| Ville | Minimum | X1st.Qu | Median | Mean | X3rd.Qu | Max | NA.s |
|---|---|---|---|---|---|---|---|
| bordeaux | 2.657306 | 20.53435 | 29.10077 | 30.22419 | 38.71460 | 94.13857 | 894 |
| clermont | 3.858328 | 19.95917 | 28.17745 | 31.14686 | 39.09285 | 124.32815 | 731 |
| grenoble | 5.125000 | 30.25481 | 39.69271 | 40.52026 | 49.70832 | 105.72996 | 767 |
| lehavre | 3.979180 | 19.06250 | 26.48889 | 28.59517 | 36.27969 | 91.26041 | 750 |
| lille | 0.000000 | 20.68042 | 30.03292 | 32.35433 | 41.75202 | 121.25834 | 1512 |
| lyon | 3.983750 | 33.43843 | 45.58635 | 47.10957 | 59.04313 | 158.40278 | 756 |
| marseille | 11.314822 | 35.43359 | 46.14023 | 47.08797 | 57.91884 | 102.81252 | 762 |
| montpellier | 3.432801 | 24.15611 | 33.23611 | 34.39422 | 42.89583 | 90.07251 | 751 |
| nancy | 5.725694 | 23.98847 | 33.00000 | 35.05250 | 44.10787 | 111.58334 | 767 |
| nantes | 2.738333 | 19.42448 | 26.93958 | 28.79082 | 36.46004 | 95.91659 | 760 |
| nice | -1.000000 | 34.65278 | 43.45833 | 44.72345 | 53.10416 | 116.66668 | 753 |
| paris | 16.597227 | 45.11439 | 55.05466 | 56.03320 | 65.26600 | 165.52762 | 731 |
| rennes | 5.622031 | 22.97876 | 30.44995 | 31.42495 | 38.45833 | 90.08332 | 731 |
| rouen | 7.048129 | 28.97918 | 37.97917 | 39.21817 | 47.69227 | 114.56250 | 760 |
| strasbourg | 7.656250 | 31.33905 | 40.08896 | 41.07317 | 49.74792 | 148.61667 | 770 |
| toulouse | 5.157343 | 24.57810 | 32.54802 | 34.09613 | 42.28371 | 90.61159 | 752 |
## Call: mvmeta(formula = y0003 ~ 1, S = S0003, method = "ml")
##
## Multivariate random-effects meta-analysis
## Dimension: 3
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## y1 -0.0029 0.0153 -0.1878 0.8510 -0.0328 0.0271
## y2 -0.0250 0.0338 -0.7393 0.4597 -0.0912 0.0412
## y3 -0.0110 0.0263 -0.4172 0.6765 -0.0626 0.0406
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Structure: General positive-definite
## Std. Dev Corr
## y1 0.0366 y1 y2
## y2 0.0500 1
## y3 0.0398 1 1
##
## Multivariate Cochran Q-test for heterogeneity:
## Q = 66.1426 (df = 45), p-value = 0.0217
## I-square statistic = 32.0%
##
## 16 studies, 48 observations, 3 fixed and 6 random-effects parameters
## (2 studies removed due to missingness)
## logLik AIC BIC
## 47.1943 -76.3886 -59.5478
## Call: mvmeta(formula = y0407 ~ 1, S = S0407, method = "ml")
##
## Multivariate random-effects meta-analysis
## Dimension: 3
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## y1 -0.0009 0.0160 -0.0536 0.9573 -0.0323 0.0306
## y2 0.0322 0.0344 0.9366 0.3490 -0.0352 0.0996
## y3 0.0252 0.0242 1.0445 0.2963 -0.0221 0.0726
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Structure: General positive-definite
## Std. Dev Corr
## y1 0.0409 y1 y2
## y2 0.0681 1
## y3 0.0300 1 1
##
## Multivariate Cochran Q-test for heterogeneity:
## Q = 57.7209 (df = 45), p-value = 0.0967
## I-square statistic = 22.0%
##
## 16 studies, 48 observations, 3 fixed and 6 random-effects parameters
## (2 studies removed due to missingness)
## logLik AIC BIC
## 53.4075 -88.8150 -71.9742
## Call: mvmeta(formula = y0811 ~ 1, S = S0811, method = "ml")
##
## Multivariate random-effects meta-analysis
## Dimension: 3
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## y1 0.0308 0.0111 2.7621 0.0057 0.0089 0.0526 **
## y2 0.0879 0.0328 2.6800 0.0074 0.0236 0.1522 **
## y3 0.0153 0.0234 0.6515 0.5147 -0.0306 0.0612
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Structure: General positive-definite
## Std. Dev Corr
## y1 0.0068 y1 y2
## y2 0.0470 1
## y3 0.0187 1 1
##
## Multivariate Cochran Q-test for heterogeneity:
## Q = 42.0846 (df = 45), p-value = 0.5962
## I-square statistic = 1.0%
##
## 16 studies, 48 observations, 3 fixed and 6 random-effects parameters
## (2 studies removed due to missingness)
## logLik AIC BIC
## 56.4622 -94.9245 -78.0837
## Call: mvmeta(formula = y1215 ~ 1, S = S1215, method = "ml")
##
## Multivariate random-effects meta-analysis
## Dimension: 3
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## y1 0.0071 0.0121 0.5890 0.5558 -0.0166 0.0309
## y2 0.0634 0.0362 1.7512 0.0799 -0.0076 0.1343 .
## y3 0.0249 0.0265 0.9395 0.3475 -0.0270 0.0767
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Structure: General positive-definite
## Std. Dev Corr
## y1 0.0208 y1 y2
## y2 0.0799 1
## y3 0.0583 1 1
##
## Multivariate Cochran Q-test for heterogeneity:
## Q = 51.6630 (df = 45), p-value = 0.2297
## I-square statistic = 12.9%
##
## 16 studies, 48 observations, 3 fixed and 6 random-effects parameters
## (2 studies removed due to missingness)
## logLik AIC BIC
## 57.8654 -97.7308 -80.8900
Bordeaux
Clermont-Ferrand
Grenoble
Le Havre
Lille
Lyon
Marseille
Montpellier
Nancy
Nantes
Nice
Paris
Rennes
Rouen
Strasbourg
Toulouse