Objetivo

Encontrar probabilidades de acuerdo a la distribución binomial

Descripción

Identificar dos casos de la literatura de distribuciones de probabilidad binomial y realizar cálculos de probabilidades utilizando la fórmula y las funciones dbinom() y pbinom(), identificar el valor medio, la varianza y la desviación.

Fundamento teórico

El experimento de lanzar al aire una moneda es un ejemplo sencillo de una importante variable aleatoria discreta llamada variable aleatoria binomial. Muchos experimentos prácticos resultan en datos similares a que salgan cara o cruz al tirar la moneda (Mendenhall et al., 2006)

Un experimento binomial es el que tiene estas cinco características:

Un experimiento de Bernoulli puede tener como resultado un éxito con probabilidad \(p\) y un fracaso con probabilidad \(q = 1 − p\). Entonces, la distribución de probabilidad de la variable aleatoria binomial \(X\), el número de éxito en \(n\) ensayos independientes (Walpole et al., 2012):

Fórmula:

\[prob(x=k) = \binom{n}{k} \cdot p^{k} \cdot q^{(n-k)} \] Para \[x = 0,1,2,3...n\] y recordando las combinacones \[\binom{n}{k} = \frac{n!}{k!\cdot(n-k)!}\]

El valor esperado está dado por: \[\mu = n \cdot p\]

La varianza y la desviación estándard se determinan mediante: \[\sigma^{2} = n \cdot p \cdot(1-p)\] y \[\sigma = \sqrt{\sigma^{2}}\]

Proceso

1. Cargar librerías

  • Se carga función de servicio github o de manera local
library(dplyr)
#source("../funciones/funciones.distribuciones.r")

# o

source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")

2. Ejercicios

2. Ejercicio

Tienda de ropa MartinClothingStore (Anderson et al., 2008)

De acuerdo con la experiencia, el gerente de la tienda estima que la probabilidad de que un cliente realice una compra es 0.30.

    1. Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad cumulada
    1. Encontrar la probabilidad de que compren dos clientes
    1. Encontrar la probabilidad de que compren los tres próximos clientes.
    1. Encontrar la probabilidad de que sean menor o igual que dos.
    1. Determinar el valor esperado y su significado
    1. Determinar la varianza y la desviación estándar y si significado
    1. Interpretar
a) Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad cumulada
  • Inicializar valores
x <- c(0,1,2,3)
n <- 3
exito <- 0.30
  • Determinar tabla de probabilidad usando la función creada y conforme a la fórmula
tabla1 <- data.frame(x=x, f.prob.x = f.prob.binom(x,n,exito), f.acum.x = cumsum(f.prob.binom(x,n,exito)))
tabla1
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000
  • Determinar tabla de probabilidad usando función propia de los paquetes base de r dbinom()
tabla2 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = cumsum(dbinom(x = x, size = n, prob = exito)))
tabla2
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000
b) Encontrar la probabilidad de que compren dos clientes
  • Identificar la probabildiad cuando \(P(x=2)\) de la tabla
  • Se puede usar tabla1 o tabla2 es la misma
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 2    0.189    0.973
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  2  es igual a :  0.189"
c) Encontrar la probabilidad de que compren los tres próximos clientes.
  • Identificar la probabildiad cuando \(P(x=3)\) de la tabla
  • Se puede usar tabla1 o tabla2 es la misma
valor.x <- 3
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 3    0.027        1
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  3  es igual a :  0.027"
d) Encontrar la probabilidad de que sean menor o igual que dos.
  • Ahora usar la función acumulada por la pregunta
  • \(P(x=0) + P(x=1) + P(x=2)\)
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 2    0.189    0.973
paste("La probabilidad de que sea menor o igual a ", valor.x, " es igual a : ", la.probabilidad$f.acum.x )
## [1] "La probabilidad de que sea menor o igual a  2  es igual a :  0.973"
e) Determinar el valor esperado y su significado
  • El valor esperado de la distribución binomial

\[\mu = n \cdot p\] * Siendo \(p\) el éxito de la probabilidad * y \(n\) el número de experimentos

VE <- n * exito
paste ("El valor esperado es: ", VE)
## [1] "El valor esperado es:  0.9"
f) Determinar la varianza y la desviación estándar y si significado
  • La varianza en la distribución binomial \[\sigma^{2} = n \cdot p \cdot(1-p)\]
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  0.63"
  • La desviación \[\sigma = \sqrt{\sigma^{2}}\]
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  0.79"
g) Interpretar el ejercicio

2.1. Ejercicio 2

Un jugador encesta con probabilidad 0.55. (La Distribución Binomial O de Bernoulli, n.d.):

2.3. Ejercicio 3

La probabilidad de que un paciente se recupere de una rara enferme dad sanguínea es \(0.4\). Si se sabe que \(15\) personas contraen tal enfermedad,

Referencias bibliográficas

Anderson, D. R., Sweeney, D. J., & Williams, T. A. (2008). Estadística para administración y economía (10th ed.). Cengage Learning,

Mendenhall, W., Beaver, R. J., & Beaver, B. M. (2006). Introducción a la probabilidad y estadística (13a Edición).

Walpole, R. E., Myers, R. H., & Myers, S. L. (2012). Probabilidad y estadística para ingeniería y ciencias (Novena Edición). Pearson.