El Proyecto Vida Silvestre (PVS) es una iniciativa liderada por Ecopetrol S.A., Wildlife Conservation Society (WCS) Colombia y Fundación Mario Santo Domingo, cuya primera fase fue ejecutada junto con diez organizaciones nacionales entre el 2014 y el 2017. El objetivo principal del proyecto es implementar programas de conservación para especies paisaje, como estrategia para mantener los niveles de biodiversidad. Para la primera fase se seleccionaron 10 especies y dos regiones de Colombia, de gran importancia biológica y cultural, pero que enfrentan crecientes presiones que amenazan los recursos naturales. Estas regiones corresponden a la cuenca media del Rio Magdalena y a la región de la Orinoquía. Se desarrolló un modelo de intervención novedoso y participativo, para contrarrestar las presiones o amenazas y mantener la biodiversidad en estos dos paisajes de Colombia.
En la región de los Llanos Orientales, la primera fase de implementación del PVS tuvo un alcance superior a 88.000 hectáreas, y logró establecer áreas de protección por medio de Acuerdos Comunitarios de Conservación y declarando Reservas Naturales de la Sociedad Civil (RNSC). En Arauca, específicamente en Cravo Norte, cuatro reservas de ese tipo hoy abarcan 3.322 hectáreas, y la cuenca medio del río Bita se consolidó como área de interés para conservar un corredor natural que proteja a la Danta.
De igual modo, las implementaciones en los Llanos Orientales corresponden a procesos de restauración, establecimiento de viveros, monitoreo y seguimiento de especies, y actividades con las comunidades locales. Actualmente cerca de 500 hectáreas se encuentran en procesos de restauración, mediante restauración activa (siembras) y aislamiento para regeneración natural. Bajo restauración activa se encuentran 44 hectáreas de siembra de palmas de Moriche, Congrio y otras especies nativas, y 28 hectáreas de bosques con enriquecimiento. También, se construyeron cinco viveros comunitarios para propagar semillas de Congrio, Moriche y otras especies que contribuyen a la restauración del hábitat de la Danta. Gracias a ello fue posible sembrar 6.000 y 15.000 plántulas de Moriche y Congrio, respectivamente. La presencia y participación constante del PVS en el territorio, permitió incrementar la confianza y fortalecer el tejido social, promoviendo y generando espacios de encuentro para establecer vínculos comunitarios más fuertes donde primen la solidaridad, cooperatividad y confianza. Estad implementaciones se desarrollaron de la mano de cinco organizaciones: Fundación Orinoquia Biodiversa, F. Yoluka ONG, Corporación Ambiental La Pedregoza, F. Omacha y f. Palmarito.
Temporalidad: el monitoreo se realizó cada año entre 2015-2017, durante la época seca para facilitar el trabajo en campo. Cada cámara se dejó, al menos, 45 días en el paisaje de estudio. Número y ubicación: fueron seleccionadas entre 45 y 68 cuadrículas de 1Km2, área correspondiente al ámbito de hogar de la mayoría de las especies de interés. En cada cuadricula se instaló una cámara trampa. La ubicación de las cuadrículas se definió a partir de los siguientes criterios:
Fuentes de agua, saladeros y letrinas. Presencia de al menos 20% de bosque. Diferentes distancias de centros poblados y vías. Permisos concertados con los propietarios.
library(rgdal) # basic maps and coords
library(maptools) # tools to convert
# library(unmarked)
library (sf) # spatial maps
library (mapview) # nice html maps
library (spatstat) # distance maps
library (raster) # raster
library (readxl) # read excel data
library (tidyverse) # Data handling
library (dplyr) # Data frames handling
library (ggmap) # maps in ggplot
library (knitr) # make documents
library (xtable) # tables
library (kableExtra) #Table html
library (stargazer) # tables
library (tmap) #nice plain maps
library (tmaptools) # mas mapas
library (osmdata) # read osm
library (OpenStreetMap) # osm maps
library (grid) # mix maps
library (GADMTools) # subset GADM
library (stars) # for data cubes and rasterize sf
library (fasterize) # raster sf
library (plainview)
library (leaflet)
library (leafpop)
library (camtrapR)#####################
## extra functions ##
#####################
home <- "E:/R/"
##### extra functions
source(paste(home, "Biodiv_Caqueta/R/TEAM_code.R", sep=""))
source(paste(home, "Biodiv_Caqueta/R/calendar.R", sep=""))
source(paste(home, "Biodiv_Caqueta/R/MultiSpeciesSiteOcc_Stan.R", sep=""))
#####################
## read data sets ##
#####################
##### rad SHP ####
rio.magna <- st_read("E:/R/WCS/shp/rio_epsg3116_magna_bog.shp")## Reading layer `rio_epsg3116_magna_bog' from data source `E:\R\WCS\shp\rio_epsg3116_magna_bog.shp' using driver `ESRI Shapefile'
## Simple feature collection with 22 features and 17 fields
## geometry type: POLYGON
## dimension: XY
## bbox: xmin: 1618438 ymin: 1127838 xmax: 1718072 ymax: 1182112
## projected CRS: MAGNA_SIRGAS_Colombia_Bogota_zone
## Reading layer `CeldasLlanos' from data source `E:\R\WCS\shp\CeldasLlanos.shp' using driver `ESRI Shapefile'
## Simple feature collection with 1183 features and 4 fields
## geometry type: POLYGON
## dimension: XY
## bbox: xmin: 951520.1 ymin: 1112190 xmax: 1045190 ymax: 1177459
## projected CRS: MAGNA-SIRGAS / Colombia East zone
rio <- st_transform(rio.magna, "+proj=longlat +ellps=GRS80 +no_defs")
celdas <- st_transform(celdas.magna, "+proj=longlat +ellps=GRS80 +no_defs")
##### Read datos.raw
datos.raw1 <- CT_Llanos_AH <- read_excel("E:/R/WCS/data/CT_Llanos-AH_2015fix.xlsx",
sheet = "Record_Llanos_CT-PVS")
#### elimina dos camaras sin coordenadas
ind <- which(is.na(datos.raw1$Lat))
datos.raw <- datos.raw1[-ind,]
#### make sf object
datos.raw_sf <- st_as_sf(datos.raw, coords = c("Long", "Lat"),
crs = "+proj=longlat +ellps=GRS80 +no_defs")Datos del 2015 tienen mal la coordenada x (Lon), pareciera ser por 6 grados de error a la “izquierda”. Se resto 6 grados a la longitud asumiendo que este es el error.
En los datos del 2015 hay dos camaras (station 209, 137) que no tienen coordenadas. Estas se eliminaron desde el excel.
# datos.raw
camaras <- st_transform (datos.raw_sf, "+proj=longlat +ellps=GRS80 +no_defs")
camaras_17 <- camaras %>% filter (Year =="2017" ) # & Year <="2017")
# camaras_16 <- camaras %>% filter (Year =="2016" ) # & Year <="2017")
# camaras_17 <- camaras %>% filter (Year =="2017" ) # & Year <="2017")
# Add column to get activity graph using activityDensity from camtrapR
# Add column to get activity graph using activityDensity from camtrapR
camaras$DateTimeOriginal <- as.character(camaras$DateRecord)
camaras_17$DateTimeOriginal <- as.character(camaras_17$DateRecord)
# mapview (celdas, aplha = 0.1 ) + mapview (camaras_17,
# zcol = c("Predio" ),
# map.types = c("OpenStreetMap", "Esri.WorldImagery" ),
# leafletHeight = 8,
# # burst = TRUE,
# hide = TRUE
# ) + mapview (rio, col.regions = "blue")
# Centroides EPSG:3116 Colombia Magna
centroide <- st_transform(camaras_17, 3116) %>%
sf::st_geometry() %>%
#sf::st_polygonize() %>%
sf::st_centroid() %>%
# this is the crs from d, which has no EPSG code:
sf::st_transform(., '+proj=longlat +ellps=GRS80 +no_defs') #%>%
# since you want the centroids in a second geometry col:
# st_geometry()
# get raster elevation as template
elevation<-raster::getData("SRTM",lon=centroide[[1]][1], lat=centroide[[1]][2])
e<-extent (celdas) # make the extent
elevation.crop<-crop(elevation, e) # cut elevation to small window
elevation.crop.utm <- projectRaster(elevation.crop,
crs = " +proj=utm +zone=18 +ellps=intl +towgs84=307,304,-318,0,0,0,0 +units=m +no_defs ")
rio.utm <- st_transform(rio, crs(elevation.crop.utm))
###########################
# convert rio to distance #
###########################
rio.raster <- fasterize (rio.utm, elevation.crop.utm)
dist_rio_owin <- distmap(as.owin(as.im(rio.raster)))
dist_rio_m <- raster(dist_rio_owin, crs=crs(elevation.crop.utm))# back to raster
dist_rio <- projectRaster(from=dist_rio_m, to=elevation.crop) # back to geo
# fix rio shp
rio$Rio <- "Bita"
###########################
# drop duplicates in camera points #
###########################
# put in the same CRS
camaras_loc <- st_transform (camaras_17, "+proj=longlat +datum=WGS84 +no_defs ")
# drop duplicated
# camaras_unique <- st_difference(camaras_loc, Station2)
###########################
# Filter by 2017 #
###########################
camaras_unique <- camaras_loc %>% distinct ()
cams_17 <- camaras_17 %>% distinct ()
# camaras_unique %>% filter(station %in% cams)
###########################
# extract from river and strm #
###########################
# Covs non scaled
dist_rio.ovr <- raster::extract(dist_rio, as(camaras_unique, "Spatial"), method='bilinear')
# Covs scaled
dist_rio.ovr.s <- raster::extract(scale(dist_rio), as(camaras_unique, "Spatial"), method='bilinear')
# Covs non scaled
elev_ovr <- raster::extract(elevation.crop, as(camaras_unique, "Spatial"), method='bilinear')
# Covs scaled
elev_ovr.s <- raster::extract(scale(elevation.crop), as(camaras_unique, "Spatial"), method='bilinear')
# put covs in table
camaras_unique$dist_rio <- dist_rio.ovr
camaras_unique$dist_rio.s <- dist_rio.ovr.s
camaras_unique$elev <- elev_ovr
camaras_unique$elev.s <- elev_ovr.s
# camera names
camaras_unique$station <- unique(camaras_loc$Station2)
cov_stack <- stack(elevation.crop, dist_rio)
names(cov_stack) <- c("elev.s", "dist_rio.s")
plot(cov_stack)#### agregate to make raster smaller
elevation.crop2 <- aggregate(cov_stack[[1]], fact=3)
dist_rio2 <- aggregate(cov_stack[[2]], fact=3)
cov_stack2 <- stack(scale(elevation.crop2), scale(dist_rio2))
# use osm data by bounding box
bb <- c(-68.5752, 5.55629 , -67.61 , 6.230916)
# predios_map <- get_map(bb, maptype = "toner-background", zoom = 10)
# ggmap(predios_map) +
# geom_sf(data = camaras,
# inherit.aes = FALSE,
# colour = "red",
# fill = "#004529",
# alpha = .5,
# size = 4,
# shape = 21) +
# labs(x = "", y = "")
# get fondo de osm
vichada_osm1 <- read_osm(bb, type="stamen-terrain", mergeTiles = TRUE)
depto_window <- qtm(vichada_osm1) + tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) + tm_shape(rio) +
tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") + #tm_symbols (size = 0.5) +
tm_shape(camaras_17) + # tm_symbols (col="red", size = 0.25) +
tm_dots(col = "Predio", palette = "Set1", size = 0.25,
shape = 16, title = "Cámara en predio", legend.show = TRUE,
legend.is.portrait = TRUE,
legend.z = NA) +
tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value
outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
legend.position = c(1.01,.1),
legend.outside.size = 0.1,
legend.title.size = 1.6,
legend.height = 0.9,
legend.width = 1.5,
legend.text.size = 1,
legend.hist.size = 0.5) +
tm_layout(frame=T) + tm_scale_bar() +
tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)
# print map
depto_windowLas trampas cámara permanecieron activas desde mediados de xx 2015 hasta xx 2015.
datos.raw$Photo_Date <- datos.raw$Date
datos.raw$Photo_Time <- datos.raw$Time
datos.raw$StationFact<-as.factor(datos.raw$Station2) %>% as.numeric
library(lubridate)
datos.raw$Date2<-ymd(datos.raw$Date)
datos.raw.17<- datos.raw %>%
filter(Year=="2017")%>%
group_by(StationFact, Year) %>%
dplyr::summarise(StationFact=first(StationFact), Year=first(Year), Camera_Trap_Start_Date = min(Date, na.rm=T), Camera_Trap_End_Date = max(Date2, na.rm = TRUE))%>%
merge(., datos.raw, all.x=T, all.y=F)
datos.raw.17$Photo_Time <- substr(as.character(datos.raw.17$Time), 12, 19)
datos.raw.17$Camera_Trap_Name <- datos.raw.17$Station2
f.calendar.yr(dataset = datos.raw.17, yr_toplot = 1)Calendario de fotografias, con fecha de inicio y fin de cada cámara.
Las especies registradas en todo en muestreo fueron 12 mamíferos.
Se detectaron 12 especies.
# library(xtable)
datos.raw.mam <- filter(datos.raw.17, Clase=="Mamíferos")
mat.per.sp<-f.matrix.creator2(data = datos.raw.mam, year = 2017)
# mat.per.sp <- mat.per.sp[-1] # elimina NA
sp.names<-names(mat.per.sp) # species names
# counting how many (total) records per species by all days
cont.per.sp<-data.frame(row.names = sp.names)
row.per.sp<-as.data.frame(matrix(nrow = length(sp.names), ncol=c(69)))# num cameras 59 con ave
col.per.sp<-as.data.frame(matrix(nrow = length(sp.names), ncol=c(74)))# num days
rownames(row.per.sp)<-sp.names
rownames(col.per.sp)<-sp.names
for (i in 1:length(mat.per.sp)){
cont.per.sp[i,1]<-sum(apply(as.data.frame(mat.per.sp [[i]]),FUN=sum,na.rm=T, MARGIN = 1))
row.per.sp[i,]<-apply(mat.per.sp[[i]],1, function(x) sum(x, na.rm=T))
# row.per.sp[i,which(row.per.sp[i,]>0)]<-1 # convert to presence absence 1 and 0
col.per.sp[i,]<-apply(mat.per.sp[[i]],2, function(x) sum(x, na.rm=T))
# col.per.sp[i,which(col.per.sp[i,]>0)]<-1 # convert to presence absence 1 and 0
}
cont.per.sp$especie<-rownames(cont.per.sp)
colnames(cont.per.sp)<-c("Numero_de_fotos","especie")
# print(as.data.frame(arrange(df = cont.per.sp, desc(Numero_de_fotos))))
# xtable(as.data.frame(arrange(df = cont.per.sp, desc(Numero_de_fotos))))
pict_sp <- as.data.frame(cont.per.sp)
############################################################
## first Table species, naive occu
############################################################
presence<-row.per.sp
presence[presence > 0]<-1 # replace to 1
naiveoccu<-apply(X = presence,FUN = sum, MARGIN = 1 ) / 69 #divided number of sites
events<-apply(X = row.per.sp ,FUN = sum, MARGIN = 1 )
RAI<-(events/(74 * 69)) * 100 # 78 is average sampling effort, in days per camera
Table1<-as.data.frame(cbind(species= names(events), events=as.numeric(events),
phothos=as.numeric(pict_sp$Numero_de_fotos), RAI, naiveoccu))
# Table1<- Table1[with(Table1, order(-events)), ]# arrange(Table1, desc(events))
# xtable::xtable(Table1)#, format = "rst")
Table1 <- Table1[ order( -events), ] #ordena por eventos descendente
kable(Table1[2:5]) %>% kable_styling (bootstrap_options = c("striped", "hover", "condensed", font_size = 8)) # %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed"))| events | phothos | RAI | naiveoccu | |
|---|---|---|---|---|
| Dasyprocta_fuliginosa | 156 | 156 | 3.05522914218566 | 0.246376811594203 |
| Tayassu_pecari | 149 | 149 | 2.91813552683118 | 0.565217391304348 |
| Cuniculus_paca | 140 | 140 | 2.7418723070897 | 0.420289855072464 |
| Tapirus_terrestris | 96 | 96 | 1.88014101057579 | 0.492753623188406 |
| Leopardus_pardalis | 49 | 49 | 0.959655307481394 | 0.347826086956522 |
| Odocoileus_cariacou | 47 | 47 | 0.920485703094399 | 0.289855072463768 |
| Myrmecophaga_tridactyla | 20 | 20 | 0.391696043869957 | 0.188405797101449 |
| Puma_concolor | 12 | 12 | 0.235017626321974 | 0.173913043478261 |
| Eira_barbara | 9 | 9 | 0.176263219741481 | 0.0869565217391304 |
| Didelphis_marsupialis | 8 | 8 | 0.156678417547983 | 0.0869565217391304 |
| Sciurus_igniventris | 6 | 6 | 0.117508813160987 | 0.072463768115942 |
| Marmosa_sp | 6 | 6 | 0.117508813160987 | 0.0144927536231884 |
| Metachirus_nudicaudatus | 5 | 5 | 0.0979240109674892 | 0.0144927536231884 |
| Hydrochoerus_hydrochaeris | 4 | 4 | 0.0783392087739914 | 0.0434782608695652 |
| Sus_scrofa | 4 | 4 | 0.0783392087739914 | 0.0289855072463768 |
| Tamandua_tetradactyla | 4 | 4 | 0.0783392087739914 | 0.0579710144927536 |
| Dasypus_novemcinctus | 4 | 4 | 0.0783392087739914 | 0.0434782608695652 |
| Pteronura_brasiliensis | 3 | 3 | 0.0587544065804935 | 0.0434782608695652 |
| Puma_yagouaroundi | 2 | 2 | 0.0391696043869957 | 0.0289855072463768 |
| Cebus_olivaceus | 2 | 2 | 0.0391696043869957 | 0.0289855072463768 |
| Panthera_onca | 2 | 2 | 0.0391696043869957 | 0.0144927536231884 |
| Priodontes_maximus | 1 | 1 | 0.0195848021934978 | 0.0144927536231884 |
| Cerdocyon_thous | 1 | 1 | 0.0195848021934978 | 0.0144927536231884 |
RAI es: Relative Abundance Index
Riqueza de especies y acumulación, modelando la ocurrencia y la detectabilidad. Este análisis sigue el método de Dorazio et al. (2006).
############################################################
## Distribucion posterior de la riqueza de especies
############################################################
# Riqueza de especies y acumulación, modelando la ocurrencia y la detectabilidad.
# Este análisis sigue el método de Dorazio et al. (2006).
# 40 minutos en PC de casa
x <- as.matrix(row.per.sp)
X1 = as.matrix(row.per.sp) # col.per.sp por dias y row.per.sp por sitios (camaras)
nrepls = 74 #dias
especies = MultiSpeciesSiteOcc(nrepls=nrepls, x=X1) #### run stan
print(especies$fit, c("alpha", "beta", "Omega", "sigma_uv", "rho_uv", "E_N", "E_N_2", "lp__"));
# summary(especies$fit$sims.matrix)
# alpha.post = especies$fit$sims.matrix[,"alpha"]
# sigmaU.post = especies$fit$sims.matrix[,"sigma.u"]
# N.post = especies$fit$sims.matrix[,"N"]
# Stan Equivalent
alpha.post = especies$fit@sim$samples[[1]]$alpha
sigmaU.post = especies$fit@sim$samples[[1]]$`sigma_uv[1]`
N.post = especies$fit@sim$samples[[1]]$E_N
nsites = 69
cum_sp<-CumNumSpeciesPresent (nsites=nsites, alpha=alpha.post, sigmaU=sigmaU.post, N=N.post)
# #histogram of posteriors openwinbugs
# hist(especies$fit$sims.matrix[,"N"],breaks = c(16:30), xlab="Number of mammal species", ylab="Relative frecuency", main="")
# abline(v=length(row.per.sp[,1]),col="blue", lty = 2) # -> lines.histogram(*) observadas
# abline(v=median(especies$fit$sims.matrix[,"N"]),col="red", lty = 2) # -> esperadas por detectabilidad
#
# mean(especies$fit$sims.matrix[,"N"])
# median(especies$fit$sims.matrix[,"N"])
hist(especies$fit@sim$samples[[1]]$E_N , xlab="Number of mammal species", ylab="Relative frecuency", main="")
abline(v=length(row.per.sp[,1]),col="blue", lty = 2) # -> lines.histogram(*) observadas
abline(v=median(especies$fit@sim$samples[[1]]$E_N),col="red", lty = 2) # -> esperadas por detectabilidad
mean(especies$fit@sim$samples[[1]]$E_N)
median(especies$fit@sim$samples[[1]]$E_N)
##Plot in ggplot
S <- 15 + 5 #species
sims <- extract(especies$fit)
freq <- rep(0,S) # sp
N <- sims$E_N_2
for (i in 1:length(N)){
freq[N[i]] <- freq[N[i]] + 1
}
freq <- freq / length(N)
dat <- data.frame(freq)
dat <- cbind(1:S, dat)
colnames(dat)[1] <- "N"
# dat <- dat[80:90, ];
N_bar_plot <-
ggplot(data=dat, aes(x=N, y=freq)) +
geom_bar(stat="identity") +
scale_x_continuous(name="Mammal species (N)",
breaks=c(10,11,12,13,14,15,16,17,18,19, 20)) +
scale_y_continuous(name="relative frequency",
breaks=(0.1 * (0:6))) +
ggtitle("Posterior: Number of Species (N)");
plot(N_bar_plot)
# Posterior Probabilities of Occurrence and Detection
ilogit <- function(u) { return(1 / (1 + exp(-u))); }
df_psi_theta <- data.frame(cbind(ilogit(sims$logit_psi_sim),
ilogit(sims$logit_theta_sim)));
colnames(df_psi_theta)[1] <- "psi";
colnames(df_psi_theta)[2] <- "theta";
psi_density_plot <-
ggplot(df_psi_theta, aes(x=psi)) +
geom_line(stat = "density", adjust=1) +
scale_x_continuous(name="probability of occurrence",
limits=c(0,1), breaks=(0.2 * (0:5))) +
scale_y_continuous(name="probability density",
limits=c(0,5), breaks=(0:4)) +
ggtitle("Posterior: Occurrence (psi)");
plot(psi_density_plot);
# #####################
# #### compare to vegan
# #####################
# library(vegan)
# sac <- specaccum(t(row.per.sp))
# plot(sac)
#
# sp1 <- specaccum(t(row.per.sp), method = "random")
# sp2 <- specaccum(t(row.per.sp), method = "rarefaction")
# sp3 <- specaccum(t(row.per.sp), method = "collector")
#
# # # summary(sp1)
# plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue")
# boxplot(sp1, col="yellow", add=TRUE, pch="+")
# #
# plot(sp2, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue") # rarefaction
# #plot(sp2)
# # boxplot(sp1, col="yellow", add=TRUE, pch="+")
#
# plot(sp3, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue")
# #plot(sp2)
#
# H <- diversity(t(row.per.sp))
# simp <- diversity(t(row.per.sp), "simpson")
# invsimp <- diversity(t(row.per.sp), "inv")
# r.2 <- rarefy(t(row.per.sp), 2)
# alpha <- fisher.alpha(t(row.per.sp))
# pairs(cbind(H, simp, invsimp, r.2, alpha), pch="+", col="blue")
#
# ## Species richness (S) and Pielou's evenness (J):
# S_1 <- specnumber(t(row.per.sp)) ## rowSums(BCI > 0) does the same...
# J <- H/log(S_1)
#
# rarecurve(row.per.sp)#,step = 20, sample = raremax)
# ## Rarefaction
# (raremax <- max(rowSums(row.per.sp)))
# Srare <- rarefy(t(row.per.sp), raremax)
# plot(S_1, Srare, xlab = "Observed No. of Species", ylab = "Rarefied No. of Species")
# abline(0, 1)
# rarecurve(row.per.sp)#, step = 2, sample = raremax, col = "blue", cex = 0.6)
# Especies observadas en azul = 12. Especies esperadas en rojo = 14.3. El número esperado esta corrregido por la detectabilidad. Hay por lo menos dos especies que no se detectaron.
Construimos 17 modelos generales para probar de forma automatizada cada especie con más de 10 registros.
Datos colapsados a 15 eventos
##########################################
######### Models
##########################################
f.sp.occu.models <- function(sp_number){
########################
### make unmarked object
########################
library(unmarked)
sp15<-f.shrink.matrix.to15(matrix = mat.per.sp[[sp_number]])
y <- mat.per.sp[[sp_number]]
sp_UMF <- unmarkedFrameOccu(y)
## start colapsed
sp_UMF_15 <- unmarkedFrameOccu(sp15)
fm0_15 <- occu(~ 1 ~ 1, sp_UMF_15, starts = c(0.01,0.01), se=T)
# get the linear estimates
psi <- backTransform(fm0_15, type="state")
p <- backTransform(fm0_15, type="det")
## end colapsed
# Filter by 2015 cams #
cams <- row.names(mat.per.sp[[sp_number]])
camaras_2017 <- camaras_unique %>% filter(station %in% cams)
# plot(sp_UMF, panels=1)
# title(main=as.character(sp.names[sp_number]))
# add some covariates
cam.and.covs1 <- as.data.frame(camaras_2017)[,2:6]
siteCovs(sp_UMF) <- cam.and.covs1
#######################
## occu models
#######################
# covariates of detection and occupancy in that order.
fm0 <- occu(~ 1 ~ 1, sp_UMF, starts = c(0.01,0.01), se=T)
fm1 <- occu(~ 1 ~ elev.s, sp_UMF, starts = c(0.01,0.01,0.01))
fm2 <- occu(~ 1 ~ I(elev.s)^2, sp_UMF)
fm3 <- occu(~ 1 ~ dist_rio.s, sp_UMF, starts = c(0.01,0.01,0.01))
fm4 <- occu(~ 1 ~ elev.s + dist_rio.s, sp_UMF, starts = c(0.01,0.01,0.01,0.01))
fm5 <- occu(~ 1 ~ I(dist_rio.s)^2, sp_UMF)
fm6 <- occu(~ elev.s ~ 1, sp_UMF)
fm7 <- occu(~ elev.s ~ elev.s, sp_UMF, starts = c(0.01,0.01,0.01,0.01))
fm8 <- occu(~ elev.s ~ I(elev.s)^2, sp_UMF)
fm9 <- occu(~ elev.s ~ dist_rio.s, sp_UMF, starts = c(0.01,0.01,0.01, 0.01))
fm10 <- occu(~ elev.s ~ elev.s + dist_rio.s, sp_UMF, starts = c(0.01,0.01,0.01,0.01,0.01))
fm11 <- occu(~ elev.s ~ I(dist_rio.s)^2, sp_UMF)
fm12 <- occu(~ dist_rio.s ~ 1, sp_UMF)
fm13 <- occu(~ dist_rio.s ~ elev.s, sp_UMF, starts = c(0.01,0.01,0.01,0.01))
fm14 <- occu(~ dist_rio.s ~ I(elev.s)^2, sp_UMF)
fm15 <- occu(~ dist_rio.s ~ dist_rio.s, sp_UMF, starts = c(0.01,0.01,0.01,0.01))
fm16 <- occu(~ dist_rio.s ~ elev.s + dist_rio.s, sp_UMF, starts = c(0.01,0.01,0.01,0.01,0.01))
fm17 <- occu(~ dist_rio.s ~ I(dist_rio.s)^2, sp_UMF)
#
#
# fm8 <- occu(~ elev ~ elev, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
# fm9 <- occu(~ elev ~ slope, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
# fm10 <- occu(~ elev ~ aspect, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
# fm11 <- occu(~ elev ~ roughness, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
# fm12 <- occu(~ elev ~ dist_def, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
# fm13 <- occu(~ elev ~ COB_ACTUAL, sp_UMF)
# fm14 <- occu(~ elev ~ Sitio, sp_UMF)
# fm15 <- occu(~ roughness ~ elev, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
# fm16 <- occu(~ roughness ~ slope, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
# fm17 <- occu(~ roughness ~ aspect, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
# fm18 <- occu(~ roughness ~ roughness, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
# fm19 <- occu(~ roughness ~ dist_def, sp_UMF, starts = c(0.01,0.01,0.01,0.1))
# fm20 <- occu(~ roughness ~ COB_ACTUAL, sp_UMF)
# fm21 <- occu(~ roughness ~ Sitio, sp_UMF)
# put the names of each model
models <- fitList(
'p(.)psi(.)' = fm0,
'p(.)psi(elev)' = fm1,
'p(.)psi(elev2)' = fm2,
'p(.)psi(dist_rio)' = fm3,
'p(.)psi(elev + dist_rio)' = fm4,
'p(.)psi(dist_rio2)' = fm5,
'p(elev)psi(.)' = fm6,
'p(elev)psi(elev)' = fm7,
'p(elev)psi(elev2)' = fm8,
'p(elev)psi(dist_rio)' = fm9,
'p(elev)psi(elev + dist_rio)' = fm10,
'p(elev)psi(dist_rio2)' = fm11,
'p(dist_rio)psi(.)' = fm12,
'p(dist_rio)psi(elev)' = fm13,
'p(dist_rio)psi(elev2)' = fm14,
'p(dist_rio)psi(dist_rio)' = fm15,
'p(dist_rio)psi(elev + dist_rio)' = fm16,
'p(dist_rio)psi(dist_rio2)' = fm17
)
ms <- modSel(models)
# (ms)
#This part store some models coeficients in a table (mat_models) to compare on screen
ms_AIC_models<-as.data.frame(ms@ Full[1], row.names = NULL) #store model name
modelo<-paste("_", as.character(as.character(sp.names[sp_number])),
"_", " models", sep="") # fix model name addin species
ma_nPars<-as.data.frame(ms@Full$nPars) #store parameter number
ms_AIC_values<- as.data.frame(ms@Full$AIC) #store AIC values
ms_AIC_delta<- as.data.frame(ms@Full$delta) #store AIC delta values
ms_AIC_AICwt<- as.data.frame(ms@Full$AICwt) #store AIC wt values
ms_AIC_cumultw<-as.data.frame(ms@Full$cumltvWt) #store model name
ms_m<-as.data.frame(row.names(ms_AIC_models)) #store m number
ms_formula<- as.data.frame(ms@Full$formula) #store model formula
mat_models <- cbind(ms_AIC_models, ma_nPars, ms_AIC_values, ms_AIC_delta, ms_AIC_AICwt, ms_AIC_cumultw) #paste in matrix
colnames(mat_models)<-c(modelo, "nPars",'AIC', "delta", "AICwt", "cumltvWt") # change row names
mat_models$psi_p_fm0 <- NA
mat_models[1,7] <- psi@estimate
mat_models[2,7] <- p@estimate
# put all in a list
result <- (mat_models)
##Print los 7 primeros modelos
return (result)
# xtable::xtable(mat_models, type = "html")
# kable(mat_models) # para pdf
# print(spname)
# print (mat_models[c(1:7),])
# as.character(sp.names[sp_number])
}Los datos se colapsaron a 15 dias (al estilo TEAM para evitar el Hessian error).
## [1] "Odocoileus_cariacou"
sp2 <- f.sp.occu.models(sp_number = 1)
# xtable::xtable(sp1, "html") #, format = "rst")
# kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))| Odocoileus_cariacou models | nPars | AIC | delta | AICwt | cumltvWt | psi_p_fm0 | |
|---|---|---|---|---|---|---|---|
| 5 | p(.)psi(elev + dist_rio) | 4 | 430.7070 | 0.0000000 | 0.2251011 | 0.2251011 | 0.3366860 |
| 17 | p(dist_rio)psi(elev + dist_rio) | 5 | 431.2465 | 0.5395411 | 0.1718770 | 0.3969782 | 0.2003161 |
| 15 | p(dist_rio)psi(elev2) | 4 | 432.2253 | 1.5183472 | 0.1053593 | 0.5023374 | NA |
| 14 | p(dist_rio)psi(elev) | 4 | 432.2253 | 1.5183472 | 0.1053593 | 0.6076967 | NA |
| 2 | p(.)psi(elev) | 3 | 432.4004 | 1.6934620 | 0.0965266 | 0.7042233 | NA |
| 3 | p(.)psi(elev2) | 3 | 432.4004 | 1.6934620 | 0.0965266 | 0.8007499 | NA |
| 1 | p(.)psi(.) | 2 | 433.0260 | 2.3190685 | 0.0705990 | 0.8713489 | NA |
| 13 | p(dist_rio)psi(.) | 3 | 433.3893 | 2.6823584 | 0.0588723 | 0.9302212 | NA |
| 4 | p(.)psi(dist_rio) | 3 | 434.4357 | 3.7287337 | 0.0348894 | 0.9651106 | NA |
| 6 | p(.)psi(dist_rio2) | 3 | 434.4357 | 3.7287337 | 0.0348894 | 1.0000000 | NA |
| 7 | p(elev)psi(.) | 3 | 478.0045 | 47.2975389 | 0.0000000 | 1.0000000 | NA |
| 8 | p(elev)psi(elev) | 4 | 480.0108 | 49.3038726 | 0.0000000 | 1.0000000 | NA |
| 9 | p(elev)psi(elev2) | 4 | 480.0109 | 49.3039016 | 0.0000000 | 1.0000000 | NA |
| 12 | p(elev)psi(dist_rio2) | 4 | 480.0129 | 49.3059016 | 0.0000000 | 1.0000000 | NA |
| 10 | p(elev)psi(dist_rio) | 4 | 480.0129 | 49.3059049 | 0.0000000 | 1.0000000 | NA |
| 16 | p(dist_rio)psi(dist_rio) | 4 | 481.1003 | 50.3933649 | 0.0000000 | 1.0000000 | NA |
| 18 | p(dist_rio)psi(dist_rio2) | 4 | 481.1004 | 50.3933846 | 0.0000000 | 1.0000000 | NA |
| 11 | p(elev)psi(elev + dist_rio) | 5 | 482.0123 | 51.3053107 | 0.0000000 | 1.0000000 | NA |
venado <- filter(camaras_17, Species=="Odocoileus_cariacou")
by_sp <- camaras_17 %>% group_by(Species) %>% tally()
by_sp_predio <- venado %>% group_by(Predio) %>% tally()
names(by_sp_predio) <- c("Predio", "Fotos Venado", "geometry")
venado_window <- qtm(vichada_osm1) +
tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) +
tm_shape(rio) +
tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") + #tm_symbols (size = 0.5) +
tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) +
tm_bubbles(size = "Fotos Venado", col = "red", border.col= "red", alpha= 0.5,
legend.size.is.portrait=TRUE) +
# tm_dots(col = "Species", size = 0.25,
# shape = 16, title = "Especie", legend.show = TRUE,
# legend.is.portrait = TRUE, legend.z = NA) +
tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value
outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
legend.position = c(1.01,.1),
legend.outside.size = 0.1,
legend.title.size = 1.6,
legend.height = 0.9,
legend.width = 1.5,
legend.text.size = 1,
legend.hist.size = 0.5) +
tm_layout(frame=T) + tm_scale_bar() +
tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)
#plot
venado_window doing row 1000 of 80004 doing row 2000 of 80004 doing row 3000 of 80004 doing row 4000 of 80004 doing row 5000 of 80004 doing row 6000 of 80004 doing row 7000 of 80004 doing row 8000 of 80004 doing row 9000 of 80004 doing row 10000 of 80004 doing row 11000 of 80004 doing row 12000 of 80004 doing row 13000 of 80004 doing row 14000 of 80004 doing row 15000 of 80004 doing row 16000 of 80004 doing row 17000 of 80004 doing row 18000 of 80004 doing row 19000 of 80004 doing row 20000 of 80004 doing row 21000 of 80004 doing row 22000 of 80004 doing row 23000 of 80004 doing row 24000 of 80004 doing row 25000 of 80004 doing row 26000 of 80004 doing row 27000 of 80004 doing row 28000 of 80004 doing row 29000 of 80004 doing row 30000 of 80004 doing row 31000 of 80004 doing row 32000 of 80004 doing row 33000 of 80004 doing row 34000 of 80004 doing row 35000 of 80004 doing row 36000 of 80004 doing row 37000 of 80004 doing row 38000 of 80004 doing row 39000 of 80004 doing row 40000 of 80004 doing row 41000 of 80004 doing row 42000 of 80004 doing row 43000 of 80004 doing row 44000 of 80004 doing row 45000 of 80004 doing row 46000 of 80004 doing row 47000 of 80004 doing row 48000 of 80004 doing row 49000 of 80004 doing row 50000 of 80004 doing row 51000 of 80004 doing row 52000 of 80004 doing row 53000 of 80004 doing row 54000 of 80004 doing row 55000 of 80004 doing row 56000 of 80004 doing row 57000 of 80004 doing row 58000 of 80004 doing row 59000 of 80004 doing row 60000 of 80004 doing row 61000 of 80004 doing row 62000 of 80004 doing row 63000 of 80004 doing row 64000 of 80004 doing row 65000 of 80004 doing row 66000 of 80004 doing row 67000 of 80004 doing row 68000 of 80004 doing row 69000 of 80004 doing row 70000 of 80004 doing row 71000 of 80004 doing row 72000 of 80004 doing row 73000 of 80004 doing row 74000 of 80004 doing row 75000 of 80004 doing row 76000 of 80004 doing row 77000 of 80004 doing row 78000 of 80004 doing row 79000 of 80004 doing row 80000 of 80004
## [1] "Sciurus_igniventris"
## Hessian is singular.
## Hessian is singular.
## Hessian is singular.
## Hessian is singular.
## Hessian is singular.
## Hessian is singular.
# xtable::xtable(sp1, "html") #, format = "rst")
# kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))| Sciurus_igniventris models | nPars | AIC | delta | AICwt | cumltvWt | psi_p_fm0 | |
|---|---|---|---|---|---|---|---|
| 7 | p(elev)psi(.) | 3 | 86.80613 | 0.000000 | 0.1529875 | 0.1529875 | 0.2460585 |
| 11 | p(elev)psi(elev + dist_rio) | 5 | 87.81140 | 1.005269 | 0.0925475 | 0.2455350 | 0.0364041 |
| 15 | p(dist_rio)psi(elev2) | 4 | 87.99824 | 1.192111 | 0.0842932 | 0.3298281 | NA |
| 14 | p(dist_rio)psi(elev) | 4 | 87.99825 | 1.192112 | 0.0842931 | 0.4141212 | NA |
| 13 | p(dist_rio)psi(.) | 3 | 88.04857 | 1.242439 | 0.0821985 | 0.4963197 | NA |
| 12 | p(elev)psi(dist_rio2) | 4 | 88.61167 | 1.805538 | 0.0620281 | 0.5583477 | NA |
| 10 | p(elev)psi(dist_rio) | 4 | 88.61168 | 1.805543 | 0.0620279 | 0.6203757 | NA |
| 17 | p(dist_rio)psi(elev + dist_rio) | 5 | 88.62410 | 1.817965 | 0.0616439 | 0.6820195 | NA |
| 8 | p(elev)psi(elev) | 4 | 88.80613 | 2.000000 | 0.0562809 | 0.7383005 | NA |
| 9 | p(elev)psi(elev2) | 4 | 88.80613 | 2.000000 | 0.0562809 | 0.7945814 | NA |
| 1 | p(.)psi(.) | 2 | 89.19036 | 2.384231 | 0.0464437 | 0.8410251 | NA |
| 16 | p(dist_rio)psi(dist_rio) | 4 | 89.38327 | 2.577135 | 0.0421734 | 0.8831985 | NA |
| 18 | p(dist_rio)psi(dist_rio2) | 4 | 89.38327 | 2.577135 | 0.0421734 | 0.9253718 | NA |
| 3 | p(.)psi(elev2) | 3 | 91.19036 | 4.384231 | 0.0170857 | 0.9424575 | NA |
| 2 | p(.)psi(elev) | 3 | 91.19036 | 4.384231 | 0.0170857 | 0.9595432 | NA |
| 6 | p(.)psi(dist_rio2) | 3 | 91.19036 | 4.384231 | 0.0170857 | 0.9766288 | NA |
| 4 | p(.)psi(dist_rio) | 3 | 91.19036 | 4.384231 | 0.0170857 | 0.9937145 | NA |
| 5 | p(.)psi(elev + dist_rio) | 4 | 93.19036 | 6.384231 | 0.0062855 | 1.0000000 | NA |
ardilla <- filter(camaras_17, Species=="Sciurus_igniventris")
by_sp <- camaras_17 %>% group_by(Species) %>% tally()
by_sp_predio <- ardilla %>% group_by(Predio) %>% tally()
names(by_sp_predio) <- c("Predio", "Fotos ardilla", "geometry")
ardilla_window <- qtm(vichada_osm1) +
tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) +
tm_shape(rio) +
tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") + #tm_symbols (size = 0.5) +
tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) +
tm_bubbles(size = "Fotos ardilla", col = "red", border.col= "red", alpha= 0.5,
legend.size.is.portrait=TRUE) +
# tm_dots(col = "Species", size = 0.25,
# shape = 16, title = "Especie", legend.show = TRUE,
# legend.is.portrait = TRUE, legend.z = NA) +
tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value
outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
legend.position = c(1.01,.1),
legend.outside.size = 0.1,
legend.title.size = 1.6,
legend.height = 0.9,
legend.width = 1.5,
legend.text.size = 1,
legend.hist.size = 0.5) +
tm_layout(frame=T) + tm_scale_bar() +
tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)
#plot
ardilla_window## [1] "Leopardus_pardalis"
sp2 <- f.sp.occu.models(sp_number = 3)
# xtable::xtable(sp1, "html") #, format = "rst")
# kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))| Leopardus_pardalis models | nPars | AIC | delta | AICwt | cumltvWt | psi_p_fm0 | |
|---|---|---|---|---|---|---|---|
| 11 | p(elev)psi(elev + dist_rio) | 5 | 468.3480 | 0.000000 | 0.7049357 | 0.7049357 | 0.4916105 |
| 8 | p(elev)psi(elev) | 4 | 471.9804 | 3.632305 | 0.1146581 | 0.8195938 | 0.1303306 |
| 9 | p(elev)psi(elev2) | 4 | 471.9804 | 3.632305 | 0.1146581 | 0.9342518 | NA |
| 5 | p(.)psi(elev + dist_rio) | 4 | 474.5562 | 6.208121 | 0.0316281 | 0.9658799 | NA |
| 1 | p(.)psi(.) | 2 | 476.4397 | 8.091663 | 0.0123330 | 0.9782129 | NA |
| 4 | p(.)psi(dist_rio) | 3 | 477.7869 | 9.438897 | 0.0062881 | 0.9845010 | NA |
| 6 | p(.)psi(dist_rio2) | 3 | 477.7869 | 9.438897 | 0.0062881 | 0.9907891 | NA |
| 3 | p(.)psi(elev2) | 3 | 478.4135 | 10.065498 | 0.0045968 | 0.9953859 | NA |
| 2 | p(.)psi(elev) | 3 | 478.4135 | 10.065498 | 0.0045968 | 0.9999827 | NA |
| 7 | p(elev)psi(.) | 3 | 491.9380 | 23.589910 | 0.0000053 | 0.9999880 | NA |
| 15 | p(dist_rio)psi(elev2) | 4 | 493.6958 | 25.347796 | 0.0000022 | 0.9999902 | NA |
| 14 | p(dist_rio)psi(elev) | 4 | 493.7131 | 25.365093 | 0.0000022 | 0.9999924 | NA |
| 12 | p(elev)psi(dist_rio2) | 4 | 493.9255 | 25.577453 | 0.0000020 | 0.9999943 | NA |
| 10 | p(elev)psi(dist_rio) | 4 | 493.9255 | 25.577491 | 0.0000020 | 0.9999963 | NA |
| 17 | p(dist_rio)psi(elev + dist_rio) | 5 | 494.1022 | 25.754138 | 0.0000018 | 0.9999981 | NA |
| 13 | p(dist_rio)psi(.) | 3 | 495.1158 | 26.767725 | 0.0000011 | 0.9999992 | NA |
| 18 | p(dist_rio)psi(dist_rio2) | 4 | 497.1154 | 28.767393 | 0.0000004 | 0.9999996 | NA |
| 16 | p(dist_rio)psi(dist_rio) | 4 | 497.1154 | 28.767395 | 0.0000004 | 1.0000000 | NA |
ocelote <- filter(camaras_17, Species=="Leopardus_pardalis")
by_sp <- camaras_17 %>% group_by(Species) %>% tally()
by_sp_predio <- ocelote %>% group_by(Predio) %>% tally()
names(by_sp_predio) <- c("Predio", "Fotos ocelote", "geometry")
ocelote_window <- qtm(vichada_osm1) +
tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) +
tm_shape(rio) +
tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") + #tm_symbols (size = 0.5) +
tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) +
tm_bubbles(size = "Fotos ocelote", col = "red", border.col= "red", alpha= 0.5,
legend.size.is.portrait=TRUE) +
# tm_dots(col = "Species", size = 0.25,
# shape = 16, title = "Especie", legend.show = TRUE,
# legend.is.portrait = TRUE, legend.z = NA) +
tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value
outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
legend.position = c(1.01,.1),
legend.outside.size = 0.1,
legend.title.size = 1.6,
legend.height = 0.9,
legend.width = 1.5,
legend.text.size = 1,
legend.hist.size = 0.5) +
tm_layout(frame=T) + tm_scale_bar() +
tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)
#plot
ocelote_window doing row 1000 of 80004 doing row 2000 of 80004 doing row 3000 of 80004 doing row 4000 of 80004 doing row 5000 of 80004 doing row 6000 of 80004 doing row 7000 of 80004 doing row 8000 of 80004 doing row 9000 of 80004 doing row 10000 of 80004 doing row 11000 of 80004 doing row 12000 of 80004 doing row 13000 of 80004 doing row 14000 of 80004 doing row 15000 of 80004 doing row 16000 of 80004 doing row 17000 of 80004 doing row 18000 of 80004 doing row 19000 of 80004 doing row 20000 of 80004 doing row 21000 of 80004 doing row 22000 of 80004 doing row 23000 of 80004 doing row 24000 of 80004 doing row 25000 of 80004 doing row 26000 of 80004 doing row 27000 of 80004 doing row 28000 of 80004 doing row 29000 of 80004 doing row 30000 of 80004 doing row 31000 of 80004 doing row 32000 of 80004 doing row 33000 of 80004 doing row 34000 of 80004 doing row 35000 of 80004 doing row 36000 of 80004 doing row 37000 of 80004 doing row 38000 of 80004 doing row 39000 of 80004 doing row 40000 of 80004 doing row 41000 of 80004 doing row 42000 of 80004 doing row 43000 of 80004 doing row 44000 of 80004 doing row 45000 of 80004 doing row 46000 of 80004 doing row 47000 of 80004 doing row 48000 of 80004 doing row 49000 of 80004 doing row 50000 of 80004 doing row 51000 of 80004 doing row 52000 of 80004 doing row 53000 of 80004 doing row 54000 of 80004 doing row 55000 of 80004 doing row 56000 of 80004 doing row 57000 of 80004 doing row 58000 of 80004 doing row 59000 of 80004 doing row 60000 of 80004 doing row 61000 of 80004 doing row 62000 of 80004 doing row 63000 of 80004 doing row 64000 of 80004 doing row 65000 of 80004 doing row 66000 of 80004 doing row 67000 of 80004 doing row 68000 of 80004 doing row 69000 of 80004 doing row 70000 of 80004 doing row 71000 of 80004 doing row 72000 of 80004 doing row 73000 of 80004 doing row 74000 of 80004 doing row 75000 of 80004 doing row 76000 of 80004 doing row 77000 of 80004 doing row 78000 of 80004 doing row 79000 of 80004 doing row 80000 of 80004
## [1] "Tapirus_terrestris"
## Hessian is singular.
# xtable::xtable(sp1, "html") #, format = "rst")
# kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))| Tapirus_terrestris models | nPars | AIC | delta | AICwt | cumltvWt | psi_p_fm0 | |
|---|---|---|---|---|---|---|---|
| 11 | p(elev)psi(elev + dist_rio) | 5 | 811.4492 | 0.000000 | 0.4888444 | 0.4888444 | 0.5572193 |
| 8 | p(elev)psi(elev) | 4 | 813.0870 | 1.637815 | 0.2155379 | 0.7043823 | 0.2147943 |
| 9 | p(elev)psi(elev2) | 4 | 813.0885 | 1.639344 | 0.2153732 | 0.9197555 | NA |
| 17 | p(dist_rio)psi(elev + dist_rio) | 5 | 816.3331 | 4.883952 | 0.0425240 | 0.9622795 | NA |
| 14 | p(dist_rio)psi(elev) | 4 | 818.0123 | 6.563136 | 0.0183655 | 0.9806451 | NA |
| 15 | p(dist_rio)psi(elev2) | 4 | 818.0124 | 6.563186 | 0.0183651 | 0.9990101 | NA |
| 7 | p(elev)psi(.) | 3 | 826.4408 | 14.991620 | 0.0002715 | 0.9992816 | NA |
| 5 | p(.)psi(elev + dist_rio) | 4 | 827.6560 | 16.206833 | 0.0001479 | 0.9994295 | NA |
| 3 | p(.)psi(elev2) | 3 | 827.7490 | 16.299763 | 0.0001412 | 0.9995707 | NA |
| 2 | p(.)psi(elev) | 3 | 827.8320 | 16.382816 | 0.0001354 | 0.9997061 | NA |
| 10 | p(elev)psi(dist_rio) | 4 | 828.4399 | 16.990680 | 0.0000999 | 0.9998060 | NA |
| 12 | p(elev)psi(dist_rio2) | 4 | 828.4399 | 16.990690 | 0.0000999 | 0.9999060 | NA |
| 13 | p(dist_rio)psi(.) | 3 | 830.7262 | 19.277042 | 0.0000319 | 0.9999378 | NA |
| 1 | p(.)psi(.) | 2 | 831.4376 | 19.988375 | 0.0000223 | 0.9999601 | NA |
| 16 | p(dist_rio)psi(dist_rio) | 4 | 832.7262 | 21.277042 | 0.0000117 | 0.9999719 | NA |
| 18 | p(dist_rio)psi(dist_rio2) | 4 | 832.7262 | 21.277044 | 0.0000117 | 0.9999836 | NA |
| 6 | p(.)psi(dist_rio2) | 3 | 833.4383 | 21.989080 | 0.0000082 | 0.9999918 | NA |
| 4 | p(.)psi(dist_rio) | 3 | 833.4383 | 21.989083 | 0.0000082 | 1.0000000 | NA |
danta <- filter(camaras_17, Species=="Tapirus_terrestris")
by_sp <- camaras_17 %>% group_by(Species) %>% tally()
by_sp_predio <- danta %>% group_by(Predio) %>% tally()
names(by_sp_predio) <- c("Predio", "Fotos danta", "geometry")
danta_window <- qtm(vichada_osm1) +
tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) +
tm_shape(rio) +
tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") + #tm_symbols (size = 0.5) +
tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) +
tm_bubbles(size = "Fotos danta", col = "red", border.col= "red", alpha= 0.5,
legend.size.is.portrait=TRUE) +
# tm_dots(col = "Species", size = 0.25,
# shape = 16, title = "Especie", legend.show = TRUE,
# legend.is.portrait = TRUE, legend.z = NA) +
tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value
outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
legend.position = c(1.01,.1),
legend.outside.size = 0.1,
legend.title.size = 1.6,
legend.height = 0.9,
legend.width = 1.5,
legend.text.size = 1,
legend.hist.size = 0.5) +
tm_layout(frame=T) + tm_scale_bar() +
tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)
#plot
danta_windowHessian is singular. doing row 1000 of 80004 doing row 2000 of 80004 doing row 3000 of 80004 doing row 4000 of 80004 doing row 5000 of 80004 doing row 6000 of 80004 doing row 7000 of 80004 doing row 8000 of 80004 doing row 9000 of 80004 doing row 10000 of 80004 doing row 11000 of 80004 doing row 12000 of 80004 doing row 13000 of 80004 doing row 14000 of 80004 doing row 15000 of 80004 doing row 16000 of 80004 doing row 17000 of 80004 doing row 18000 of 80004 doing row 19000 of 80004 doing row 20000 of 80004 doing row 21000 of 80004 doing row 22000 of 80004 doing row 23000 of 80004 doing row 24000 of 80004 doing row 25000 of 80004 doing row 26000 of 80004 doing row 27000 of 80004 doing row 28000 of 80004 doing row 29000 of 80004 doing row 30000 of 80004 doing row 31000 of 80004 doing row 32000 of 80004 doing row 33000 of 80004 doing row 34000 of 80004 doing row 35000 of 80004 doing row 36000 of 80004 doing row 37000 of 80004 doing row 38000 of 80004 doing row 39000 of 80004 doing row 40000 of 80004 doing row 41000 of 80004 doing row 42000 of 80004 doing row 43000 of 80004 doing row 44000 of 80004 doing row 45000 of 80004 doing row 46000 of 80004 doing row 47000 of 80004 doing row 48000 of 80004 doing row 49000 of 80004 doing row 50000 of 80004 doing row 51000 of 80004 doing row 52000 of 80004 doing row 53000 of 80004 doing row 54000 of 80004 doing row 55000 of 80004 doing row 56000 of 80004 doing row 57000 of 80004 doing row 58000 of 80004 doing row 59000 of 80004 doing row 60000 of 80004 doing row 61000 of 80004 doing row 62000 of 80004 doing row 63000 of 80004 doing row 64000 of 80004 doing row 65000 of 80004 doing row 66000 of 80004 doing row 67000 of 80004 doing row 68000 of 80004 doing row 69000 of 80004 doing row 70000 of 80004 doing row 71000 of 80004 doing row 72000 of 80004 doing row 73000 of 80004 doing row 74000 of 80004 doing row 75000 of 80004 doing row 76000 of 80004 doing row 77000 of 80004 doing row 78000 of 80004 doing row 79000 of 80004 doing row 80000 of 80004
muy pocos registros… no confiable!
## [1] "Eira_barbara"
sp2 <- f.sp.occu.models(sp_number = 5)
# xtable::xtable(sp1, "html") #, format = "rst")
# kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))| Eira_barbara models | nPars | AIC | delta | AICwt | cumltvWt | psi_p_fm0 | |
|---|---|---|---|---|---|---|---|
| 7 | p(elev)psi(.) | 3 | 116.9166 | 0.0000000 | 0.1231880 | 0.1231880 | 0.2792935 |
| 13 | p(dist_rio)psi(.) | 3 | 117.3462 | 0.4296355 | 0.0993744 | 0.2225624 | 0.0385355 |
| 1 | p(.)psi(.) | 2 | 117.5329 | 0.6163022 | 0.0905191 | 0.3130815 | NA |
| 6 | p(.)psi(dist_rio2) | 3 | 117.9720 | 1.0553602 | 0.0726775 | 0.3857590 | NA |
| 4 | p(.)psi(dist_rio) | 3 | 117.9720 | 1.0553607 | 0.0726775 | 0.4584364 | NA |
| 8 | p(elev)psi(elev) | 4 | 118.3155 | 1.3989052 | 0.0612069 | 0.5196433 | NA |
| 9 | p(elev)psi(elev2) | 4 | 118.3155 | 1.3989056 | 0.0612068 | 0.5808501 | NA |
| 2 | p(.)psi(elev) | 3 | 118.7342 | 1.8176014 | 0.0496457 | 0.6304958 | NA |
| 3 | p(.)psi(elev2) | 3 | 118.7342 | 1.8176014 | 0.0496457 | 0.6801415 | NA |
| 10 | p(elev)psi(dist_rio) | 4 | 118.8814 | 1.9648313 | 0.0461223 | 0.7262637 | NA |
| 12 | p(elev)psi(dist_rio2) | 4 | 118.8815 | 1.9648423 | 0.0461220 | 0.7723858 | NA |
| 15 | p(dist_rio)psi(elev2) | 4 | 119.2165 | 2.2998391 | 0.0390090 | 0.8113948 | NA |
| 14 | p(dist_rio)psi(elev) | 4 | 119.2165 | 2.2998548 | 0.0390087 | 0.8504035 | NA |
| 18 | p(dist_rio)psi(dist_rio2) | 4 | 119.3434 | 2.4267636 | 0.0366103 | 0.8870138 | NA |
| 16 | p(dist_rio)psi(dist_rio) | 4 | 119.3434 | 2.4267770 | 0.0366101 | 0.9236238 | NA |
| 11 | p(elev)psi(elev + dist_rio) | 5 | 119.6920 | 2.7753850 | 0.0307540 | 0.9543778 | NA |
| 5 | p(.)psi(elev + dist_rio) | 4 | 119.7215 | 2.8048409 | 0.0303044 | 0.9846822 | NA |
| 17 | p(dist_rio)psi(elev + dist_rio) | 5 | 121.0860 | 4.1693882 | 0.0153178 | 1.0000000 | NA |
tayra <- filter(camaras_17, Species=="Eira_barbara")
by_sp <- camaras_17 %>% group_by(Species) %>% tally()
by_sp_predio <- tayra %>% group_by(Predio) %>% tally()
names(by_sp_predio) <- c("Predio", "Fotos tayra", "geometry")
tayra_window <- qtm(vichada_osm1) +
tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) +
tm_shape(rio) +
tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") + #tm_symbols (size = 0.5) +
tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) +
tm_bubbles(size = "Fotos tayra", col = "red", border.col= "red", alpha= 0.5,
legend.size.is.portrait=TRUE) +
# tm_dots(col = "Species", size = 0.25,
# shape = 16, title = "Especie", legend.show = TRUE,
# legend.is.portrait = TRUE, legend.z = NA) +
tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value
outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
legend.position = c(1.01,.1),
legend.outside.size = 0.1,
legend.title.size = 1.6,
legend.height = 0.9,
legend.width = 1.5,
legend.text.size = 1,
legend.hist.size = 0.5) +
tm_layout(frame=T) + tm_scale_bar() +
tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)
#plot
tayra_windowmuy pocos registros… no confiable!
## [1] "Didelphis_marsupialis"
sp2 <- f.sp.occu.models(sp_number = 6)
# xtable::xtable(sp1, "html") #, format = "rst")
# kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))| Didelphis_marsupialis models | nPars | AIC | delta | AICwt | cumltvWt | psi_p_fm0 | |
|---|---|---|---|---|---|---|---|
| 8 | p(elev)psi(elev) | 4 | 105.2930 | 0.0000000 | 0.1608537 | 0.1608537 | 0.1998604 |
| 9 | p(elev)psi(elev2) | 4 | 105.2930 | 0.0000000 | 0.1608537 | 0.3217074 | 0.0595698 |
| 12 | p(elev)psi(dist_rio2) | 4 | 105.5724 | 0.2794433 | 0.1398784 | 0.4615859 | NA |
| 10 | p(elev)psi(dist_rio) | 4 | 105.5725 | 0.2794509 | 0.1398779 | 0.6014638 | NA |
| 17 | p(dist_rio)psi(elev + dist_rio) | 5 | 106.8226 | 1.5296057 | 0.0748655 | 0.6763292 | NA |
| 11 | p(elev)psi(elev + dist_rio) | 5 | 107.2397 | 1.9467280 | 0.0607721 | 0.7371014 | NA |
| 3 | p(.)psi(elev2) | 3 | 107.7898 | 2.4967846 | 0.0461595 | 0.7832609 | NA |
| 2 | p(.)psi(elev) | 3 | 107.7959 | 2.5029474 | 0.0460175 | 0.8292784 | NA |
| 14 | p(dist_rio)psi(elev) | 4 | 107.8597 | 2.5667071 | 0.0445736 | 0.8738520 | NA |
| 15 | p(dist_rio)psi(elev2) | 4 | 107.8597 | 2.5667251 | 0.0445732 | 0.9184252 | NA |
| 1 | p(.)psi(.) | 2 | 109.6877 | 4.3946812 | 0.0178706 | 0.9362958 | NA |
| 16 | p(dist_rio)psi(dist_rio) | 4 | 110.1332 | 4.8401734 | 0.0143021 | 0.9505979 | NA |
| 18 | p(dist_rio)psi(dist_rio2) | 4 | 110.1332 | 4.8401814 | 0.0143021 | 0.9649000 | NA |
| 7 | p(elev)psi(.) | 3 | 110.2007 | 4.9076715 | 0.0138275 | 0.9787275 | NA |
| 13 | p(dist_rio)psi(.) | 3 | 111.6513 | 6.3582760 | 0.0066950 | 0.9854224 | NA |
| 6 | p(.)psi(dist_rio2) | 3 | 111.6735 | 6.3805255 | 0.0066209 | 0.9920434 | NA |
| 4 | p(.)psi(dist_rio) | 3 | 111.6735 | 6.3805256 | 0.0066209 | 0.9986643 | NA |
| 5 | p(.)psi(elev + dist_rio) | 4 | 114.8750 | 9.5820201 | 0.0013357 | 1.0000000 | NA |
chucha <- filter(camaras_17, Species=="Didelphis_marsupialis")
by_sp <- camaras_17 %>% group_by(Species) %>% tally()
by_sp_predio <- chucha %>% group_by(Predio) %>% tally()
names(by_sp_predio) <- c("Predio", "Fotos chucha", "geometry")
chucha_window <- qtm(vichada_osm1) +
tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) +
tm_shape(rio) +
tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") + #tm_symbols (size = 0.5) +
tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) +
tm_bubbles(size = "Fotos chucha", col = "red", border.col= "red", alpha= 0.5,
legend.size.is.portrait=TRUE) +
# tm_dots(col = "Species", size = 0.25,
# shape = 16, title = "Especie", legend.show = TRUE,
# legend.is.portrait = TRUE, legend.z = NA) +
tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value
outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
legend.position = c(1.01,.1),
legend.outside.size = 0.1,
legend.title.size = 1.6,
legend.height = 0.9,
legend.width = 1.5,
legend.text.size = 1,
legend.hist.size = 0.5) +
tm_layout(frame=T) + tm_scale_bar() +
tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)
#plot
chucha_window## [1] "Tayassu_pecari"
sp2 <- f.sp.occu.models(sp_number = 7)
# xtable::xtable(sp1, "html") #, format = "rst")
# kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))| Tayassu_pecari models | nPars | AIC | delta | AICwt | cumltvWt | psi_p_fm0 | |
|---|---|---|---|---|---|---|---|
| 17 | p(dist_rio)psi(elev + dist_rio) | 5 | 1083.817 | 0.0000000 | 0.2714290 | 0.2714290 | 0.6272833 |
| 13 | p(dist_rio)psi(.) | 3 | 1083.839 | 0.0228188 | 0.2683498 | 0.5397788 | 0.2584680 |
| 14 | p(dist_rio)psi(elev) | 4 | 1085.273 | 1.4559634 | 0.1310683 | 0.6708471 | NA |
| 15 | p(dist_rio)psi(elev2) | 4 | 1085.273 | 1.4559635 | 0.1310683 | 0.8019155 | NA |
| 18 | p(dist_rio)psi(dist_rio2) | 4 | 1085.833 | 2.0163076 | 0.0990423 | 0.9009577 | NA |
| 16 | p(dist_rio)psi(dist_rio) | 4 | 1085.833 | 2.0163078 | 0.0990423 | 1.0000000 | NA |
| 3 | p(.)psi(elev2) | 3 | 1147.270 | 63.4535723 | 0.0000000 | 1.0000000 | NA |
| 2 | p(.)psi(elev) | 3 | 1147.296 | 63.4796549 | 0.0000000 | 1.0000000 | NA |
| 5 | p(.)psi(elev + dist_rio) | 4 | 1149.274 | 65.4577503 | 0.0000000 | 1.0000000 | NA |
| 1 | p(.)psi(.) | 2 | 1154.209 | 70.3920522 | 0.0000000 | 1.0000000 | NA |
| 7 | p(elev)psi(.) | 3 | 1156.127 | 72.3104903 | 0.0000000 | 1.0000000 | NA |
| 6 | p(.)psi(dist_rio2) | 3 | 1156.209 | 72.3920531 | 0.0000000 | 1.0000000 | NA |
| 4 | p(.)psi(dist_rio) | 3 | 1156.209 | 72.3920531 | 0.0000000 | 1.0000000 | NA |
| 10 | p(elev)psi(dist_rio) | 4 | 1158.127 | 74.3104489 | 0.0000000 | 1.0000000 | NA |
| 12 | p(elev)psi(dist_rio2) | 4 | 1158.127 | 74.3104531 | 0.0000000 | 1.0000000 | NA |
| 8 | p(elev)psi(elev) | 4 | 1158.127 | 74.3104868 | 0.0000000 | 1.0000000 | NA |
| 9 | p(elev)psi(elev2) | 4 | 1158.129 | 74.3126029 | 0.0000000 | 1.0000000 | NA |
| 11 | p(elev)psi(elev + dist_rio) | 5 | 1160.127 | 76.3104851 | 0.0000000 | 1.0000000 | NA |
pecari <- filter(camaras_17, Species=="Tayassu_pecari")
by_sp <- camaras_17 %>% group_by(Species) %>% tally()
by_sp_predio <- pecari %>% group_by(Predio) %>% tally()
names(by_sp_predio) <- c("Predio", "Fotos pecari", "geometry")
pecari_window <- qtm(vichada_osm1) +
tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) +
tm_shape(rio) +
tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") + #tm_symbols (size = 0.5) +
tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) +
tm_bubbles(size = "Fotos pecari", col = "red", border.col= "red", alpha= 0.5,
legend.size.is.portrait=TRUE) +
# tm_dots(col = "Species", size = 0.25,
# shape = 16, title = "Especie", legend.show = TRUE,
# legend.is.portrait = TRUE, legend.z = NA) +
tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value
outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
legend.position = c(1.01,.1),
legend.outside.size = 0.1,
legend.title.size = 1.6,
legend.height = 0.9,
legend.width = 1.5,
legend.text.size = 1,
legend.hist.size = 0.5) +
tm_layout(frame=T) + tm_scale_bar() +
tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)
#plot
pecari_window doing row 1000 of 80004 doing row 2000 of 80004 doing row 3000 of 80004 doing row 4000 of 80004 doing row 5000 of 80004 doing row 6000 of 80004 doing row 7000 of 80004 doing row 8000 of 80004 doing row 9000 of 80004 doing row 10000 of 80004 doing row 11000 of 80004 doing row 12000 of 80004 doing row 13000 of 80004 doing row 14000 of 80004 doing row 15000 of 80004 doing row 16000 of 80004 doing row 17000 of 80004 doing row 18000 of 80004 doing row 19000 of 80004 doing row 20000 of 80004 doing row 21000 of 80004 doing row 22000 of 80004 doing row 23000 of 80004 doing row 24000 of 80004 doing row 25000 of 80004 doing row 26000 of 80004 doing row 27000 of 80004 doing row 28000 of 80004 doing row 29000 of 80004 doing row 30000 of 80004 doing row 31000 of 80004 doing row 32000 of 80004 doing row 33000 of 80004 doing row 34000 of 80004 doing row 35000 of 80004 doing row 36000 of 80004 doing row 37000 of 80004 doing row 38000 of 80004 doing row 39000 of 80004 doing row 40000 of 80004 doing row 41000 of 80004 doing row 42000 of 80004 doing row 43000 of 80004 doing row 44000 of 80004 doing row 45000 of 80004 doing row 46000 of 80004 doing row 47000 of 80004 doing row 48000 of 80004 doing row 49000 of 80004 doing row 50000 of 80004 doing row 51000 of 80004 doing row 52000 of 80004 doing row 53000 of 80004 doing row 54000 of 80004 doing row 55000 of 80004 doing row 56000 of 80004 doing row 57000 of 80004 doing row 58000 of 80004 doing row 59000 of 80004 doing row 60000 of 80004 doing row 61000 of 80004 doing row 62000 of 80004 doing row 63000 of 80004 doing row 64000 of 80004 doing row 65000 of 80004 doing row 66000 of 80004 doing row 67000 of 80004 doing row 68000 of 80004 doing row 69000 of 80004 doing row 70000 of 80004 doing row 71000 of 80004 doing row 72000 of 80004 doing row 73000 of 80004 doing row 74000 of 80004 doing row 75000 of 80004 doing row 76000 of 80004 doing row 77000 of 80004 doing row 78000 of 80004 doing row 79000 of 80004 doing row 80000 of 80004
## [1] "Cuniculus_paca"
sp2 <- f.sp.occu.models(sp_number = 8)
# xtable::xtable(sp1, "html") #, format = "rst")
# kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))| Cuniculus_paca models | nPars | AIC | delta | AICwt | cumltvWt | psi_p_fm0 | |
|---|---|---|---|---|---|---|---|
| 11 | p(elev)psi(elev + dist_rio) | 5 | 958.6460 | 0.000000 | 0.3177152 | 0.3177152 | 0.4551684 |
| 9 | p(elev)psi(elev2) | 4 | 960.1173 | 1.471294 | 0.1522476 | 0.4699628 | 0.2862908 |
| 8 | p(elev)psi(elev) | 4 | 960.1173 | 1.471294 | 0.1522476 | 0.6222104 | NA |
| 7 | p(elev)psi(.) | 3 | 960.1899 | 1.543901 | 0.1468196 | 0.7690300 | NA |
| 17 | p(dist_rio)psi(elev + dist_rio) | 5 | 962.0306 | 3.384591 | 0.0584902 | 0.8275203 | NA |
| 5 | p(.)psi(elev + dist_rio) | 4 | 963.4849 | 4.838855 | 0.0282679 | 0.8557882 | NA |
| 14 | p(dist_rio)psi(elev) | 4 | 963.6595 | 5.013459 | 0.0259047 | 0.8816929 | NA |
| 15 | p(dist_rio)psi(elev2) | 4 | 963.6595 | 5.013459 | 0.0259047 | 0.9075977 | NA |
| 13 | p(dist_rio)psi(.) | 3 | 963.8839 | 5.237834 | 0.0231556 | 0.9307533 | NA |
| 3 | p(.)psi(elev2) | 3 | 964.9017 | 6.255662 | 0.0139200 | 0.9446733 | NA |
| 2 | p(.)psi(elev) | 3 | 964.9017 | 6.255662 | 0.0139200 | 0.9585932 | NA |
| 1 | p(.)psi(.) | 2 | 965.3980 | 6.751920 | 0.0108612 | 0.9694544 | NA |
| 16 | p(dist_rio)psi(dist_rio) | 4 | 965.5276 | 6.881587 | 0.0101794 | 0.9796338 | NA |
| 18 | p(dist_rio)psi(dist_rio2) | 4 | 965.5276 | 6.881587 | 0.0101794 | 0.9898131 | NA |
| 4 | p(.)psi(dist_rio) | 3 | 966.9124 | 8.266401 | 0.0050934 | 0.9949066 | NA |
| 6 | p(.)psi(dist_rio2) | 3 | 966.9125 | 8.266417 | 0.0050934 | 1.0000000 | NA |
| 10 | p(elev)psi(dist_rio) | 4 | 1077.1658 | 118.519783 | 0.0000000 | 1.0000000 | NA |
| 12 | p(elev)psi(dist_rio2) | 4 | 1077.1661 | 118.520074 | 0.0000000 | 1.0000000 | NA |
boruga <- filter(camaras_17, Species=="Cuniculus_paca")
by_sp <- camaras_17 %>% group_by(Species) %>% tally()
by_sp_predio <- boruga %>% group_by(Predio) %>% tally()
names(by_sp_predio) <- c("Predio", "Fotos boruga", "geometry")
boruga_window <- qtm(vichada_osm1) +
tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) +
tm_shape(rio) +
tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") + #tm_symbols (size = 0.5) +
tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) +
tm_bubbles(size = "Fotos boruga", col = "red", border.col= "red", alpha= 0.5,
legend.size.is.portrait=TRUE) +
# tm_dots(col = "Species", size = 0.25,
# shape = 16, title = "Especie", legend.show = TRUE,
# legend.is.portrait = TRUE, legend.z = NA) +
tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value
outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
legend.position = c(1.01,.1),
legend.outside.size = 0.1,
legend.title.size = 1.6,
legend.height = 0.9,
legend.width = 1.5,
legend.text.size = 1,
legend.hist.size = 0.5) +
tm_layout(frame=T) + tm_scale_bar() +
tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)
#plot
boruga_window doing row 1000 of 80004 doing row 2000 of 80004 doing row 3000 of 80004 doing row 4000 of 80004 doing row 5000 of 80004 doing row 6000 of 80004 doing row 7000 of 80004 doing row 8000 of 80004 doing row 9000 of 80004 doing row 10000 of 80004 doing row 11000 of 80004 doing row 12000 of 80004 doing row 13000 of 80004 doing row 14000 of 80004 doing row 15000 of 80004 doing row 16000 of 80004 doing row 17000 of 80004 doing row 18000 of 80004 doing row 19000 of 80004 doing row 20000 of 80004 doing row 21000 of 80004 doing row 22000 of 80004 doing row 23000 of 80004 doing row 24000 of 80004 doing row 25000 of 80004 doing row 26000 of 80004 doing row 27000 of 80004 doing row 28000 of 80004 doing row 29000 of 80004 doing row 30000 of 80004 doing row 31000 of 80004 doing row 32000 of 80004 doing row 33000 of 80004 doing row 34000 of 80004 doing row 35000 of 80004 doing row 36000 of 80004 doing row 37000 of 80004 doing row 38000 of 80004 doing row 39000 of 80004 doing row 40000 of 80004 doing row 41000 of 80004 doing row 42000 of 80004 doing row 43000 of 80004 doing row 44000 of 80004 doing row 45000 of 80004 doing row 46000 of 80004 doing row 47000 of 80004 doing row 48000 of 80004 doing row 49000 of 80004 doing row 50000 of 80004 doing row 51000 of 80004 doing row 52000 of 80004 doing row 53000 of 80004 doing row 54000 of 80004 doing row 55000 of 80004 doing row 56000 of 80004 doing row 57000 of 80004 doing row 58000 of 80004 doing row 59000 of 80004 doing row 60000 of 80004 doing row 61000 of 80004 doing row 62000 of 80004 doing row 63000 of 80004 doing row 64000 of 80004 doing row 65000 of 80004 doing row 66000 of 80004 doing row 67000 of 80004 doing row 68000 of 80004 doing row 69000 of 80004 doing row 70000 of 80004 doing row 71000 of 80004 doing row 72000 of 80004 doing row 73000 of 80004 doing row 74000 of 80004 doing row 75000 of 80004 doing row 76000 of 80004 doing row 77000 of 80004 doing row 78000 of 80004 doing row 79000 of 80004 doing row 80000 of 80004
## [1] "Dasyprocta_fuliginosa"
sp2 <- f.sp.occu.models(sp_number = 9)
# xtable::xtable(sp1, "html") #, format = "rst")
# kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))| Dasyprocta_fuliginosa models | nPars | AIC | delta | AICwt | cumltvWt | psi_p_fm0 | |
|---|---|---|---|---|---|---|---|
| 7 | p(elev)psi(.) | 3 | 843.9997 | 0.000000 | 0.2845833 | 0.2845833 | 0.2546188 |
| 12 | p(elev)psi(dist_rio2) | 4 | 845.3883 | 1.388563 | 0.1421303 | 0.4267136 | 0.4362057 |
| 10 | p(elev)psi(dist_rio) | 4 | 845.3883 | 1.388563 | 0.1421303 | 0.5688439 | NA |
| 8 | p(elev)psi(elev) | 4 | 845.8052 | 1.805501 | 0.1153851 | 0.6842291 | NA |
| 9 | p(elev)psi(elev2) | 4 | 845.8052 | 1.805501 | 0.1153851 | 0.7996142 | NA |
| 11 | p(elev)psi(elev + dist_rio) | 5 | 846.9823 | 2.982564 | 0.0640551 | 0.8636693 | NA |
| 13 | p(dist_rio)psi(.) | 3 | 847.9459 | 3.946188 | 0.0395645 | 0.9032338 | NA |
| 16 | p(dist_rio)psi(dist_rio) | 4 | 849.3442 | 5.344465 | 0.0196641 | 0.9228979 | NA |
| 18 | p(dist_rio)psi(dist_rio2) | 4 | 849.3442 | 5.344465 | 0.0196641 | 0.9425620 | NA |
| 15 | p(dist_rio)psi(elev2) | 4 | 849.7618 | 5.762055 | 0.0159586 | 0.9585206 | NA |
| 14 | p(dist_rio)psi(elev) | 4 | 849.7618 | 5.762055 | 0.0159586 | 0.9744792 | NA |
| 17 | p(dist_rio)psi(elev + dist_rio) | 5 | 850.9210 | 6.921298 | 0.0089386 | 0.9834178 | NA |
| 1 | p(.)psi(.) | 2 | 851.8865 | 7.886800 | 0.0055159 | 0.9889336 | NA |
| 6 | p(.)psi(dist_rio2) | 3 | 853.3107 | 9.310964 | 0.0027062 | 0.9916398 | NA |
| 4 | p(.)psi(dist_rio) | 3 | 853.3107 | 9.310967 | 0.0027062 | 0.9943460 | NA |
| 3 | p(.)psi(elev2) | 3 | 853.7173 | 9.717546 | 0.0022084 | 0.9965544 | NA |
| 2 | p(.)psi(elev) | 3 | 853.7173 | 9.717546 | 0.0022084 | 0.9987627 | NA |
| 5 | p(.)psi(elev + dist_rio) | 4 | 854.8760 | 10.876237 | 0.0012373 | 1.0000000 | NA |
neque <- filter(camaras_17, Species=="Dasyprocta_fuliginosa")
by_sp <- camaras_17 %>% group_by(Species) %>% tally()
by_sp_predio <- neque %>% group_by(Predio) %>% tally()
names(by_sp_predio) <- c("Predio", "Fotos ñeque", "geometry")
neque_window <- qtm(vichada_osm1) +
tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) +
tm_shape(rio) +
tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") + #tm_symbols (size = 0.5) +
tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) +
tm_bubbles(size = "Fotos ñeque", col = "red", border.col= "red", alpha= 0.5,
legend.size.is.portrait=TRUE) +
# tm_dots(col = "Species", size = 0.25,
# shape = 16, title = "Especie", legend.show = TRUE,
# legend.is.portrait = TRUE, legend.z = NA) +
tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value
outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
legend.position = c(1.01,.1),
legend.outside.size = 0.1,
legend.title.size = 1.6,
legend.height = 0.9,
legend.width = 1.5,
legend.text.size = 1,
legend.hist.size = 0.5) +
tm_layout(frame=T) + tm_scale_bar() +
tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)
#plot
neque_window## [1] "Hydrochoerus_hydrochaeris"
## Hessian is singular.
## Hessian is singular.
# xtable::xtable(sp1, "html") #, format = "rst")
# kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))| Hydrochoerus_hydrochaeris models | nPars | AIC | delta | AICwt | cumltvWt | psi_p_fm0 | |
|---|---|---|---|---|---|---|---|
| 13 | p(dist_rio)psi(.) | 3 | 54.69605 | 0.000000 | 0.2502802 | 0.2502802 | 0.0764020 |
| 15 | p(dist_rio)psi(elev2) | 4 | 55.82256 | 1.126512 | 0.1424976 | 0.3927778 | 0.0868302 |
| 14 | p(dist_rio)psi(elev) | 4 | 55.88285 | 1.186801 | 0.1382662 | 0.5310439 | NA |
| 16 | p(dist_rio)psi(dist_rio) | 4 | 56.71485 | 2.018807 | 0.0912112 | 0.6222551 | NA |
| 18 | p(dist_rio)psi(dist_rio2) | 4 | 56.75664 | 2.060588 | 0.0893255 | 0.7115806 | NA |
| 12 | p(elev)psi(dist_rio2) | 4 | 57.73199 | 3.035942 | 0.0548504 | 0.7664310 | NA |
| 17 | p(dist_rio)psi(elev + dist_rio) | 5 | 57.73447 | 3.038425 | 0.0547824 | 0.8212134 | NA |
| 10 | p(elev)psi(dist_rio) | 4 | 58.24532 | 3.549269 | 0.0424338 | 0.8636473 | NA |
| 9 | p(elev)psi(elev2) | 4 | 58.88761 | 4.191562 | 0.0307780 | 0.8944253 | NA |
| 11 | p(elev)psi(elev + dist_rio) | 5 | 59.19803 | 4.501988 | 0.0263531 | 0.9207784 | NA |
| 8 | p(elev)psi(elev) | 4 | 59.29315 | 4.597098 | 0.0251292 | 0.9459076 | NA |
| 7 | p(elev)psi(.) | 3 | 59.46201 | 4.765965 | 0.0230946 | 0.9690022 | NA |
| 5 | p(.)psi(elev + dist_rio) | 4 | 59.83793 | 5.141878 | 0.0191374 | 0.9881396 | NA |
| 3 | p(.)psi(elev2) | 3 | 62.98005 | 8.284001 | 0.0039772 | 0.9921168 | NA |
| 2 | p(.)psi(elev) | 3 | 63.06060 | 8.364555 | 0.0038202 | 0.9959370 | NA |
| 1 | p(.)psi(.) | 2 | 64.04020 | 9.344155 | 0.0023408 | 0.9982778 | NA |
| 6 | p(.)psi(dist_rio2) | 3 | 66.04029 | 11.344243 | 0.0008611 | 0.9991389 | NA |
| 4 | p(.)psi(dist_rio) | 3 | 66.04029 | 11.344243 | 0.0008611 | 1.0000000 | NA |
chiguiro <- filter(camaras_17, Species=="Hydrochoerus_hydrochaeris")
by_sp <- camaras_17 %>% group_by(Species) %>% tally()
by_sp_predio <- chiguiro %>% group_by(Predio) %>% tally()
names(by_sp_predio) <- c("Predio", "Fotos chiguiro", "geometry")
chiguiro_window <- qtm(vichada_osm1) +
tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) +
tm_shape(rio) +
tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") + #tm_symbols (size = 0.5) +
tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) +
tm_bubbles(size = "Fotos chiguiro", col = "red", border.col= "red", alpha= 0.5,
legend.size.is.portrait=TRUE) +
# tm_dots(col = "Species", size = 0.25,
# shape = 16, title = "Especie", legend.show = TRUE,
# legend.is.portrait = TRUE, legend.z = NA) +
tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value
outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
legend.position = c(1.01,.1),
legend.outside.size = 0.1,
legend.title.size = 1.6,
legend.height = 0.9,
legend.width = 1.5,
legend.text.size = 1,
legend.hist.size = 0.5) +
tm_layout(frame=T) + tm_scale_bar() +
tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)
#plot
chiguiro_window## [1] "Puma_concolor"
sp2 <- f.sp.occu.models(sp_number = 11)
# xtable::xtable(sp1, "html") #, format = "rst")
# kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))| Puma_concolor models | nPars | AIC | delta | AICwt | cumltvWt | psi_p_fm0 | |
|---|---|---|---|---|---|---|---|
| 1 | p(.)psi(.) | 2 | 157.7201 | 0.000000 | 0.2198848 | 0.2198848 | 0.9993792 |
| 7 | p(elev)psi(.) | 3 | 159.6794 | 1.959300 | 0.0825541 | 0.3024389 | 0.0181376 |
| 13 | p(dist_rio)psi(.) | 3 | 159.7170 | 1.996914 | 0.0810160 | 0.3834549 | NA |
| 2 | p(.)psi(elev) | 3 | 159.7184 | 1.998219 | 0.0809632 | 0.4644181 | NA |
| 4 | p(.)psi(dist_rio) | 3 | 159.7184 | 1.998279 | 0.0809607 | 0.5453788 | NA |
| 6 | p(.)psi(dist_rio2) | 3 | 159.7185 | 1.998320 | 0.0809591 | 0.6263379 | NA |
| 3 | p(.)psi(elev2) | 3 | 159.7191 | 1.998945 | 0.0809338 | 0.7072717 | NA |
| 8 | p(elev)psi(elev) | 4 | 161.6783 | 3.958187 | 0.0303869 | 0.7376585 | NA |
| 10 | p(elev)psi(dist_rio) | 4 | 161.6785 | 3.958388 | 0.0303838 | 0.7680423 | NA |
| 12 | p(elev)psi(dist_rio2) | 4 | 161.6786 | 3.958499 | 0.0303821 | 0.7984245 | NA |
| 9 | p(elev)psi(elev2) | 4 | 161.6795 | 3.959415 | 0.0303682 | 0.8287927 | NA |
| 15 | p(dist_rio)psi(elev2) | 4 | 161.7159 | 3.995771 | 0.0298212 | 0.8586138 | NA |
| 14 | p(dist_rio)psi(elev) | 4 | 161.7159 | 3.995776 | 0.0298211 | 0.8884349 | NA |
| 18 | p(dist_rio)psi(dist_rio2) | 4 | 161.7159 | 3.995782 | 0.0298210 | 0.9182559 | NA |
| 16 | p(dist_rio)psi(dist_rio) | 4 | 161.7159 | 3.995807 | 0.0298206 | 0.9480765 | NA |
| 5 | p(.)psi(elev + dist_rio) | 4 | 161.7188 | 3.998718 | 0.0297773 | 0.9778538 | NA |
| 11 | p(elev)psi(elev + dist_rio) | 5 | 163.6786 | 5.958437 | 0.0111773 | 0.9890311 | NA |
| 17 | p(dist_rio)psi(elev + dist_rio) | 5 | 163.7162 | 5.996081 | 0.0109689 | 1.0000000 | NA |
puma <- filter(camaras_17, Species=="Puma_concolor")
by_sp <- camaras_17 %>% group_by(Species) %>% tally()
by_sp_predio <- puma %>% group_by(Predio) %>% tally()
names(by_sp_predio) <- c("Predio", "Fotos puma", "geometry")
puma_window <- qtm(vichada_osm1) +
tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) +
tm_shape(rio) +
tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") + #tm_symbols (size = 0.5) +
tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) +
tm_bubbles(size = "Fotos puma", col = "red", border.col= "red", alpha= 0.5,
legend.size.is.portrait=TRUE) +
# tm_dots(col = "Species", size = 0.25,
# shape = 16, title = "Especie", legend.show = TRUE,
# legend.is.portrait = TRUE, legend.z = NA) +
tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value
outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
legend.position = c(1.01,.1),
legend.outside.size = 0.1,
legend.title.size = 1.6,
legend.height = 0.9,
legend.width = 1.5,
legend.text.size = 1,
legend.hist.size = 0.5) +
tm_layout(frame=T) + tm_scale_bar() +
tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)
#plot
puma_window## [1] "Myrmecophaga_tridactyla"
sp2 <- f.sp.occu.models(sp_number = 13)
# xtable::xtable(sp1, "html") #, format = "rst")
# kable(Table1, "latex", booktabs = T, format = "rst") # para pdf
kable(sp2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", font_size = 8))| Myrmecophaga_tridactyla models | nPars | AIC | delta | AICwt | cumltvWt | psi_p_fm0 | |
|---|---|---|---|---|---|---|---|
| 5 | p(.)psi(elev + dist_rio) | 4 | 231.3263 | 0.0000000 | 0.1794647 | 0.1794647 | 0.3415188 |
| 2 | p(.)psi(elev) | 3 | 231.8466 | 0.5202811 | 0.1383571 | 0.3178218 | 0.0850134 |
| 3 | p(.)psi(elev2) | 3 | 231.8466 | 0.5202815 | 0.1383571 | 0.4561789 | NA |
| 1 | p(.)psi(.) | 2 | 232.8276 | 1.5013023 | 0.0847179 | 0.5408968 | NA |
| 11 | p(elev)psi(elev + dist_rio) | 5 | 233.1927 | 1.8663691 | 0.0705833 | 0.6114802 | NA |
| 17 | p(dist_rio)psi(elev + dist_rio) | 5 | 233.2997 | 1.9733883 | 0.0669057 | 0.6783859 | NA |
| 8 | p(elev)psi(elev) | 4 | 233.7737 | 2.4473236 | 0.0527897 | 0.7311756 | NA |
| 9 | p(elev)psi(elev2) | 4 | 233.7737 | 2.4473236 | 0.0527897 | 0.7839654 | NA |
| 6 | p(.)psi(dist_rio2) | 3 | 233.9940 | 2.6676705 | 0.0472826 | 0.8312480 | NA |
| 4 | p(.)psi(dist_rio) | 3 | 233.9940 | 2.6676710 | 0.0472826 | 0.8785306 | NA |
| 12 | p(elev)psi(dist_rio2) | 4 | 234.5574 | 3.2311119 | 0.0356740 | 0.9142047 | NA |
| 10 | p(elev)psi(dist_rio) | 4 | 234.5574 | 3.2311120 | 0.0356740 | 0.9498787 | NA |
| 16 | p(dist_rio)psi(dist_rio) | 4 | 235.8735 | 4.5472108 | 0.0184742 | 0.9683528 | NA |
| 18 | p(dist_rio)psi(dist_rio2) | 4 | 235.8735 | 4.5472108 | 0.0184742 | 0.9868270 | NA |
| 7 | p(elev)psi(.) | 3 | 237.2757 | 5.9493541 | 0.0091642 | 0.9959912 | NA |
| 13 | p(dist_rio)psi(.) | 3 | 240.0322 | 8.7059141 | 0.0023095 | 0.9983007 | NA |
| 15 | p(dist_rio)psi(elev2) | 4 | 242.0321 | 10.7057564 | 0.0008497 | 0.9991503 | NA |
| 14 | p(dist_rio)psi(elev) | 4 | 242.0321 | 10.7057670 | 0.0008497 | 1.0000000 | NA |
oso <- filter(camaras_17, Species=="Myrmecophaga_tridactyla")
by_sp <- camaras_17 %>% group_by(Species) %>% tally()
by_sp_predio <- oso %>% group_by(Predio) %>% tally()
names(by_sp_predio) <- c("Predio", "Fotos oso palmero", "geometry")
oso_window <- qtm(vichada_osm1) +
tm_shape(celdas) + tm_borders(lwd=1, alpha = .5) +
tm_shape(rio) +
tm_polygons("Rio", colorNA =NULL, border.col = "blue", palette = "blue") + #tm_symbols (size = 0.5) +
tm_shape(by_sp_predio) + # tm_symbols (col="red", size = 0.25) +
tm_bubbles(size = "Fotos oso palmero", col = "red", border.col= "red", alpha= 0.5,
legend.size.is.portrait=TRUE) +
# tm_dots(col = "Species", size = 0.25,
# shape = 16, title = "Especie", legend.show = TRUE,
# legend.is.portrait = TRUE, legend.z = NA) +
tm_layout(scale = 0.9, #font symbol sizes,are controlled by this value
outer.margins = c(0,.1,0,.2), #bottom, left, top, right margin
legend.position = c(1.01,.1),
legend.outside.size = 0.1,
legend.title.size = 1.6,
legend.height = 0.9,
legend.width = 1.5,
legend.text.size = 1,
legend.hist.size = 0.5) +
tm_layout(frame=T) + tm_scale_bar() +
tm_compass(type="arrow", position=c("right", "center"), show.labels = 1)
#plot
oso_window doing row 1000 of 80004 doing row 2000 of 80004 doing row 3000 of 80004 doing row 4000 of 80004 doing row 5000 of 80004 doing row 6000 of 80004 doing row 7000 of 80004 doing row 8000 of 80004 doing row 9000 of 80004 doing row 10000 of 80004 doing row 11000 of 80004 doing row 12000 of 80004 doing row 13000 of 80004 doing row 14000 of 80004 doing row 15000 of 80004 doing row 16000 of 80004 doing row 17000 of 80004 doing row 18000 of 80004 doing row 19000 of 80004 doing row 20000 of 80004 doing row 21000 of 80004 doing row 22000 of 80004 doing row 23000 of 80004 doing row 24000 of 80004 doing row 25000 of 80004 doing row 26000 of 80004 doing row 27000 of 80004 doing row 28000 of 80004 doing row 29000 of 80004 doing row 30000 of 80004 doing row 31000 of 80004 doing row 32000 of 80004 doing row 33000 of 80004 doing row 34000 of 80004 doing row 35000 of 80004 doing row 36000 of 80004 doing row 37000 of 80004 doing row 38000 of 80004 doing row 39000 of 80004 doing row 40000 of 80004 doing row 41000 of 80004 doing row 42000 of 80004 doing row 43000 of 80004 doing row 44000 of 80004 doing row 45000 of 80004 doing row 46000 of 80004 doing row 47000 of 80004 doing row 48000 of 80004 doing row 49000 of 80004 doing row 50000 of 80004 doing row 51000 of 80004 doing row 52000 of 80004 doing row 53000 of 80004 doing row 54000 of 80004 doing row 55000 of 80004 doing row 56000 of 80004 doing row 57000 of 80004 doing row 58000 of 80004 doing row 59000 of 80004 doing row 60000 of 80004 doing row 61000 of 80004 doing row 62000 of 80004 doing row 63000 of 80004 doing row 64000 of 80004 doing row 65000 of 80004 doing row 66000 of 80004 doing row 67000 of 80004 doing row 68000 of 80004 doing row 69000 of 80004 doing row 70000 of 80004 doing row 71000 of 80004 doing row 72000 of 80004 doing row 73000 of 80004 doing row 74000 of 80004 doing row 75000 of 80004 doing row 76000 of 80004 doing row 77000 of 80004 doing row 78000 of 80004 doing row 79000 of 80004 doing row 80000 of 80004
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 14393)
##
## Matrix products: default
##
## attached base packages:
## [1] grid stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] unmarked_1.0.1 scales_1.1.1 Hmisc_4.4-1
## [4] Formula_1.2-4 survival_3.2-7 lattice_0.20-41
## [7] chron_2.3-56 zoo_1.8-8 reshape_0.8.8
## [10] lubridate_1.7.9.2 plyr_1.8.6 reshape2_1.4.4
## [13] camtrapR_2.0.3 leafpop_0.0.6 leaflet_2.0.3
## [16] plainview_0.1.1 fasterize_1.0.3 stars_0.4-3
## [19] abind_1.4-5 GADMTools_3.8-1 classInt_0.4-3
## [22] OpenStreetMap_0.3.4 osmdata_0.1.4 tmaptools_3.1
## [25] tmap_3.2 stargazer_5.2.2 kableExtra_1.3.1
## [28] xtable_1.8-4 knitr_1.30 ggmap_3.0.0
## [31] forcats_0.5.0 stringr_1.4.0 dplyr_1.0.2
## [34] purrr_0.3.4 readr_1.4.0 tidyr_1.1.2
## [37] tibble_3.0.4 ggplot2_3.3.2 tidyverse_1.3.0
## [40] readxl_1.3.1 raster_3.4-5 spatstat_1.64-1
## [43] rpart_4.1-15 nlme_3.1-150 spatstat.data_1.5-2
## [46] mapview_2.9.0 sf_0.9-6 maptools_1.0-2
## [49] rgdal_1.5-18 sp_1.4-4
##
## loaded via a namespace (and not attached):
## [1] uuid_0.1-4 backports_1.2.0 secr_4.3.1
## [4] systemfonts_0.3.2 lwgeom_0.2-5 splines_4.0.3
## [7] crosstalk_1.1.0.1 digest_0.6.27 foreach_1.5.1
## [10] htmltools_0.5.0 leaflet.providers_1.9.0 fansi_0.4.1
## [13] checkmate_2.0.0 magrittr_2.0.1 cluster_2.1.0
## [16] tensor_1.5 modelr_0.1.8 RcppParallel_5.0.2
## [19] R.utils_2.10.1 svglite_1.2.3.2 jpeg_0.1-8.1
## [22] colorspace_2.0-0 rvest_0.3.6 haven_2.3.1
## [25] xfun_0.19 leafem_0.1.3 crayon_1.3.4
## [28] jsonlite_1.7.1 brew_1.0-6 iterators_1.0.13
## [31] glue_1.4.2 polyclip_1.10-0 gtable_0.3.0
## [34] webshot_0.5.2 overlap_0.3.3 DBI_1.1.0
## [37] Rcpp_1.0.5 htmlTable_2.1.0 viridisLite_0.3.0
## [40] units_0.6-7 foreign_0.8-80 stats4_4.0.3
## [43] htmlwidgets_1.5.2 httr_1.4.2 RColorBrewer_1.1-2
## [46] ellipsis_0.3.1 farver_2.0.3 pkgconfig_2.0.3
## [49] XML_3.99-0.5 rJava_0.9-13 R.methodsS3_1.8.1
## [52] nnet_7.3-14 dbplyr_2.0.0 deldir_0.2-3
## [55] labeling_0.4.2 tidyselect_1.1.0 rlang_0.4.8
## [58] ggspatial_1.1.4 munsell_0.5.0 cellranger_1.1.0
## [61] tools_4.0.3 cli_2.1.0 generics_0.1.0
## [64] broom_0.7.2 evaluate_0.14 yaml_2.2.1
## [67] goftest_1.2-2 leafsync_0.1.0 fs_1.5.0
## [70] satellite_1.0.2 RgoogleMaps_1.4.5.3 RcppNumerical_0.4-0
## [73] R.oo_1.24.0 xml2_1.3.2 compiler_4.0.3
## [76] rstudioapi_0.13 curl_4.3 png_0.1-7
## [79] e1071_1.7-4 spatstat.utils_1.17-0 reprex_0.3.0
## [82] stringi_1.5.3 highr_0.8 gdtools_0.2.2
## [85] rgeos_0.5-5 Matrix_1.2-18 vctrs_0.3.5
## [88] rosm_0.2.5 pillar_1.4.6 lifecycle_0.2.0
## [91] data.table_1.13.2 bitops_1.0-6 latticeExtra_0.6-29
## [94] R6_2.5.0 KernSmooth_2.23-18 gridExtra_2.3
## [97] codetools_0.2-18 gdalUtils_2.0.3.2 dichromat_2.0-0
## [100] MASS_7.3-53 assertthat_0.2.1 rjson_0.2.20
## [103] withr_2.3.0 mgcv_1.8-33 parallel_4.0.3
## [106] hms_0.5.3 class_7.3-17 rmarkdown_2.5
## [109] base64enc_0.1-3