))# back to raster
dist_rio <- projectRaster(from=dist_rio_m, to=elevation.crop) # back to geo

# fix rio shp
rio$Rio <- "Bita"

########################### 
# drop duplicates in camera points #
###########################


# put in the same CRS
camaras_loc <- st_transform (camaras_17, "+proj=longlat +datum=WGS84 +no_defs ")

# drop duplicated
# camaras_unique <- st_difference(camaras_loc, Station2)


########################### 
# Filter by 2017  #
###########################
camaras_unique <- camaras_loc %>% distinct () 
cams_17 <- camaras_17 %>% distinct () 



# camaras_unique %>% filter(station %in% cams) 

########################### 
# extract from river and strm #
###########################

# Covs non scaled
dist_rio.ovr <- raster::extract(dist_rio, as(camaras_unique, "Spatial"), method='bilinear')

# Covs scaled
dist_rio.ovr.s <- raster::extract(scale(dist_rio), as(camaras_unique, "Spatial"), method='bilinear')

# Covs non scaled
elev_ovr <- raster::extract(elevation.crop, as(camaras_unique, "Spatial"), method='bilinear')

# Covs scaled
elev_ovr.s <- raster::extract(scale(elevation.crop), as(camaras_unique, "Spatial"), method='bilinear')

# put covs in table
camaras_unique$dist_rio <- dist_rio.ovr
camaras_unique$dist_rio.s <- dist_rio.ovr.s
camaras_unique$elev <- elev_ovr
camaras_unique$elev.s <- elev_ovr.s

# camera names
camaras_unique$station <- unique(camaras_loc$Station2)



cov_stack <- stack(elevation.crop, dist_rio)
names(cov_stack) <- c("elev.s", "dist_rio.s")
plot(cov_stack)

#### agregate to make raster smaller
elevation.crop2 <- aggregate(cov_stack[[1]], fact=3)
dist_rio2 <- aggregate(cov_stack[[2]], fact=3)
cov_stack2 <- stack(scale(elevation.crop2), scale(dist_rio2))

# use osm data by bounding box
bb <- c(-68.5752, 5.55629 , -67.61 , 6.230916)
# predios_map <- get_map(bb, maptype = "toner-background", zoom = 10)
# ggmap(predios_map) + 
#   geom_sf(data = camaras,
#           inherit.aes = FALSE,
#           colour = "red",
#           fill = "#004529",
#           alpha = .5,
#           size = 4,
#           shape = 21) +
#   labs(x = "", y = "")

# get fondo de osm


vichada_osm1 <- read_osm(bb, type="stamen-terrain",  mergeTiles = TRUE) 

depto_window <- qtm(vichada_osm1) + tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) + tm_shape(rio) +
  tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") +  #tm_symbols (size = 0.5) +
  tm_shape(camaras_17) + # tm_symbols (col="red", size = 0.25) + 
    tm_dots(col = "Predio", palette = "Set1", size = 0.25, 
            shape = 16, title = "Cámara en predio", legend.show = TRUE,
  legend.is.portrait = TRUE,
  legend.z = NA) +
    tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value 
            outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
            legend.position = c(1.01,.1), 
            legend.outside.size = 0.1,
            legend.title.size = 1.6,
            legend.height = 0.9,
            legend.width = 1.5,
            legend.text.size = 1, 
            legend.hist.size = 0.5) + 
  tm_layout(frame=T) + tm_scale_bar() + 
  tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)



# print map
depto_window

Duración del muestreo

Las trampas cámara permanecieron activas desde mediados de xx 2015 hasta xx 2015.

datos.raw$Photo_Date <- datos.raw$Date
datos.raw$Photo_Time <- datos.raw$Time

datos.raw$StationFact<-as.factor(datos.raw$Station2) %>% as.numeric
library(lubridate)
datos.raw$Date2<-ymd(datos.raw$Date)
 
datos.raw.17<- datos.raw %>% 
  filter(Year=="2017")%>%      
  group_by(StationFact, Year) %>% 
dplyr::summarise(StationFact=first(StationFact), Year=first(Year), Camera_Trap_Start_Date = min(Date, na.rm=T), Camera_Trap_End_Date = max(Date2, na.rm = TRUE))%>%
merge(., datos.raw, all.x=T, all.y=F)

datos.raw.17$Photo_Time <- substr(as.character(datos.raw.17$Time), 12, 19)
datos.raw.17$Camera_Trap_Name <- datos.raw.17$Station2
  
f.calendar.yr(dataset = datos.raw.17, yr_toplot = 1)

Calendario de fotografias, con fecha de inicio y fin de cada cámara.

Especies registradas (Mamíferos)

Las especies registradas en todo en muestreo fueron 12 mamíferos.

Mamíferos

Se detectaron 12 especies.

# library(xtable)




datos.raw.mam <- filter(datos.raw.17, Clase=="Mamíferos") 


mat.per.sp<-f.matrix.creator2(data = datos.raw.mam, year = 2017)
# mat.per.sp <- mat.per.sp[-1] # elimina NA 
sp.names<-names(mat.per.sp) # species names


# counting how many (total) records per species by all days
cont.per.sp<-data.frame(row.names = sp.names)
row.per.sp<-as.data.frame(matrix(nrow = length(sp.names), ncol=c(69)))# num cameras 59 con ave
col.per.sp<-as.data.frame(matrix(nrow = length(sp.names), ncol=c(74)))# num days
rownames(row.per.sp)<-sp.names
rownames(col.per.sp)<-sp.names

for (i in 1:length(mat.per.sp)){
  cont.per.sp[i,1]<-sum(apply(as.data.frame(mat.per.sp [[i]]),FUN=sum,na.rm=T, MARGIN = 1))
  
  row.per.sp[i,]<-apply(mat.per.sp[[i]],1, function(x) sum(x, na.rm=T))
  # row.per.sp[i,which(row.per.sp[i,]>0)]<-1 # convert to presence absence  1 and 0
  
  col.per.sp[i,]<-apply(mat.per.sp[[i]],2, function(x) sum(x, na.rm=T))
  # col.per.sp[i,which(col.per.sp[i,]>0)]<-1 # convert to presence absence  1 and 0
 }

cont.per.sp$especie<-rownames(cont.per.sp)
colnames(cont.per.sp)<-c("Numero_de_fotos","especie")
# print(as.data.frame(arrange(df = cont.per.sp, desc(Numero_de_fotos))))

# xtable(as.data.frame(arrange(df = cont.per.sp, desc(Numero_de_fotos))))

pict_sp <- as.data.frame(cont.per.sp)

############################################################
## first Table species, naive occu 
############################################################
presence<-row.per.sp
presence[presence > 0]<-1 # replace to 1
naiveoccu<-apply(X = presence,FUN = sum, MARGIN = 1 ) / 69 #divided number of sites
events<-apply(X = row.per.sp ,FUN = sum, MARGIN = 1 )
RAI<-(events/(74 * 69)) * 100 # 78 is average sampling effort, in days per camera
Table1<-as.data.frame(cbind(species= names(events), events=as.numeric(events), 
                            phothos=as.numeric(pict_sp$Numero_de_fotos), RAI, naiveoccu))
# Table1<-  Table1[with(Table1, order(-events)), ]# arrange(Table1, desc(events))
# xtable::xtable(Table1)#, format = "rst")

Table1 <- Table1[ order( -events), ] #ordena por eventos descendente

kable(Table1[2:5]) %>% kable_styling (bootstrap_options = c("striped", "hover", "condensed", font_size = 8)) # %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
events phothos RAI naiveoccu
Dasyprocta_fuliginosa 156 156 3.05522914218566 0.246376811594203
Tayassu_pecari 149 149 2.91813552683118 0.565217391304348
Cuniculus_paca 140 140 2.7418723070897 0.420289855072464
Tapirus_terrestris 96 96 1.88014101057579 0.492753623188406
Leopardus_pardalis 49 49 0.959655307481394 0.347826086956522
Odocoileus_cariacou 47 47 0.920485703094399 0.289855072463768
Myrmecophaga_tridactyla 20 20 0.391696043869957 0.188405797101449
Puma_concolor 12 12 0.235017626321974 0.173913043478261
Eira_barbara 9 9 0.176263219741481 0.0869565217391304
Didelphis_marsupialis 8 8 0.156678417547983 0.0869565217391304
Sciurus_igniventris 6 6 0.117508813160987 0.072463768115942
Marmosa_sp 6 6 0.117508813160987 0.0144927536231884
Metachirus_nudicaudatus 5 5 0.0979240109674892 0.0144927536231884
Hydrochoerus_hydrochaeris 4 4 0.0783392087739914 0.0434782608695652
Sus_scrofa 4 4 0.0783392087739914 0.0289855072463768
Tamandua_tetradactyla 4 4 0.0783392087739914 0.0579710144927536
Dasypus_novemcinctus 4 4 0.0783392087739914 0.0434782608695652
Pteronura_brasiliensis 3 3 0.0587544065804935 0.0434782608695652
Puma_yagouaroundi 2 2 0.0391696043869957 0.0289855072463768
Cebus_olivaceus 2 2 0.0391696043869957 0.0289855072463768
Panthera_onca 2 2 0.0391696043869957 0.0144927536231884
Priodontes_maximus 1 1 0.0195848021934978 0.0144927536231884
Cerdocyon_thous 1 1 0.0195848021934978 0.0144927536231884
# kable(Table1, "latex", booktabs = T) # para pdf

RAI es: Relative Abundance Index

Distribución posterior de la riqueza de especies de mamíferos

Por camaras

Riqueza de especies y acumulación, modelando la ocurrencia y la detectabilidad. Este análisis sigue el método de Dorazio et al. (2006).

############################################################
## Distribucion posterior de la riqueza de especies
############################################################

# Riqueza de especies y acumulación, modelando la ocurrencia y la detectabilidad. 
# Este análisis sigue el método de Dorazio et al. (2006).
# 40 minutos en PC de casa

x <- as.matrix(row.per.sp)



X1 = as.matrix(row.per.sp) # col.per.sp por dias y row.per.sp por sitios (camaras)
nrepls = 74 #dias 
especies = MultiSpeciesSiteOcc(nrepls=nrepls, x=X1) #### run stan

print(especies$fit, c("alpha", "beta", "Omega", "sigma_uv", "rho_uv", "E_N", "E_N_2", "lp__"));

# summary(especies$fit$sims.matrix)

# alpha.post = especies$fit$sims.matrix[,"alpha"]
# sigmaU.post = especies$fit$sims.matrix[,"sigma.u"]
# N.post = especies$fit$sims.matrix[,"N"]


# Stan Equivalent
alpha.post =  especies$fit@sim$samples[[1]]$alpha
sigmaU.post = especies$fit@sim$samples[[1]]$`sigma_uv[1]`
N.post =      especies$fit@sim$samples[[1]]$E_N

nsites = 69 
cum_sp<-CumNumSpeciesPresent (nsites=nsites, alpha=alpha.post, sigmaU=sigmaU.post, N=N.post)


# #histogram of posteriors openwinbugs
# hist(especies$fit$sims.matrix[,"N"],breaks = c(16:30), xlab="Number of mammal species", ylab="Relative frecuency", main="")
# abline(v=length(row.per.sp[,1]),col="blue", lty = 2) # -> lines.histogram(*) observadas
# abline(v=median(especies$fit$sims.matrix[,"N"]),col="red", lty = 2) # -> esperadas por detectabilidad
# 
# mean(especies$fit$sims.matrix[,"N"])
# median(especies$fit$sims.matrix[,"N"])


hist(especies$fit@sim$samples[[1]]$E_N , xlab="Number of mammal species", ylab="Relative frecuency", main="")
abline(v=length(row.per.sp[,1]),col="blue", lty = 2) # -> lines.histogram(*) observadas
abline(v=median(especies$fit@sim$samples[[1]]$E_N),col="red", lty = 2) # -> esperadas por detectabilidad


mean(especies$fit@sim$samples[[1]]$E_N)
median(especies$fit@sim$samples[[1]]$E_N)






##Plot in ggplot

S <- 15 + 5  #species
sims <- extract(especies$fit)

freq <- rep(0,S) # sp
N <- sims$E_N_2
for (i in 1:length(N)){
  freq[N[i]] <- freq[N[i]] + 1
}

freq <- freq / length(N)

dat <- data.frame(freq)
dat <- cbind(1:S, dat)
colnames(dat)[1] <- "N"
# dat <- dat[80:90, ];

N_bar_plot <-
  ggplot(data=dat, aes(x=N, y=freq)) +
  geom_bar(stat="identity") +
  scale_x_continuous(name="Mammal species (N)",
                     breaks=c(10,11,12,13,14,15,16,17,18,19, 20)) +
  scale_y_continuous(name="relative frequency",
                     breaks=(0.1 * (0:6))) +
  ggtitle("Posterior: Number of Species (N)");

plot(N_bar_plot)

# Posterior Probabilities of Occurrence and Detection

ilogit <- function(u) { return(1 / (1 + exp(-u))); }

df_psi_theta <- data.frame(cbind(ilogit(sims$logit_psi_sim),
                                 ilogit(sims$logit_theta_sim)));
colnames(df_psi_theta)[1] <- "psi";
colnames(df_psi_theta)[2] <- "theta";

psi_density_plot <-
  ggplot(df_psi_theta, aes(x=psi)) +
  geom_line(stat = "density", adjust=1) +
  scale_x_continuous(name="probability of occurrence",
                     limits=c(0,1), breaks=(0.2 * (0:5))) +
  scale_y_continuous(name="probability density",
                     limits=c(0,5), breaks=(0:4)) +
  ggtitle("Posterior: Occurrence (psi)");

plot(psi_density_plot);

# #####################
# #### compare to vegan
# #####################
# library(vegan)
# sac <- specaccum(t(row.per.sp))
# plot(sac)
# 
# sp1 <- specaccum(t(row.per.sp), method = "random")
# sp2 <- specaccum(t(row.per.sp),  method = "rarefaction")
# sp3 <- specaccum(t(row.per.sp),  method = "collector")
# 
# # # summary(sp1)
# plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue")
# boxplot(sp1, col="yellow", add=TRUE, pch="+")
# # 
# plot(sp2, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue") # rarefaction
# #plot(sp2)
# # boxplot(sp1, col="yellow", add=TRUE, pch="+")
# 
# plot(sp3, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue")
# #plot(sp2)
# 
# H <- diversity(t(row.per.sp))
# simp <- diversity(t(row.per.sp), "simpson")
# invsimp <- diversity(t(row.per.sp), "inv")
# r.2 <- rarefy(t(row.per.sp), 2)
# alpha <- fisher.alpha(t(row.per.sp))
# pairs(cbind(H, simp, invsimp, r.2, alpha), pch="+", col="blue")
# 
# ## Species richness (S) and Pielou's evenness (J):
# S_1 <- specnumber(t(row.per.sp)) ## rowSums(BCI > 0) does the same...
# J <- H/log(S_1)
# 
# rarecurve(row.per.sp)#,step = 20, sample = raremax)
# ## Rarefaction
# (raremax <- max(rowSums(row.per.sp)))
# Srare <- rarefy(t(row.per.sp), raremax)
# plot(S_1, Srare, xlab = "Observed No. of Species", ylab = "Rarefied No. of Species")
# abline(0, 1)
# rarecurve(row.per.sp)#, step = 2, sample = raremax, col = "blue", cex = 0.6)
# 

Especies observadas en azul = 12. Especies esperadas en rojo = 14.3. El número esperado esta corrregido por la detectabilidad. Hay por lo menos dos especies que no se detectaron.

Función para automatizar modelos

Construimos 17 modelos generales para probar de forma automatizada cada especie con más de 10 registros.

Datos colapsados a 15 eventos

    ##########################################
    #########  Models 
    ##########################################
    f.sp.occu.models <- function(sp_number){

      ########################
      ### make unmarked object 
      ########################
      library(unmarked)
      sp15<-f.shrink.matrix.to15(matrix = mat.per.sp[[sp_number]])
      y <- mat.per.sp[[sp_number]]
      sp_UMF <- unmarkedFrameOccu(y)
      
      
      ## start colapsed
      sp_UMF_15 <- unmarkedFrameOccu(sp15)
      fm0_15 <- occu(~ 1 ~ 1, sp_UMF_15, starts = c(0.01,0.01), se=T) 
      # get the linear estimates
      psi <- backTransform(fm0_15, type="state")
      p <- backTransform(fm0_15, type="det")
      ## end colapsed
      
      # Filter by 2015 cams #
      cams <- row.names(mat.per.sp[[sp_number]])
      camaras_2017 <- camaras_unique %>% filter(station %in% cams) 
      
      # plot(sp_UMF, panels=1)
      # title(main=as.character(sp.names[sp_number]))
      
      # add some  covariates
      cam.and.covs1 <- as.data.frame(camaras_2017)[,2:6]
      siteCovs(sp_UMF) <- cam.and.covs1
      
      #######################
      ## occu models 
      #######################
      
      #  covariates of detection and occupancy in that order.
      fm0 <- occu(~ 1 ~ 1, sp_UMF, starts = c(0.01,0.01), se=T) 
      fm1 <- occu(~ 1 ~ elev.s, sp_UMF, starts = c(0.01,0.01,0.01))
      fm2 <- occu(~ 1 ~ I(elev.s)^2, sp_UMF)
      fm3 <- occu(~ 1 ~ dist_rio.s, sp_UMF, starts = c(0.01,0.01,0.01))
      fm4 <- occu(~ 1 ~ elev.s + dist_rio.s, sp_UMF, starts = c(0.01,0.01,0.01,0.01))
      fm5 <- occu(~ 1 ~ I(dist_rio.s)^2, sp_UMF)
      fm6 <- occu(~ elev.s ~ 1, sp_UMF) 
      fm7 <- occu(~ elev.s ~ elev.s, sp_UMF, starts = c(0.01,0.01,0.01,0.01))
      fm8 <- occu(~ elev.s ~ I(elev.s)^2, sp_UMF)
      fm9 <- occu(~ elev.s ~ dist_rio.s, sp_UMF, starts = c(0.01,0.01,0.01, 0.01))
      fm10 <- occu(~ elev.s ~ elev.s + dist_rio.s, sp_UMF, starts = c(0.01,0.01,0.01,0.01,0.01))
      fm11 <- occu(~ elev.s ~ I(dist_rio.s)^2, sp_UMF)
      fm12 <- occu(~ dist_rio.s ~ 1, sp_UMF) 
      fm13 <- occu(~ dist_rio.s ~ elev.s, sp_UMF, starts = c(0.01,0.01,0.01,0.01))
      fm14 <- occu(~ dist_rio.s ~ I(elev.s)^2, sp_UMF)
      fm15 <- occu(~ dist_rio.s ~ dist_rio.s, sp_UMF, starts = c(0.01,0.01,0.01,0.01))
      fm16 <- occu(~ dist_rio.s ~ elev.s + dist_rio.s, sp_UMF, starts = c(0.01,0.01,0.01,0.01,0.01))
      fm17 <- occu(~ dist_rio.s ~ I(dist_rio.s)^2, sp_UMF)
      # 
      # 
      # fm8 <- occu(~ elev ~ elev, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
      # fm9 <- occu(~ elev ~ slope, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
      # fm10 <- occu(~ elev ~ aspect, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
      # fm11 <- occu(~ elev ~ roughness, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
      # fm12 <- occu(~ elev ~ dist_def, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
      # fm13 <- occu(~ elev ~ COB_ACTUAL, sp_UMF)
      # fm14 <- occu(~ elev ~ Sitio, sp_UMF)
      # fm15 <- occu(~ roughness ~ elev, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
      # fm16 <- occu(~ roughness ~ slope, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
      # fm17 <- occu(~ roughness ~ aspect, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
      # fm18 <- occu(~ roughness ~ roughness, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
      # fm19 <- occu(~ roughness ~ dist_def, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
      # fm20 <- occu(~ roughness ~ COB_ACTUAL, sp_UMF)
      # fm21 <- occu(~ roughness ~ Sitio, sp_UMF)

      
      # put the names of each model
      models <- fitList(
        'p(.)psi(.)' = fm0,
        'p(.)psi(elev)' = fm1,
        'p(.)psi(elev2)' = fm2,
        'p(.)psi(dist_rio)' = fm3,
        'p(.)psi(elev + dist_rio)' = fm4,
        'p(.)psi(dist_rio2)' = fm5,
        'p(elev)psi(.)' = fm6,
        'p(elev)psi(elev)' = fm7,
        'p(elev)psi(elev2)' = fm8,
        'p(elev)psi(dist_rio)' = fm9,
        'p(elev)psi(elev + dist_rio)' = fm10,
        'p(elev)psi(dist_rio2)' = fm11,
        'p(dist_rio)psi(.)' = fm12,
        'p(dist_rio)psi(elev)' = fm13,
        'p(dist_rio)psi(elev2)' = fm14,
        'p(dist_rio)psi(dist_rio)' = fm15,
        'p(dist_rio)psi(elev + dist_rio)' = fm16,
        'p(dist_rio)psi(dist_rio2)' = fm17
        
              )
      
      ms <- modSel(models)
      # (ms)
      
      #This part store some models coeficients in a table (mat_models) to compare on screen
      ms_AIC_models<-as.data.frame(ms@ Full[1], row.names = NULL) #store model name
      modelo<-paste("_", as.character(as.character(sp.names[sp_number])), 
                    "_", " models", sep="") # fix model name addin species
      ma_nPars<-as.data.frame(ms@Full$nPars) #store parameter number
      ms_AIC_values<- as.data.frame(ms@Full$AIC) #store AIC values
      ms_AIC_delta<- as.data.frame(ms@Full$delta) #store AIC delta values
      ms_AIC_AICwt<- as.data.frame(ms@Full$AICwt) #store AIC wt values
      ms_AIC_cumultw<-as.data.frame(ms@Full$cumltvWt) #store model name
      ms_m<-as.data.frame(row.names(ms_AIC_models)) #store m number
      ms_formula<- as.data.frame(ms@Full$formula) #store model formula
      mat_models <- cbind(ms_AIC_models, ma_nPars, ms_AIC_values, ms_AIC_delta, ms_AIC_AICwt, ms_AIC_cumultw) #paste in matrix
      colnames(mat_models)<-c(modelo, "nPars",'AIC', "delta", "AICwt", "cumltvWt") # change row names
      
      mat_models$psi_p_fm0 <- NA
      mat_models[1,7] <- psi@estimate
      mat_models[2,7] <- p@estimate
      
      # put all in a list 
      result <- (mat_models)
      
      ##Print los 7 primeros modelos
      return (result)
      # xtable::xtable(mat_models, type = "html")
      
      # kable(mat_models) # para pdf
      # print(spname)
      # print (mat_models[c(1:7),])
      # as.character(sp.names[sp_number])
      
    }

Los datos se colapsaron a 15 dias (al estilo TEAM para evitar el Hessian error).

Venado (Odocoileus_cariacou)

Selección de Modelos

    print(as.character(sp.names[sp_number=1]))
## [1] "Odocoileus_cariacou"
    sp2 <- f.sp.occu.models(sp_number = 1)
    # xtable::xtable(sp1, "html") #, format = "rst")
    # kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
    kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))
Odocoileus_cariacou models nPars AIC delta AICwt cumltvWt psi_p_fm0
5 p(.)psi(elev + dist_rio) 4 430.7070 0.0000000 0.2251011 0.2251011 0.3366860
17 p(dist_rio)psi(elev + dist_rio) 5 431.2465 0.5395411 0.1718770 0.3969782 0.2003161
15 p(dist_rio)psi(elev2) 4 432.2253 1.5183472 0.1053593 0.5023374 NA
14 p(dist_rio)psi(elev) 4 432.2253 1.5183472 0.1053593 0.6076967 NA
2 p(.)psi(elev) 3 432.4004 1.6934620 0.0965266 0.7042233 NA
3 p(.)psi(elev2) 3 432.4004 1.6934620 0.0965266 0.8007499 NA
1 p(.)psi(.) 2 433.0260 2.3190685 0.0705990 0.8713489 NA
13 p(dist_rio)psi(.) 3 433.3893 2.6823584 0.0588723 0.9302212 NA
4 p(.)psi(dist_rio) 3 434.4357 3.7287337 0.0348894 0.9651106 NA
6 p(.)psi(dist_rio2) 3 434.4357 3.7287337 0.0348894 1.0000000 NA
7 p(elev)psi(.) 3 478.0045 47.2975389 0.0000000 1.0000000 NA
8 p(elev)psi(elev) 4 480.0108 49.3038726 0.0000000 1.0000000 NA
9 p(elev)psi(elev2) 4 480.0109 49.3039016 0.0000000 1.0000000 NA
12 p(elev)psi(dist_rio2) 4 480.0129 49.3059016 0.0000000 1.0000000 NA
10 p(elev)psi(dist_rio) 4 480.0129 49.3059049 0.0000000 1.0000000 NA
16 p(dist_rio)psi(dist_rio) 4 481.1003 50.3933649 0.0000000 1.0000000 NA
18 p(dist_rio)psi(dist_rio2) 4 481.1004 50.3933846 0.0000000 1.0000000 NA
11 p(elev)psi(elev + dist_rio) 5 482.0123 51.3053107 0.0000000 1.0000000 NA

Actividad del Venado

activityDensity (recordTable = camaras,
                 species     = as.character(sp.names[sp_number=1]))

Mapa del Venado

venado <- filter(camaras_17, Species=="Odocoileus_cariacou")
by_sp <- camaras_17 %>%  group_by(Species) %>% tally()
by_sp_predio <- venado %>%  group_by(Predio) %>% tally()
names(by_sp_predio) <-  c("Predio", "Fotos Venado", "geometry")


venado_window <- qtm(vichada_osm1) + 
  tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) + 
  tm_shape(rio) +
  tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") +  #tm_symbols (size = 0.5) +
  tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) + 
    tm_bubbles(size = "Fotos Venado", col = "red", border.col= "red", alpha= 0.5, 
               legend.size.is.portrait=TRUE) +
    # tm_dots(col = "Species", size = 0.25, 
    #        shape = 16, title = "Especie", legend.show = TRUE,
    #       legend.is.portrait = TRUE, legend.z = NA) +
    tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value 
            outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
            legend.position = c(1.01,.1), 
            legend.outside.size = 0.1,
            legend.title.size = 1.6,
            legend.height = 0.9,
            legend.width = 1.5,
            legend.text.size = 1, 
            legend.hist.size = 0.5) + 
  tm_layout(frame=T) + tm_scale_bar() + 
  tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)

#plot
venado_window

analisis Venado p(.)psi(elev) sp=1

doing row 1000 of 80004 doing row 2000 of 80004 doing row 3000 of 80004 doing row 4000 of 80004 doing row 5000 of 80004 doing row 6000 of 80004 doing row 7000 of 80004 doing row 8000 of 80004 doing row 9000 of 80004 doing row 10000 of 80004 doing row 11000 of 80004 doing row 12000 of 80004 doing row 13000 of 80004 doing row 14000 of 80004 doing row 15000 of 80004 doing row 16000 of 80004 doing row 17000 of 80004 doing row 18000 of 80004 doing row 19000 of 80004 doing row 20000 of 80004 doing row 21000 of 80004 doing row 22000 of 80004 doing row 23000 of 80004 doing row 24000 of 80004 doing row 25000 of 80004 doing row 26000 of 80004 doing row 27000 of 80004 doing row 28000 of 80004 doing row 29000 of 80004 doing row 30000 of 80004 doing row 31000 of 80004 doing row 32000 of 80004 doing row 33000 of 80004 doing row 34000 of 80004 doing row 35000 of 80004 doing row 36000 of 80004 doing row 37000 of 80004 doing row 38000 of 80004 doing row 39000 of 80004 doing row 40000 of 80004 doing row 41000 of 80004 doing row 42000 of 80004 doing row 43000 of 80004 doing row 44000 of 80004 doing row 45000 of 80004 doing row 46000 of 80004 doing row 47000 of 80004 doing row 48000 of 80004 doing row 49000 of 80004 doing row 50000 of 80004 doing row 51000 of 80004 doing row 52000 of 80004 doing row 53000 of 80004 doing row 54000 of 80004 doing row 55000 of 80004 doing row 56000 of 80004 doing row 57000 of 80004 doing row 58000 of 80004 doing row 59000 of 80004 doing row 60000 of 80004 doing row 61000 of 80004 doing row 62000 of 80004 doing row 63000 of 80004 doing row 64000 of 80004 doing row 65000 of 80004 doing row 66000 of 80004 doing row 67000 of 80004 doing row 68000 of 80004 doing row 69000 of 80004 doing row 70000 of 80004 doing row 71000 of 80004 doing row 72000 of 80004 doing row 73000 of 80004 doing row 74000 of 80004 doing row 75000 of 80004 doing row 76000 of 80004 doing row 77000 of 80004 doing row 78000 of 80004 doing row 79000 of 80004 doing row 80000 of 80004

Ardilla (Sciurus_igniventris)

Selección de Modelos

    print(as.character(sp.names[sp_number=2]))
## [1] "Sciurus_igniventris"
    sp2 <- f.sp.occu.models(sp_number = 2)
## Hessian is singular.
## Hessian is singular.
## Hessian is singular.
## Hessian is singular.
## Hessian is singular.
## Hessian is singular.
    # xtable::xtable(sp1, "html") #, format = "rst")
    # kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
    kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))
Sciurus_igniventris models nPars AIC delta AICwt cumltvWt psi_p_fm0
7 p(elev)psi(.) 3 86.80613 0.000000 0.1529875 0.1529875 0.2460585
11 p(elev)psi(elev + dist_rio) 5 87.81140 1.005269 0.0925475 0.2455350 0.0364041
15 p(dist_rio)psi(elev2) 4 87.99824 1.192111 0.0842932 0.3298281 NA
14 p(dist_rio)psi(elev) 4 87.99825 1.192112 0.0842931 0.4141212 NA
13 p(dist_rio)psi(.) 3 88.04857 1.242439 0.0821985 0.4963197 NA
12 p(elev)psi(dist_rio2) 4 88.61167 1.805538 0.0620281 0.5583477 NA
10 p(elev)psi(dist_rio) 4 88.61168 1.805543 0.0620279 0.6203757 NA
17 p(dist_rio)psi(elev + dist_rio) 5 88.62410 1.817965 0.0616439 0.6820195 NA
8 p(elev)psi(elev) 4 88.80613 2.000000 0.0562809 0.7383005 NA
9 p(elev)psi(elev2) 4 88.80613 2.000000 0.0562809 0.7945814 NA
1 p(.)psi(.) 2 89.19036 2.384231 0.0464437 0.8410251 NA
16 p(dist_rio)psi(dist_rio) 4 89.38327 2.577135 0.0421734 0.8831985 NA
18 p(dist_rio)psi(dist_rio2) 4 89.38327 2.577135 0.0421734 0.9253718 NA
3 p(.)psi(elev2) 3 91.19036 4.384231 0.0170857 0.9424575 NA
2 p(.)psi(elev) 3 91.19036 4.384231 0.0170857 0.9595432 NA
6 p(.)psi(dist_rio2) 3 91.19036 4.384231 0.0170857 0.9766288 NA
4 p(.)psi(dist_rio) 3 91.19036 4.384231 0.0170857 0.9937145 NA
5 p(.)psi(elev + dist_rio) 4 93.19036 6.384231 0.0062855 1.0000000 NA

Actividad de la ardilla

activityDensity (recordTable = camaras,
                 species     = as.character(sp.names[sp_number=2]))

Mapa de la Ardilla

ardilla <- filter(camaras_17, Species=="Sciurus_igniventris")
by_sp <- camaras_17 %>%  group_by(Species) %>% tally()
by_sp_predio <- ardilla  %>%  group_by(Predio) %>% tally()
names(by_sp_predio) <-  c("Predio", "Fotos ardilla", "geometry")


ardilla_window <- qtm(vichada_osm1) + 
  tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) + 
  tm_shape(rio) +
  tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") +  #tm_symbols (size = 0.5) +
  tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) + 
    tm_bubbles(size = "Fotos ardilla", col = "red", border.col= "red", alpha= 0.5, 
               legend.size.is.portrait=TRUE) +
    # tm_dots(col = "Species", size = 0.25, 
    #        shape = 16, title = "Especie", legend.show = TRUE,
    #       legend.is.portrait = TRUE, legend.z = NA) +
    tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value 
            outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
            legend.position = c(1.01,.1), 
            legend.outside.size = 0.1,
            legend.title.size = 1.6,
            legend.height = 0.9,
            legend.width = 1.5,
            legend.text.size = 1, 
            legend.hist.size = 0.5) + 
  tm_layout(frame=T) + tm_scale_bar() + 
  tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)

#plot
ardilla_window

Ocelote (Leopardus_pardalis)

Selección de Modelos

    print(as.character(sp.names[sp_number=3]))
## [1] "Leopardus_pardalis"
    sp2 <- f.sp.occu.models(sp_number = 3)
    # xtable::xtable(sp1, "html") #, format = "rst")
    # kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
    kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))
Leopardus_pardalis models nPars AIC delta AICwt cumltvWt psi_p_fm0
11 p(elev)psi(elev + dist_rio) 5 468.3480 0.000000 0.7049357 0.7049357 0.4916105
8 p(elev)psi(elev) 4 471.9804 3.632305 0.1146581 0.8195938 0.1303306
9 p(elev)psi(elev2) 4 471.9804 3.632305 0.1146581 0.9342518 NA
5 p(.)psi(elev + dist_rio) 4 474.5562 6.208121 0.0316281 0.9658799 NA
1 p(.)psi(.) 2 476.4397 8.091663 0.0123330 0.9782129 NA
4 p(.)psi(dist_rio) 3 477.7869 9.438897 0.0062881 0.9845010 NA
6 p(.)psi(dist_rio2) 3 477.7869 9.438897 0.0062881 0.9907891 NA
3 p(.)psi(elev2) 3 478.4135 10.065498 0.0045968 0.9953859 NA
2 p(.)psi(elev) 3 478.4135 10.065498 0.0045968 0.9999827 NA
7 p(elev)psi(.) 3 491.9380 23.589910 0.0000053 0.9999880 NA
15 p(dist_rio)psi(elev2) 4 493.6958 25.347796 0.0000022 0.9999902 NA
14 p(dist_rio)psi(elev) 4 493.7131 25.365093 0.0000022 0.9999924 NA
12 p(elev)psi(dist_rio2) 4 493.9255 25.577453 0.0000020 0.9999943 NA
10 p(elev)psi(dist_rio) 4 493.9255 25.577491 0.0000020 0.9999963 NA
17 p(dist_rio)psi(elev + dist_rio) 5 494.1022 25.754138 0.0000018 0.9999981 NA
13 p(dist_rio)psi(.) 3 495.1158 26.767725 0.0000011 0.9999992 NA
18 p(dist_rio)psi(dist_rio2) 4 497.1154 28.767393 0.0000004 0.9999996 NA
16 p(dist_rio)psi(dist_rio) 4 497.1154 28.767395 0.0000004 1.0000000 NA

Actividad del Ocelote

activityDensity (recordTable = camaras,
                 species     = as.character(sp.names[sp_number=3]))

Mapa del Ocelote

ocelote <- filter(camaras_17, Species=="Leopardus_pardalis")
by_sp <- camaras_17 %>%  group_by(Species) %>% tally()
by_sp_predio <- ocelote  %>%  group_by(Predio) %>% tally()
names(by_sp_predio) <-  c("Predio", "Fotos ocelote", "geometry")


ocelote_window <- qtm(vichada_osm1) + 
  tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) + 
  tm_shape(rio) +
  tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") +  #tm_symbols (size = 0.5) +
  tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) + 
    tm_bubbles(size = "Fotos ocelote", col = "red", border.col= "red", alpha= 0.5, 
               legend.size.is.portrait=TRUE) +
    # tm_dots(col = "Species", size = 0.25, 
    #        shape = 16, title = "Especie", legend.show = TRUE,
    #       legend.is.portrait = TRUE, legend.z = NA) +
    tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value 
            outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
            legend.position = c(1.01,.1), 
            legend.outside.size = 0.1,
            legend.title.size = 1.6,
            legend.height = 0.9,
            legend.width = 1.5,
            legend.text.size = 1, 
            legend.hist.size = 0.5) + 
  tm_layout(frame=T) + tm_scale_bar() + 
  tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)

#plot
ocelote_window

analisis Ocelote p(elev)psi(elev + dist) sp=3

doing row 1000 of 80004 doing row 2000 of 80004 doing row 3000 of 80004 doing row 4000 of 80004 doing row 5000 of 80004 doing row 6000 of 80004 doing row 7000 of 80004 doing row 8000 of 80004 doing row 9000 of 80004 doing row 10000 of 80004 doing row 11000 of 80004 doing row 12000 of 80004 doing row 13000 of 80004 doing row 14000 of 80004 doing row 15000 of 80004 doing row 16000 of 80004 doing row 17000 of 80004 doing row 18000 of 80004 doing row 19000 of 80004 doing row 20000 of 80004 doing row 21000 of 80004 doing row 22000 of 80004 doing row 23000 of 80004 doing row 24000 of 80004 doing row 25000 of 80004 doing row 26000 of 80004 doing row 27000 of 80004 doing row 28000 of 80004 doing row 29000 of 80004 doing row 30000 of 80004 doing row 31000 of 80004 doing row 32000 of 80004 doing row 33000 of 80004 doing row 34000 of 80004 doing row 35000 of 80004 doing row 36000 of 80004 doing row 37000 of 80004 doing row 38000 of 80004 doing row 39000 of 80004 doing row 40000 of 80004 doing row 41000 of 80004 doing row 42000 of 80004 doing row 43000 of 80004 doing row 44000 of 80004 doing row 45000 of 80004 doing row 46000 of 80004 doing row 47000 of 80004 doing row 48000 of 80004 doing row 49000 of 80004 doing row 50000 of 80004 doing row 51000 of 80004 doing row 52000 of 80004 doing row 53000 of 80004 doing row 54000 of 80004 doing row 55000 of 80004 doing row 56000 of 80004 doing row 57000 of 80004 doing row 58000 of 80004 doing row 59000 of 80004 doing row 60000 of 80004 doing row 61000 of 80004 doing row 62000 of 80004 doing row 63000 of 80004 doing row 64000 of 80004 doing row 65000 of 80004 doing row 66000 of 80004 doing row 67000 of 80004 doing row 68000 of 80004 doing row 69000 of 80004 doing row 70000 of 80004 doing row 71000 of 80004 doing row 72000 of 80004 doing row 73000 of 80004 doing row 74000 of 80004 doing row 75000 of 80004 doing row 76000 of 80004 doing row 77000 of 80004 doing row 78000 of 80004 doing row 79000 of 80004 doing row 80000 of 80004

Danta (Tapirus_terrestris)

Selección de Modelos

    print(as.character(sp.names[sp_number=4]))
## [1] "Tapirus_terrestris"
    sp2 <- f.sp.occu.models(sp_number = 4)
## Hessian is singular.
    # xtable::xtable(sp1, "html") #, format = "rst")
    # kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
    kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))
Tapirus_terrestris models nPars AIC delta AICwt cumltvWt psi_p_fm0
11 p(elev)psi(elev + dist_rio) 5 811.4492 0.000000 0.4888444 0.4888444 0.5572193
8 p(elev)psi(elev) 4 813.0870 1.637815 0.2155379 0.7043823 0.2147943
9 p(elev)psi(elev2) 4 813.0885 1.639344 0.2153732 0.9197555 NA
17 p(dist_rio)psi(elev + dist_rio) 5 816.3331 4.883952 0.0425240 0.9622795 NA
14 p(dist_rio)psi(elev) 4 818.0123 6.563136 0.0183655 0.9806451 NA
15 p(dist_rio)psi(elev2) 4 818.0124 6.563186 0.0183651 0.9990101 NA
7 p(elev)psi(.) 3 826.4408 14.991620 0.0002715 0.9992816 NA
5 p(.)psi(elev + dist_rio) 4 827.6560 16.206833 0.0001479 0.9994295 NA
3 p(.)psi(elev2) 3 827.7490 16.299763 0.0001412 0.9995707 NA
2 p(.)psi(elev) 3 827.8320 16.382816 0.0001354 0.9997061 NA
10 p(elev)psi(dist_rio) 4 828.4399 16.990680 0.0000999 0.9998060 NA
12 p(elev)psi(dist_rio2) 4 828.4399 16.990690 0.0000999 0.9999060 NA
13 p(dist_rio)psi(.) 3 830.7262 19.277042 0.0000319 0.9999378 NA
1 p(.)psi(.) 2 831.4376 19.988375 0.0000223 0.9999601 NA
16 p(dist_rio)psi(dist_rio) 4 832.7262 21.277042 0.0000117 0.9999719 NA
18 p(dist_rio)psi(dist_rio2) 4 832.7262 21.277044 0.0000117 0.9999836 NA
6 p(.)psi(dist_rio2) 3 833.4383 21.989080 0.0000082 0.9999918 NA
4 p(.)psi(dist_rio) 3 833.4383 21.989083 0.0000082 1.0000000 NA

Actividad de la Danta

activityDensity (recordTable = camaras,
                 species     = as.character(sp.names[sp_number=4]))

Mapa de la Danta

danta <- filter(camaras_17, Species=="Tapirus_terrestris")
by_sp <- camaras_17 %>%  group_by(Species) %>% tally()
by_sp_predio <- danta  %>%  group_by(Predio) %>% tally()
names(by_sp_predio) <-  c("Predio", "Fotos danta", "geometry")


danta_window <- qtm(vichada_osm1) + 
  tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) + 
  tm_shape(rio) +
  tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") +  #tm_symbols (size = 0.5) +
  tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) + 
    tm_bubbles(size = "Fotos danta", col = "red", border.col= "red", alpha= 0.5, 
               legend.size.is.portrait=TRUE) +
    # tm_dots(col = "Species", size = 0.25, 
    #        shape = 16, title = "Especie", legend.show = TRUE,
    #       legend.is.portrait = TRUE, legend.z = NA) +
    tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value 
            outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
            legend.position = c(1.01,.1), 
            legend.outside.size = 0.1,
            legend.title.size = 1.6,
            legend.height = 0.9,
            legend.width = 1.5,
            legend.text.size = 1, 
            legend.hist.size = 0.5) + 
  tm_layout(frame=T) + tm_scale_bar() + 
  tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)

#plot
danta_window

analisis Danta p(elev)psi(elev+dist_rio) sp=1

Hessian is singular. doing row 1000 of 80004 doing row 2000 of 80004 doing row 3000 of 80004 doing row 4000 of 80004 doing row 5000 of 80004 doing row 6000 of 80004 doing row 7000 of 80004 doing row 8000 of 80004 doing row 9000 of 80004 doing row 10000 of 80004 doing row 11000 of 80004 doing row 12000 of 80004 doing row 13000 of 80004 doing row 14000 of 80004 doing row 15000 of 80004 doing row 16000 of 80004 doing row 17000 of 80004 doing row 18000 of 80004 doing row 19000 of 80004 doing row 20000 of 80004 doing row 21000 of 80004 doing row 22000 of 80004 doing row 23000 of 80004 doing row 24000 of 80004 doing row 25000 of 80004 doing row 26000 of 80004 doing row 27000 of 80004 doing row 28000 of 80004 doing row 29000 of 80004 doing row 30000 of 80004 doing row 31000 of 80004 doing row 32000 of 80004 doing row 33000 of 80004 doing row 34000 of 80004 doing row 35000 of 80004 doing row 36000 of 80004 doing row 37000 of 80004 doing row 38000 of 80004 doing row 39000 of 80004 doing row 40000 of 80004 doing row 41000 of 80004 doing row 42000 of 80004 doing row 43000 of 80004 doing row 44000 of 80004 doing row 45000 of 80004 doing row 46000 of 80004 doing row 47000 of 80004 doing row 48000 of 80004 doing row 49000 of 80004 doing row 50000 of 80004 doing row 51000 of 80004 doing row 52000 of 80004 doing row 53000 of 80004 doing row 54000 of 80004 doing row 55000 of 80004 doing row 56000 of 80004 doing row 57000 of 80004 doing row 58000 of 80004 doing row 59000 of 80004 doing row 60000 of 80004 doing row 61000 of 80004 doing row 62000 of 80004 doing row 63000 of 80004 doing row 64000 of 80004 doing row 65000 of 80004 doing row 66000 of 80004 doing row 67000 of 80004 doing row 68000 of 80004 doing row 69000 of 80004 doing row 70000 of 80004 doing row 71000 of 80004 doing row 72000 of 80004 doing row 73000 of 80004 doing row 74000 of 80004 doing row 75000 of 80004 doing row 76000 of 80004 doing row 77000 of 80004 doing row 78000 of 80004 doing row 79000 of 80004 doing row 80000 of 80004

Tayra (Eira_barbara)

Selección de Modelos

muy pocos registros… no confiable!

    print(as.character(sp.names[sp_number=5]))
## [1] "Eira_barbara"
    sp2 <- f.sp.occu.models(sp_number = 5)
    # xtable::xtable(sp1, "html") #, format = "rst")
    # kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
    kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))
Eira_barbara models nPars AIC delta AICwt cumltvWt psi_p_fm0
7 p(elev)psi(.) 3 116.9166 0.0000000 0.1231880 0.1231880 0.2792935
13 p(dist_rio)psi(.) 3 117.3462 0.4296355 0.0993744 0.2225624 0.0385355
1 p(.)psi(.) 2 117.5329 0.6163022 0.0905191 0.3130815 NA
6 p(.)psi(dist_rio2) 3 117.9720 1.0553602 0.0726775 0.3857590 NA
4 p(.)psi(dist_rio) 3 117.9720 1.0553607 0.0726775 0.4584364 NA
8 p(elev)psi(elev) 4 118.3155 1.3989052 0.0612069 0.5196433 NA
9 p(elev)psi(elev2) 4 118.3155 1.3989056 0.0612068 0.5808501 NA
2 p(.)psi(elev) 3 118.7342 1.8176014 0.0496457 0.6304958 NA
3 p(.)psi(elev2) 3 118.7342 1.8176014 0.0496457 0.6801415 NA
10 p(elev)psi(dist_rio) 4 118.8814 1.9648313 0.0461223 0.7262637 NA
12 p(elev)psi(dist_rio2) 4 118.8815 1.9648423 0.0461220 0.7723858 NA
15 p(dist_rio)psi(elev2) 4 119.2165 2.2998391 0.0390090 0.8113948 NA
14 p(dist_rio)psi(elev) 4 119.2165 2.2998548 0.0390087 0.8504035 NA
18 p(dist_rio)psi(dist_rio2) 4 119.3434 2.4267636 0.0366103 0.8870138 NA
16 p(dist_rio)psi(dist_rio) 4 119.3434 2.4267770 0.0366101 0.9236238 NA
11 p(elev)psi(elev + dist_rio) 5 119.6920 2.7753850 0.0307540 0.9543778 NA
5 p(.)psi(elev + dist_rio) 4 119.7215 2.8048409 0.0303044 0.9846822 NA
17 p(dist_rio)psi(elev + dist_rio) 5 121.0860 4.1693882 0.0153178 1.0000000 NA

Actividad de la Tayra

activityDensity (recordTable = camaras,
                 species     = as.character(sp.names[sp_number=5]))

Mapa de la Tayra

tayra <- filter(camaras_17, Species=="Eira_barbara")
by_sp <- camaras_17 %>%  group_by(Species) %>% tally()
by_sp_predio <- tayra  %>%  group_by(Predio) %>% tally()
names(by_sp_predio) <-  c("Predio", "Fotos tayra", "geometry")


tayra_window <- qtm(vichada_osm1) + 
  tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) + 
  tm_shape(rio) +
  tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") +  #tm_symbols (size = 0.5) +
  tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) + 
    tm_bubbles(size = "Fotos tayra", col = "red", border.col= "red", alpha= 0.5, 
               legend.size.is.portrait=TRUE) +
    # tm_dots(col = "Species", size = 0.25, 
    #        shape = 16, title = "Especie", legend.show = TRUE,
    #       legend.is.portrait = TRUE, legend.z = NA) +
    tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value 
            outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
            legend.position = c(1.01,.1), 
            legend.outside.size = 0.1,
            legend.title.size = 1.6,
            legend.height = 0.9,
            legend.width = 1.5,
            legend.text.size = 1, 
            legend.hist.size = 0.5) + 
  tm_layout(frame=T) + tm_scale_bar() + 
  tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)

#plot
tayra_window

Chucha (Didelphis_marsupialis)

Selección de Modelos

muy pocos registros… no confiable!

    print(as.character(sp.names[sp_number=6]))
## [1] "Didelphis_marsupialis"
    sp2 <- f.sp.occu.models(sp_number = 6)
    # xtable::xtable(sp1, "html") #, format = "rst")
    # kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
    kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))
Didelphis_marsupialis models nPars AIC delta AICwt cumltvWt psi_p_fm0
8 p(elev)psi(elev) 4 105.2930 0.0000000 0.1608537 0.1608537 0.1998604
9 p(elev)psi(elev2) 4 105.2930 0.0000000 0.1608537 0.3217074 0.0595698
12 p(elev)psi(dist_rio2) 4 105.5724 0.2794433 0.1398784 0.4615859 NA
10 p(elev)psi(dist_rio) 4 105.5725 0.2794509 0.1398779 0.6014638 NA
17 p(dist_rio)psi(elev + dist_rio) 5 106.8226 1.5296057 0.0748655 0.6763292 NA
11 p(elev)psi(elev + dist_rio) 5 107.2397 1.9467280 0.0607721 0.7371014 NA
3 p(.)psi(elev2) 3 107.7898 2.4967846 0.0461595 0.7832609 NA
2 p(.)psi(elev) 3 107.7959 2.5029474 0.0460175 0.8292784 NA
14 p(dist_rio)psi(elev) 4 107.8597 2.5667071 0.0445736 0.8738520 NA
15 p(dist_rio)psi(elev2) 4 107.8597 2.5667251 0.0445732 0.9184252 NA
1 p(.)psi(.) 2 109.6877 4.3946812 0.0178706 0.9362958 NA
16 p(dist_rio)psi(dist_rio) 4 110.1332 4.8401734 0.0143021 0.9505979 NA
18 p(dist_rio)psi(dist_rio2) 4 110.1332 4.8401814 0.0143021 0.9649000 NA
7 p(elev)psi(.) 3 110.2007 4.9076715 0.0138275 0.9787275 NA
13 p(dist_rio)psi(.) 3 111.6513 6.3582760 0.0066950 0.9854224 NA
6 p(.)psi(dist_rio2) 3 111.6735 6.3805255 0.0066209 0.9920434 NA
4 p(.)psi(dist_rio) 3 111.6735 6.3805256 0.0066209 0.9986643 NA
5 p(.)psi(elev + dist_rio) 4 114.8750 9.5820201 0.0013357 1.0000000 NA

Actividad de la Chucha

activityDensity (recordTable = camaras,
                 species     = as.character(sp.names[sp_number=6]))

Mapa de la Chucha

chucha <- filter(camaras_17, Species=="Didelphis_marsupialis")
by_sp <- camaras_17 %>%  group_by(Species) %>% tally()
by_sp_predio <- chucha  %>%  group_by(Predio) %>% tally()
names(by_sp_predio) <-  c("Predio", "Fotos chucha", "geometry")


chucha_window <- qtm(vichada_osm1) + 
  tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) + 
  tm_shape(rio) +
  tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") +  #tm_symbols (size = 0.5) +
  tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) + 
    tm_bubbles(size = "Fotos chucha", col = "red", border.col= "red", alpha= 0.5, 
               legend.size.is.portrait=TRUE) +
    # tm_dots(col = "Species", size = 0.25, 
    #        shape = 16, title = "Especie", legend.show = TRUE,
    #       legend.is.portrait = TRUE, legend.z = NA) +
    tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value 
            outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
            legend.position = c(1.01,.1), 
            legend.outside.size = 0.1,
            legend.title.size = 1.6,
            legend.height = 0.9,
            legend.width = 1.5,
            legend.text.size = 1, 
            legend.hist.size = 0.5) + 
  tm_layout(frame=T) + tm_scale_bar() + 
  tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)

#plot
chucha_window

Pecari (Tayassu_pecari)

Selección de Modelos

    print(as.character(sp.names[sp_number=7]))
## [1] "Tayassu_pecari"
    sp2 <- f.sp.occu.models(sp_number = 7)
    # xtable::xtable(sp1, "html") #, format = "rst")
    # kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
    kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))
Tayassu_pecari models nPars AIC delta AICwt cumltvWt psi_p_fm0
17 p(dist_rio)psi(elev + dist_rio) 5 1083.817 0.0000000 0.2714290 0.2714290 0.6272833
13 p(dist_rio)psi(.) 3 1083.839 0.0228188 0.2683498 0.5397788 0.2584680
14 p(dist_rio)psi(elev) 4 1085.273 1.4559634 0.1310683 0.6708471 NA
15 p(dist_rio)psi(elev2) 4 1085.273 1.4559635 0.1310683 0.8019155 NA
18 p(dist_rio)psi(dist_rio2) 4 1085.833 2.0163076 0.0990423 0.9009577 NA
16 p(dist_rio)psi(dist_rio) 4 1085.833 2.0163078 0.0990423 1.0000000 NA
3 p(.)psi(elev2) 3 1147.270 63.4535723 0.0000000 1.0000000 NA
2 p(.)psi(elev) 3 1147.296 63.4796549 0.0000000 1.0000000 NA
5 p(.)psi(elev + dist_rio) 4 1149.274 65.4577503 0.0000000 1.0000000 NA
1 p(.)psi(.) 2 1154.209 70.3920522 0.0000000 1.0000000 NA
7 p(elev)psi(.) 3 1156.127 72.3104903 0.0000000 1.0000000 NA
6 p(.)psi(dist_rio2) 3 1156.209 72.3920531 0.0000000 1.0000000 NA
4 p(.)psi(dist_rio) 3 1156.209 72.3920531 0.0000000 1.0000000 NA
10 p(elev)psi(dist_rio) 4 1158.127 74.3104489 0.0000000 1.0000000 NA
12 p(elev)psi(dist_rio2) 4 1158.127 74.3104531 0.0000000 1.0000000 NA
8 p(elev)psi(elev) 4 1158.127 74.3104868 0.0000000 1.0000000 NA
9 p(elev)psi(elev2) 4 1158.129 74.3126029 0.0000000 1.0000000 NA
11 p(elev)psi(elev + dist_rio) 5 1160.127 76.3104851 0.0000000 1.0000000 NA

Actividad del Pecari

activityDensity (recordTable = camaras,
                 species     = as.character(sp.names[sp_number=7]))

Mapa del Pecari

pecari <- filter(camaras_17, Species=="Tayassu_pecari")
by_sp <- camaras_17 %>%  group_by(Species) %>% tally()
by_sp_predio <- pecari  %>%  group_by(Predio) %>% tally()
names(by_sp_predio) <-  c("Predio", "Fotos pecari", "geometry")


pecari_window <- qtm(vichada_osm1) + 
  tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) + 
  tm_shape(rio) +
  tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") +  #tm_symbols (size = 0.5) +
  tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) + 
    tm_bubbles(size = "Fotos pecari", col = "red", border.col= "red", alpha= 0.5, 
               legend.size.is.portrait=TRUE) +
    # tm_dots(col = "Species", size = 0.25, 
    #        shape = 16, title = "Especie", legend.show = TRUE,
    #       legend.is.portrait = TRUE, legend.z = NA) +
    tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value 
            outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
            legend.position = c(1.01,.1), 
            legend.outside.size = 0.1,
            legend.title.size = 1.6,
            legend.height = 0.9,
            legend.width = 1.5,
            legend.text.size = 1, 
            legend.hist.size = 0.5) + 
  tm_layout(frame=T) + tm_scale_bar() + 
  tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)

#plot
pecari_window

analisis Pecari p(dist_rio)psi(elev+dost_rio) sp=1

doing row 1000 of 80004 doing row 2000 of 80004 doing row 3000 of 80004 doing row 4000 of 80004 doing row 5000 of 80004 doing row 6000 of 80004 doing row 7000 of 80004 doing row 8000 of 80004 doing row 9000 of 80004 doing row 10000 of 80004 doing row 11000 of 80004 doing row 12000 of 80004 doing row 13000 of 80004 doing row 14000 of 80004 doing row 15000 of 80004 doing row 16000 of 80004 doing row 17000 of 80004 doing row 18000 of 80004 doing row 19000 of 80004 doing row 20000 of 80004 doing row 21000 of 80004 doing row 22000 of 80004 doing row 23000 of 80004 doing row 24000 of 80004 doing row 25000 of 80004 doing row 26000 of 80004 doing row 27000 of 80004 doing row 28000 of 80004 doing row 29000 of 80004 doing row 30000 of 80004 doing row 31000 of 80004 doing row 32000 of 80004 doing row 33000 of 80004 doing row 34000 of 80004 doing row 35000 of 80004 doing row 36000 of 80004 doing row 37000 of 80004 doing row 38000 of 80004 doing row 39000 of 80004 doing row 40000 of 80004 doing row 41000 of 80004 doing row 42000 of 80004 doing row 43000 of 80004 doing row 44000 of 80004 doing row 45000 of 80004 doing row 46000 of 80004 doing row 47000 of 80004 doing row 48000 of 80004 doing row 49000 of 80004 doing row 50000 of 80004 doing row 51000 of 80004 doing row 52000 of 80004 doing row 53000 of 80004 doing row 54000 of 80004 doing row 55000 of 80004 doing row 56000 of 80004 doing row 57000 of 80004 doing row 58000 of 80004 doing row 59000 of 80004 doing row 60000 of 80004 doing row 61000 of 80004 doing row 62000 of 80004 doing row 63000 of 80004 doing row 64000 of 80004 doing row 65000 of 80004 doing row 66000 of 80004 doing row 67000 of 80004 doing row 68000 of 80004 doing row 69000 of 80004 doing row 70000 of 80004 doing row 71000 of 80004 doing row 72000 of 80004 doing row 73000 of 80004 doing row 74000 of 80004 doing row 75000 of 80004 doing row 76000 of 80004 doing row 77000 of 80004 doing row 78000 of 80004 doing row 79000 of 80004 doing row 80000 of 80004

Boruga (Cuniculus_paca)

Selección de Modelos

    print(as.character(sp.names[sp_number=8]))
## [1] "Cuniculus_paca"
    sp2 <- f.sp.occu.models(sp_number = 8)
    # xtable::xtable(sp1, "html") #, format = "rst")
    # kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
    kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))
Cuniculus_paca models nPars AIC delta AICwt cumltvWt psi_p_fm0
11 p(elev)psi(elev + dist_rio) 5 958.6460 0.000000 0.3177152 0.3177152 0.4551684
9 p(elev)psi(elev2) 4 960.1173 1.471294 0.1522476 0.4699628 0.2862908
8 p(elev)psi(elev) 4 960.1173 1.471294 0.1522476 0.6222104 NA
7 p(elev)psi(.) 3 960.1899 1.543901 0.1468196 0.7690300 NA
17 p(dist_rio)psi(elev + dist_rio) 5 962.0306 3.384591 0.0584902 0.8275203 NA
5 p(.)psi(elev + dist_rio) 4 963.4849 4.838855 0.0282679 0.8557882 NA
14 p(dist_rio)psi(elev) 4 963.6595 5.013459 0.0259047 0.8816929 NA
15 p(dist_rio)psi(elev2) 4 963.6595 5.013459 0.0259047 0.9075977 NA
13 p(dist_rio)psi(.) 3 963.8839 5.237834 0.0231556 0.9307533 NA
3 p(.)psi(elev2) 3 964.9017 6.255662 0.0139200 0.9446733 NA
2 p(.)psi(elev) 3 964.9017 6.255662 0.0139200 0.9585932 NA
1 p(.)psi(.) 2 965.3980 6.751920 0.0108612 0.9694544 NA
16 p(dist_rio)psi(dist_rio) 4 965.5276 6.881587 0.0101794 0.9796338 NA
18 p(dist_rio)psi(dist_rio2) 4 965.5276 6.881587 0.0101794 0.9898131 NA
4 p(.)psi(dist_rio) 3 966.9124 8.266401 0.0050934 0.9949066 NA
6 p(.)psi(dist_rio2) 3 966.9125 8.266417 0.0050934 1.0000000 NA
10 p(elev)psi(dist_rio) 4 1077.1658 118.519783 0.0000000 1.0000000 NA
12 p(elev)psi(dist_rio2) 4 1077.1661 118.520074 0.0000000 1.0000000 NA

Actividad de la Boruga

activityDensity (recordTable = camaras,
                 species     = as.character(sp.names[sp_number=8]))

Mapa de la Boruga

boruga <- filter(camaras_17, Species=="Cuniculus_paca")
by_sp <- camaras_17 %>%  group_by(Species) %>% tally()
by_sp_predio <- boruga  %>%  group_by(Predio) %>% tally()
names(by_sp_predio) <-  c("Predio", "Fotos boruga", "geometry")


boruga_window <- qtm(vichada_osm1) + 
  tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) + 
  tm_shape(rio) +
  tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") +  #tm_symbols (size = 0.5) +
  tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) + 
    tm_bubbles(size = "Fotos boruga", col = "red", border.col= "red", alpha= 0.5, 
               legend.size.is.portrait=TRUE) +
    # tm_dots(col = "Species", size = 0.25, 
    #        shape = 16, title = "Especie", legend.show = TRUE,
    #       legend.is.portrait = TRUE, legend.z = NA) +
    tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value 
            outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
            legend.position = c(1.01,.1), 
            legend.outside.size = 0.1,
            legend.title.size = 1.6,
            legend.height = 0.9,
            legend.width = 1.5,
            legend.text.size = 1, 
            legend.hist.size = 0.5) + 
  tm_layout(frame=T) + tm_scale_bar() + 
  tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)

#plot
boruga_window

analisis Boruga p(elev)psi(elev+dost_rio) sp=1

doing row 1000 of 80004 doing row 2000 of 80004 doing row 3000 of 80004 doing row 4000 of 80004 doing row 5000 of 80004 doing row 6000 of 80004 doing row 7000 of 80004 doing row 8000 of 80004 doing row 9000 of 80004 doing row 10000 of 80004 doing row 11000 of 80004 doing row 12000 of 80004 doing row 13000 of 80004 doing row 14000 of 80004 doing row 15000 of 80004 doing row 16000 of 80004 doing row 17000 of 80004 doing row 18000 of 80004 doing row 19000 of 80004 doing row 20000 of 80004 doing row 21000 of 80004 doing row 22000 of 80004 doing row 23000 of 80004 doing row 24000 of 80004 doing row 25000 of 80004 doing row 26000 of 80004 doing row 27000 of 80004 doing row 28000 of 80004 doing row 29000 of 80004 doing row 30000 of 80004 doing row 31000 of 80004 doing row 32000 of 80004 doing row 33000 of 80004 doing row 34000 of 80004 doing row 35000 of 80004 doing row 36000 of 80004 doing row 37000 of 80004 doing row 38000 of 80004 doing row 39000 of 80004 doing row 40000 of 80004 doing row 41000 of 80004 doing row 42000 of 80004 doing row 43000 of 80004 doing row 44000 of 80004 doing row 45000 of 80004 doing row 46000 of 80004 doing row 47000 of 80004 doing row 48000 of 80004 doing row 49000 of 80004 doing row 50000 of 80004 doing row 51000 of 80004 doing row 52000 of 80004 doing row 53000 of 80004 doing row 54000 of 80004 doing row 55000 of 80004 doing row 56000 of 80004 doing row 57000 of 80004 doing row 58000 of 80004 doing row 59000 of 80004 doing row 60000 of 80004 doing row 61000 of 80004 doing row 62000 of 80004 doing row 63000 of 80004 doing row 64000 of 80004 doing row 65000 of 80004 doing row 66000 of 80004 doing row 67000 of 80004 doing row 68000 of 80004 doing row 69000 of 80004 doing row 70000 of 80004 doing row 71000 of 80004 doing row 72000 of 80004 doing row 73000 of 80004 doing row 74000 of 80004 doing row 75000 of 80004 doing row 76000 of 80004 doing row 77000 of 80004 doing row 78000 of 80004 doing row 79000 of 80004 doing row 80000 of 80004

Ñeque-Guara (Dasyprocta_fuliginosa)

Selección de Modelos

    print(as.character(sp.names[sp_number=9]))
## [1] "Dasyprocta_fuliginosa"
    sp2 <- f.sp.occu.models(sp_number = 9)
    # xtable::xtable(sp1, "html") #, format = "rst")
    # kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
    kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))
Dasyprocta_fuliginosa models nPars AIC delta AICwt cumltvWt psi_p_fm0
7 p(elev)psi(.) 3 843.9997 0.000000 0.2845833 0.2845833 0.2546188
12 p(elev)psi(dist_rio2) 4 845.3883 1.388563 0.1421303 0.4267136 0.4362057
10 p(elev)psi(dist_rio) 4 845.3883 1.388563 0.1421303 0.5688439 NA
8 p(elev)psi(elev) 4 845.8052 1.805501 0.1153851 0.6842291 NA
9 p(elev)psi(elev2) 4 845.8052 1.805501 0.1153851 0.7996142 NA
11 p(elev)psi(elev + dist_rio) 5 846.9823 2.982564 0.0640551 0.8636693 NA
13 p(dist_rio)psi(.) 3 847.9459 3.946188 0.0395645 0.9032338 NA
16 p(dist_rio)psi(dist_rio) 4 849.3442 5.344465 0.0196641 0.9228979 NA
18 p(dist_rio)psi(dist_rio2) 4 849.3442 5.344465 0.0196641 0.9425620 NA
15 p(dist_rio)psi(elev2) 4 849.7618 5.762055 0.0159586 0.9585206 NA
14 p(dist_rio)psi(elev) 4 849.7618 5.762055 0.0159586 0.9744792 NA
17 p(dist_rio)psi(elev + dist_rio) 5 850.9210 6.921298 0.0089386 0.9834178 NA
1 p(.)psi(.) 2 851.8865 7.886800 0.0055159 0.9889336 NA
6 p(.)psi(dist_rio2) 3 853.3107 9.310964 0.0027062 0.9916398 NA
4 p(.)psi(dist_rio) 3 853.3107 9.310967 0.0027062 0.9943460 NA
3 p(.)psi(elev2) 3 853.7173 9.717546 0.0022084 0.9965544 NA
2 p(.)psi(elev) 3 853.7173 9.717546 0.0022084 0.9987627 NA
5 p(.)psi(elev + dist_rio) 4 854.8760 10.876237 0.0012373 1.0000000 NA

Actividad del Ñeque

activityDensity (recordTable = camaras,
                 species     = as.character(sp.names[sp_number=9]))

Mapa del Ñeque

neque <- filter(camaras_17, Species=="Dasyprocta_fuliginosa")
by_sp <- camaras_17 %>%  group_by(Species) %>% tally()
by_sp_predio <- neque  %>%  group_by(Predio) %>% tally()
names(by_sp_predio) <-  c("Predio", "Fotos ñeque", "geometry")


neque_window <- qtm(vichada_osm1) + 
  tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) + 
  tm_shape(rio) +
  tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") +  #tm_symbols (size = 0.5) +
  tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) + 
    tm_bubbles(size = "Fotos ñeque", col = "red", border.col= "red", alpha= 0.5, 
               legend.size.is.portrait=TRUE) +
    # tm_dots(col = "Species", size = 0.25, 
    #        shape = 16, title = "Especie", legend.show = TRUE,
    #       legend.is.portrait = TRUE, legend.z = NA) +
    tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value 
            outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
            legend.position = c(1.01,.1), 
            legend.outside.size = 0.1,
            legend.title.size = 1.6,
            legend.height = 0.9,
            legend.width = 1.5,
            legend.text.size = 1, 
            legend.hist.size = 0.5) + 
  tm_layout(frame=T) + tm_scale_bar() + 
  tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)

#plot
neque_window

Chiguiro (Hydrochoerus_hydrochaeris)

Selección de Modelos

    print(as.character(sp.names[sp_number=10]))
## [1] "Hydrochoerus_hydrochaeris"
    sp2 <- f.sp.occu.models(sp_number = 10)
## Hessian is singular.
## Hessian is singular.
    # xtable::xtable(sp1, "html") #, format = "rst")
    # kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
    kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))
Hydrochoerus_hydrochaeris models nPars AIC delta AICwt cumltvWt psi_p_fm0
13 p(dist_rio)psi(.) 3 54.69605 0.000000 0.2502802 0.2502802 0.0764020
15 p(dist_rio)psi(elev2) 4 55.82256 1.126512 0.1424976 0.3927778 0.0868302
14 p(dist_rio)psi(elev) 4 55.88285 1.186801 0.1382662 0.5310439 NA
16 p(dist_rio)psi(dist_rio) 4 56.71485 2.018807 0.0912112 0.6222551 NA
18 p(dist_rio)psi(dist_rio2) 4 56.75664 2.060588 0.0893255 0.7115806 NA
12 p(elev)psi(dist_rio2) 4 57.73199 3.035942 0.0548504 0.7664310 NA
17 p(dist_rio)psi(elev + dist_rio) 5 57.73447 3.038425 0.0547824 0.8212134 NA
10 p(elev)psi(dist_rio) 4 58.24532 3.549269 0.0424338 0.8636473 NA
9 p(elev)psi(elev2) 4 58.88761 4.191562 0.0307780 0.8944253 NA
11 p(elev)psi(elev + dist_rio) 5 59.19803 4.501988 0.0263531 0.9207784 NA
8 p(elev)psi(elev) 4 59.29315 4.597098 0.0251292 0.9459076 NA
7 p(elev)psi(.) 3 59.46201 4.765965 0.0230946 0.9690022 NA
5 p(.)psi(elev + dist_rio) 4 59.83793 5.141878 0.0191374 0.9881396 NA
3 p(.)psi(elev2) 3 62.98005 8.284001 0.0039772 0.9921168 NA
2 p(.)psi(elev) 3 63.06060 8.364555 0.0038202 0.9959370 NA
1 p(.)psi(.) 2 64.04020 9.344155 0.0023408 0.9982778 NA
6 p(.)psi(dist_rio2) 3 66.04029 11.344243 0.0008611 0.9991389 NA
4 p(.)psi(dist_rio) 3 66.04029 11.344243 0.0008611 1.0000000 NA

Actividad del Chiguiro

activityDensity (recordTable = camaras,
                 species     = as.character(sp.names[sp_number=10]))

Mapa del Chiguiro

chiguiro <- filter(camaras_17, Species=="Hydrochoerus_hydrochaeris")
by_sp <- camaras_17 %>%  group_by(Species) %>% tally()
by_sp_predio <- chiguiro  %>%  group_by(Predio) %>% tally()
names(by_sp_predio) <-  c("Predio", "Fotos chiguiro", "geometry")


chiguiro_window <- qtm(vichada_osm1) + 
  tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) + 
  tm_shape(rio) +
  tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") +  #tm_symbols (size = 0.5) +
  tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) + 
    tm_bubbles(size = "Fotos chiguiro", col = "red", border.col= "red", alpha= 0.5, 
               legend.size.is.portrait=TRUE) +
    # tm_dots(col = "Species", size = 0.25, 
    #        shape = 16, title = "Especie", legend.show = TRUE,
    #       legend.is.portrait = TRUE, legend.z = NA) +
    tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value 
            outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
            legend.position = c(1.01,.1), 
            legend.outside.size = 0.1,
            legend.title.size = 1.6,
            legend.height = 0.9,
            legend.width = 1.5,
            legend.text.size = 1, 
            legend.hist.size = 0.5) + 
  tm_layout(frame=T) + tm_scale_bar() + 
  tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)

#plot
chiguiro_window

Puma (Puma_concolor)

Selección de Modelos

    print(as.character(sp.names[sp_number=11]))
## [1] "Puma_concolor"
    sp2 <- f.sp.occu.models(sp_number = 11)
    # xtable::xtable(sp1, "html") #, format = "rst")
    # kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
    kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))
Puma_concolor models nPars AIC delta AICwt cumltvWt psi_p_fm0
1 p(.)psi(.) 2 157.7201 0.000000 0.2198848 0.2198848 0.9993792
7 p(elev)psi(.) 3 159.6794 1.959300 0.0825541 0.3024389 0.0181376
13 p(dist_rio)psi(.) 3 159.7170 1.996914 0.0810160 0.3834549 NA
2 p(.)psi(elev) 3 159.7184 1.998219 0.0809632 0.4644181 NA
4 p(.)psi(dist_rio) 3 159.7184 1.998279 0.0809607 0.5453788 NA
6 p(.)psi(dist_rio2) 3 159.7185 1.998320 0.0809591 0.6263379 NA
3 p(.)psi(elev2) 3 159.7191 1.998945 0.0809338 0.7072717 NA
8 p(elev)psi(elev) 4 161.6783 3.958187 0.0303869 0.7376585 NA
10 p(elev)psi(dist_rio) 4 161.6785 3.958388 0.0303838 0.7680423 NA
12 p(elev)psi(dist_rio2) 4 161.6786 3.958499 0.0303821 0.7984245 NA
9 p(elev)psi(elev2) 4 161.6795 3.959415 0.0303682 0.8287927 NA
15 p(dist_rio)psi(elev2) 4 161.7159 3.995771 0.0298212 0.8586138 NA
14 p(dist_rio)psi(elev) 4 161.7159 3.995776 0.0298211 0.8884349 NA
18 p(dist_rio)psi(dist_rio2) 4 161.7159 3.995782 0.0298210 0.9182559 NA
16 p(dist_rio)psi(dist_rio) 4 161.7159 3.995807 0.0298206 0.9480765 NA
5 p(.)psi(elev + dist_rio) 4 161.7188 3.998718 0.0297773 0.9778538 NA
11 p(elev)psi(elev + dist_rio) 5 163.6786 5.958437 0.0111773 0.9890311 NA
17 p(dist_rio)psi(elev + dist_rio) 5 163.7162 5.996081 0.0109689 1.0000000 NA

Actividad del Puma

activityDensity (recordTable = camaras,
                 species     = as.character(sp.names[sp_number=11]))

Mapa del Puma

puma <- filter(camaras_17, Species=="Puma_concolor")
by_sp <- camaras_17 %>%  group_by(Species) %>% tally()
by_sp_predio <- puma  %>%  group_by(Predio) %>% tally()
names(by_sp_predio) <-  c("Predio", "Fotos puma", "geometry")


puma_window <- qtm(vichada_osm1) + 
  tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) + 
  tm_shape(rio) +
  tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") +  #tm_symbols (size = 0.5) +
  tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) + 
    tm_bubbles(size = "Fotos puma", col = "red", border.col= "red", alpha= 0.5, 
               legend.size.is.portrait=TRUE) +
    # tm_dots(col = "Species", size = 0.25, 
    #        shape = 16, title = "Especie", legend.show = TRUE,
    #       legend.is.portrait = TRUE, legend.z = NA) +
    tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value 
            outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
            legend.position = c(1.01,.1), 
            legend.outside.size = 0.1,
            legend.title.size = 1.6,
            legend.height = 0.9,
            legend.width = 1.5,
            legend.text.size = 1, 
            legend.hist.size = 0.5) + 
  tm_layout(frame=T) + tm_scale_bar() + 
  tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)

#plot
puma_window

Oso palmero (Myrmecophaga_tridactyla)

Selección de Modelos

    print(as.character(sp.names[sp_number=13]))
## [1] "Myrmecophaga_tridactyla"
    sp2 <- f.sp.occu.models(sp_number = 13)
    # xtable::xtable(sp1, "html") #, format = "rst")
    # kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
    kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))
Myrmecophaga_tridactyla models nPars AIC delta AICwt cumltvWt psi_p_fm0
5 p(.)psi(elev + dist_rio) 4 231.3263 0.0000000 0.1794647 0.1794647 0.3415188
2 p(.)psi(elev) 3 231.8466 0.5202811 0.1383571 0.3178218 0.0850134
3 p(.)psi(elev2) 3 231.8466 0.5202815 0.1383571 0.4561789 NA
1 p(.)psi(.) 2 232.8276 1.5013023 0.0847179 0.5408968 NA
11 p(elev)psi(elev + dist_rio) 5 233.1927 1.8663691 0.0705833 0.6114802 NA
17 p(dist_rio)psi(elev + dist_rio) 5 233.2997 1.9733883 0.0669057 0.6783859 NA
8 p(elev)psi(elev) 4 233.7737 2.4473236 0.0527897 0.7311756 NA
9 p(elev)psi(elev2) 4 233.7737 2.4473236 0.0527897 0.7839654 NA
6 p(.)psi(dist_rio2) 3 233.9940 2.6676705 0.0472826 0.8312480 NA
4 p(.)psi(dist_rio) 3 233.9940 2.6676710 0.0472826 0.8785306 NA
12 p(elev)psi(dist_rio2) 4 234.5574 3.2311119 0.0356740 0.9142047 NA
10 p(elev)psi(dist_rio) 4 234.5574 3.2311120 0.0356740 0.9498787 NA
16 p(dist_rio)psi(dist_rio) 4 235.8735 4.5472108 0.0184742 0.9683528 NA
18 p(dist_rio)psi(dist_rio2) 4 235.8735 4.5472108 0.0184742 0.9868270 NA
7 p(elev)psi(.) 3 237.2757 5.9493541 0.0091642 0.9959912 NA
13 p(dist_rio)psi(.) 3 240.0322 8.7059141 0.0023095 0.9983007 NA
15 p(dist_rio)psi(elev2) 4 242.0321 10.7057564 0.0008497 0.9991503 NA
14 p(dist_rio)psi(elev) 4 242.0321 10.7057670 0.0008497 1.0000000 NA

Actividad del Oso palmero

activityDensity (recordTable = camaras,
                 species     = as.character(sp.names[sp_number=13]))

Mapa del Oso palmero

oso <- filter(camaras_17, Species=="Myrmecophaga_tridactyla")
by_sp <- camaras_17 %>%  group_by(Species) %>% tally()
by_sp_predio <- oso  %>%  group_by(Predio) %>% tally()
names(by_sp_predio) <-  c("Predio", "Fotos oso palmero", "geometry")


oso_window <- qtm(vichada_osm1) + 
  tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) + 
  tm_shape(rio) +
  tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") +  #tm_symbols (size = 0.5) +
  tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) + 
    tm_bubbles(size = "Fotos oso palmero", col = "red", border.col= "red", alpha= 0.5, 
               legend.size.is.portrait=TRUE) +
    # tm_dots(col = "Species", size = 0.25, 
    #        shape = 16, title = "Especie", legend.show = TRUE,
    #       legend.is.portrait = TRUE, legend.z = NA) +
    tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value 
            outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
            legend.position = c(1.01,.1), 
            legend.outside.size = 0.1,
            legend.title.size = 1.6,
            legend.height = 0.9,
            legend.width = 1.5,
            legend.text.size = 1, 
            legend.hist.size = 0.5) + 
  tm_layout(frame=T) + tm_scale_bar() + 
  tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)

#plot
oso_window

analisis Oso Palmero p(.)psi(elev+dost_rio) sp=1

doing row 1000 of 80004 doing row 2000 of 80004 doing row 3000 of 80004 doing row 4000 of 80004 doing row 5000 of 80004 doing row 6000 of 80004 doing row 7000 of 80004 doing row 8000 of 80004 doing row 9000 of 80004 doing row 10000 of 80004 doing row 11000 of 80004 doing row 12000 of 80004 doing row 13000 of 80004 doing row 14000 of 80004 doing row 15000 of 80004 doing row 16000 of 80004 doing row 17000 of 80004 doing row 18000 of 80004 doing row 19000 of 80004 doing row 20000 of 80004 doing row 21000 of 80004 doing row 22000 of 80004 doing row 23000 of 80004 doing row 24000 of 80004 doing row 25000 of 80004 doing row 26000 of 80004 doing row 27000 of 80004 doing row 28000 of 80004 doing row 29000 of 80004 doing row 30000 of 80004 doing row 31000 of 80004 doing row 32000 of 80004 doing row 33000 of 80004 doing row 34000 of 80004 doing row 35000 of 80004 doing row 36000 of 80004 doing row 37000 of 80004 doing row 38000 of 80004 doing row 39000 of 80004 doing row 40000 of 80004 doing row 41000 of 80004 doing row 42000 of 80004 doing row 43000 of 80004 doing row 44000 of 80004 doing row 45000 of 80004 doing row 46000 of 80004 doing row 47000 of 80004 doing row 48000 of 80004 doing row 49000 of 80004 doing row 50000 of 80004 doing row 51000 of 80004 doing row 52000 of 80004 doing row 53000 of 80004 doing row 54000 of 80004 doing row 55000 of 80004 doing row 56000 of 80004 doing row 57000 of 80004 doing row 58000 of 80004 doing row 59000 of 80004 doing row 60000 of 80004 doing row 61000 of 80004 doing row 62000 of 80004 doing row 63000 of 80004 doing row 64000 of 80004 doing row 65000 of 80004 doing row 66000 of 80004 doing row 67000 of 80004 doing row 68000 of 80004 doing row 69000 of 80004 doing row 70000 of 80004 doing row 71000 of 80004 doing row 72000 of 80004 doing row 73000 of 80004 doing row 74000 of 80004 doing row 75000 of 80004 doing row 76000 of 80004 doing row 77000 of 80004 doing row 78000 of 80004 doing row 79000 of 80004 doing row 80000 of 80004

Información de la sesión en R.

print(sessionInfo(), locale = FALSE)
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 14393)
## 
## Matrix products: default
## 
## attached base packages:
## [1] grid      stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] unmarked_1.0.1      scales_1.1.1        Hmisc_4.4-1        
##  [4] Formula_1.2-4       survival_3.2-7      lattice_0.20-41    
##  [7] chron_2.3-56        zoo_1.8-8           reshape_0.8.8      
## [10] lubridate_1.7.9.2   plyr_1.8.6          reshape2_1.4.4     
## [13] camtrapR_2.0.3      leafpop_0.0.6       leaflet_2.0.3      
## [16] plainview_0.1.1     fasterize_1.0.3     stars_0.4-3        
## [19] abind_1.4-5         GADMTools_3.8-1     classInt_0.4-3     
## [22] OpenStreetMap_0.3.4 osmdata_0.1.4       tmaptools_3.1      
## [25] tmap_3.2            stargazer_5.2.2     kableExtra_1.3.1   
## [28] xtable_1.8-4        knitr_1.30          ggmap_3.0.0        
## [31] forcats_0.5.0       stringr_1.4.0       dplyr_1.0.2        
## [34] purrr_0.3.4         readr_1.4.0         tidyr_1.1.2        
## [37] tibble_3.0.4        ggplot2_3.3.2       tidyverse_1.3.0    
## [40] readxl_1.3.1        raster_3.4-5        spatstat_1.64-1    
## [43] rpart_4.1-15        nlme_3.1-150        spatstat.data_1.5-2
## [46] mapview_2.9.0       sf_0.9-6            maptools_1.0-2     
## [49] rgdal_1.5-18        sp_1.4-4           
## 
## loaded via a namespace (and not attached):
##   [1] uuid_0.1-4              backports_1.2.0         secr_4.3.1             
##   [4] systemfonts_0.3.2       lwgeom_0.2-5            splines_4.0.3          
##   [7] crosstalk_1.1.0.1       digest_0.6.27           foreach_1.5.1          
##  [10] htmltools_0.5.0         leaflet.providers_1.9.0 fansi_0.4.1            
##  [13] checkmate_2.0.0         magrittr_2.0.1          cluster_2.1.0          
##  [16] tensor_1.5              modelr_0.1.8            RcppParallel_5.0.2     
##  [19] R.utils_2.10.1          svglite_1.2.3.2         jpeg_0.1-8.1           
##  [22] colorspace_2.0-0        rvest_0.3.6             haven_2.3.1            
##  [25] xfun_0.19               leafem_0.1.3            crayon_1.3.4           
##  [28] jsonlite_1.7.1          brew_1.0-6              iterators_1.0.13       
##  [31] glue_1.4.2              polyclip_1.10-0         gtable_0.3.0           
##  [34] webshot_0.5.2           overlap_0.3.3           DBI_1.1.0              
##  [37] Rcpp_1.0.5              htmlTable_2.1.0         viridisLite_0.3.0      
##  [40] units_0.6-7             foreign_0.8-80          stats4_4.0.3           
##  [43] htmlwidgets_1.5.2       httr_1.4.2              RColorBrewer_1.1-2     
##  [46] ellipsis_0.3.1          farver_2.0.3            pkgconfig_2.0.3        
##  [49] XML_3.99-0.5            rJava_0.9-13            R.methodsS3_1.8.1      
##  [52] nnet_7.3-14             dbplyr_2.0.0            deldir_0.2-3           
##  [55] labeling_0.4.2          tidyselect_1.1.0        rlang_0.4.8            
##  [58] ggspatial_1.1.4         munsell_0.5.0           cellranger_1.1.0       
##  [61] tools_4.0.3             cli_2.1.0               generics_0.1.0         
##  [64] broom_0.7.2             evaluate_0.14           yaml_2.2.1             
##  [67] goftest_1.2-2           leafsync_0.1.0          fs_1.5.0               
##  [70] satellite_1.0.2         RgoogleMaps_1.4.5.3     RcppNumerical_0.4-0    
##  [73] R.oo_1.24.0             xml2_1.3.2              compiler_4.0.3         
##  [76] rstudioapi_0.13         curl_4.3                png_0.1-7              
##  [79] e1071_1.7-4             spatstat.utils_1.17-0   reprex_0.3.0           
##  [82] stringi_1.5.3           highr_0.8               gdtools_0.2.2          
##  [85] rgeos_0.5-5             Matrix_1.2-18           vctrs_0.3.5            
##  [88] rosm_0.2.5              pillar_1.4.6            lifecycle_0.2.0        
##  [91] data.table_1.13.2       bitops_1.0-6            latticeExtra_0.6-29    
##  [94] R6_2.5.0                KernSmooth_2.23-18      gridExtra_2.3          
##  [97] codetools_0.2-18        gdalUtils_2.0.3.2       dichromat_2.0-0        
## [100] MASS_7.3-53             assertthat_0.2.1        rjson_0.2.20           
## [103] withr_2.3.0             mgcv_1.8-33             parallel_4.0.3         
## [106] hms_0.5.3               class_7.3-17            rmarkdown_2.5          
## [109] base64enc_0.1-3